Principles of Data Reduction

\footnote{Based on Casella and Berger's (2002) \textit{Statistical Inference} and on Migon and Gamerman's (1999) \textit{Statistical Inference: An Integrated Approach}.}
Outline

Statistics

Sufficiency Principle

Likelihood Principle

Formal Sufficiency Principle

Conditionality Principle

Formal Likelihood Principle

Birnbaum’s Theorem

Bayesian sufficiency

Neyman’s factorization
Statistics: functions of the sample.

⇒ Any statistic, $T(X)$, defines a form of data reduction or data summary.

⇒ Data reduction as a partition of the sample space \mathcal{X}.

Let $T = \{ t : t = T(x) \text{ for some } x \in \mathcal{X} \}$ be the image of \mathcal{X} under $T(x)$. Then $T(x)$ partitions the sample space into sets A_t, $t \in T$, defined by $A_t = \{ x : T(x) \}$.

A statistic summarizes the data in that, rather than reporting the entire sample x, it reports only that $T(x) = t$ or, equivalently, $x \in A_t$.
Sufficiency, likelihood and invariance principles

Sufficiency Principle
Does not discard information about θ while achieving some summarization of the data.

Likelihood Principle
Describes a function of the parameter, determined by the observed sample, that contains all the information about θ that is available from the sample.

Invariance Principle
Preserves some important features of the model.
Sufficiency Principle

If $T(X)$ is a sufficient statistic for θ then any inference about θ depends on the sample X only through the value $T(X)$. That is, if x and y are two sample points such that $T(x) = T(y)$, then the inference about θ should be the same whether $X = x$ or $X = y$ is observed.

Sufficient Statistics: A statistic $T(X)$ is a *sufficient statistic for θ* if the conditional distribution of the sample X given the value of $T(X)$ does not depend on θ.
Likelihood Principle

If \(x \) and \(y \) are two sample points such that \(L(\theta|x) \) is proportional to \(L(\theta|y) \), that is, there exists a constant \(C(x, y) \) such that

\[
L(\theta|x) = C(x, y)L(\theta|y)
\]

for all \(\theta \),

then the conclusions drawn from \(x \) and \(y \) should be identical.
Formal Sufficiency Principle

Experiment, E: triple $(X, \theta, \{f(x|\theta)\})$.

$Ev(E, x)$: evidence about θ arising from experiment E and x.

Formal Sufficiency Principle: Consider

- Experiment $E = (X, \theta, \{f(x|\theta)\})$, and
- $T(X)$ sufficient statistic for θ.

If x and y are sample points satisfying $T(x) = T(y)$, then

$$Ev(E, x) = Ev(E, y)$$
Conditionality Principle

Let \(E_i = (X_i, \theta, \{f_i(x_i|\theta)\}) \) for \(i = 1, 2 \) be two experiments, where only the unknown parameter \(\theta \) need be common between the two experiments.

Consider the mixed experiment in which the random variable \(J \) is observed, where \(P(J = 1) = P(J = 2) = 1/2 \) (independent of \(\theta, X_1, \) or \(X_2 \)), and the experiment \(E_J \) is performed. Formally, the performed experiment is

\[
E^* = (X^*, \theta, \{f^*(x^*|\theta)\}),
\]

where \(X^* = (j, X_j) \) and

\[
f^*(x^*|\theta) = f^*((j, x_j)|\theta) = \frac{1}{2}f_j(x_j|\theta).
\]

Then,

\[
Ev(E^*, (j, x_j)) = Ev(E_j, x_j)
\]
The Conditionality Principle simply says that if one of two experiments is randomly chosen and the chosen experiment is done, yielding data x, the information about θ depends only on the experiment performed.

\Rightarrow The Likelihood Principle can be derived from the Formal Sufficiency Principle and the Conditionality Principle.
Formal Likelihood Principle

Consider the experiments \(E_i = (X_i, \theta, \{f_i(x_i|\theta)\}) \) for \(i = 1, 2 \), where the unknown parameter \(\theta \) is the same in both experiments.

Suppose \(x_1^* \) and \(x_2^* \) are sample points from \(E_1 \) and \(E_2 \), respectively, such that

\[
L(\theta|x_2^*) = CL(\theta|x_1^*)
\]

for all \(\theta \) and for some constant \(C \) that may depend on \(x_1^* \) and \(x_2^* \) but not \(\theta \).

Then

\[
Ev(E_1, x_1^*) = Ev(E_1, x_2^*)
\]
Likelihood Principle Corollary

If

\[E = (X, \theta, \{f(x|\theta)\}) \]

is an experiment, then \(Ev(E, x) \) should depend on \(E \) and \(x \) only through \(L(\theta|x) \).

Birnbaum’s Theorem: The Formal Likelihood Principle follows from the Formal Sufficiency Principle and the Conditionality Principle. The converse is also true.
Classical definition of sufficiency

Let X be a random quantity with probability density function (pdf) $p(x|\theta)$.

Then, the statistic $T = T(X)$ is sufficient for the parameter θ if

$$p(x|t, \theta) = p(x|t).$$
Bayesian sufficiency

If $T = T(X)$ is a sufficient statistic for θ, then

$$p(\theta|x) = p(\theta|t), \text{ for all priors } p(\theta).$$

Proof: $p(x|\theta) = p(x, t|\theta)$ if $t = T(x)$ and 0, if $t \neq T(X)$. So,

$$p(x|\theta) = p(x|t, \theta)p(t|\theta)$$

$$= p(x|t)p(t|\theta)$$

But, by Bayes theorem,

$$p(\theta|x) \propto p(x|\theta)p(\theta) = p(x|t)p(t|\theta)p(\theta)$$

$$\propto p(t|\theta)p(\theta) \propto p(\theta|t).$$
Neyman’s factorization

Definition (Bayesian): The statistics $T(X)$ is sufficient for θ if there is a function f such that

$$p(\theta|x) \propto f(\theta, t).$$

\[\text{Neyman’s factorization:} \quad \text{The statistic } T \text{ is sufficient for } \theta \text{ if and only if} \]

$$p(x|\theta) = f(t, \theta)g(x)$$

where f and g are non-negative functions.

Proof: (\Rightarrow) We have already seen that $p(x|\theta) = p(x|t)p(t|\theta)$. Then it is enough to define

$$g(x) = p(x|t) = p(x|T(x))$$

$$f(t, \theta) = p(t|\theta)$$

completing this part of the proof.
Neyman’s factorization

(⇐) Conversely, we have that $p(x|\theta) = f(t, \theta)g(x)$. Defining $A_t = \{x : T(x) = t\}$, the pdf of $T|\theta$ is

$$p(t|\theta) = \int_{A_t} p(x|\theta)dx = f(t, \theta) \int_{A_t} g(x)dx = f(t, \theta)G(x),$$

and so, $f(t, \theta) = p(t|\theta)/G(x)$. Also, from the theorem,

$$f(t, \theta) = p(x|\theta)/g(x).$$

Equating the two forms for $f(t, \theta)$ leads to

$$\frac{p(x|\theta)}{p(t|\theta)} = \frac{g(x)}{G(x)}$$

Since $p(x|t, \theta) = p(x|\theta)/p(t|\theta)$, then

$$p(x|t, \theta) = \frac{g(x)}{G(x)} = p(x|t).$$

Thus, T is sufficient for θ. \qed