AR(1) process

Assume that we want to model time series data \(\{y_1, \ldots, y_n\} \) as a random realization from a simple Gaussian AR(1) process:

\[
y_t = \alpha + \phi y_{t-1} + \epsilon_t \quad \epsilon_t \sim N(0, \sigma^2).
\]

A key practical issue concerns the (unobservable) initial value \(y_0 \). Should it be fixed? If so, at what value? If not, how to handle it probabilistically?

Let us assume that

\[
y_0 \sim N(b, B)
\]

When \(|\phi| < 1\), \(b \) and \(B \) can be built based on the equilibrium (unconditional) distribution of \(y_t \) for any \(t \):
Picking b and B via stationarity

For any t, the (unconditional) mean and variance of y_t are

\[
\begin{align*}
 b &= E(y_t) = \alpha + \phi E(y_{t-1}) + E(\epsilon_t) = \alpha + \phi b \\
 B &= \text{V}(y_t) = \phi^2 \text{V}(y_{t-1}) + \text{V}(\epsilon_t) = \phi^2 B + \sigma^2
\end{align*}
\]

so

\[
b = \frac{\alpha}{1 - \phi} \quad \text{and} \quad B = \frac{\sigma^2}{1 - \phi^2}
\]

Note: In fact, conditionally on stationarity, we do not even need to consider y_0. Instead, the above result can be directly applied to y_1. In this case the joint likelihood for $\theta = (\alpha, \phi, \sigma^2)$ is

\[
L(\theta) = \left[\prod_{t=2}^{n} p_N(y_t|\alpha + \phi y_{t-1}, \sigma^2) \right] p_N \left(y_1; \frac{\alpha}{1 - \phi}, \frac{\sigma^2}{1 - \phi^2} \right).
\]
Don’t care about stationarity? Don’t worry!

The Gaussian distribution of y_1, say $N(d, D)$, can be easily derived from the (linear and Gaussian) AR(1) model and the joint Gaussian distribution of y_0, $N(b, B)$, by using two standard probability results:

$$E(Y) = E[E(Y|X)] \quad \text{and} \quad V(Y) = E[V(Y|X)] + V[E(Y|X)],$$

so

$$d = E(y_1) = E[E(y_1|y_0)] = E(\alpha + \phi y_0) = \alpha + \phi b$$

$$D = V(y_1) = V[E(y_1|y_0)] + E[V(y_1|y_0)]$$

$$= V(\alpha + \phi y_0) + E(\sigma^2) = \phi^2 B + \sigma^2.$$

The joint likelihood for $\theta = (\alpha, \phi, \sigma^2)$ is

$$L(\theta) = \left[\prod_{t=2}^{n} p_N(y_t|\alpha + \phi y_{t-1}, \sigma^2) \right] p_N(y_1; \alpha + \phi b, \phi^2 B + \sigma^2).$$

which is well defined for $|\phi| < 1$ as well as for $|\phi| \geq 1$. 3
In practice

\[p_N \left(y_1; \frac{\alpha}{1 - \phi}, \frac{\sigma^2}{1 - \phi^2} \right) \quad |\phi| < 1 \]

or

\[p_N(y_1; \alpha + \phi b, \phi^2 B + \sigma^2) \quad \phi \in \Re, \]

are ignored and (approximate) inference proceeds “as if” \(y_1 \) is the initial values and there are only \(n - 1 \) observations, \(y_2, \ldots, y_n \).

In these cases the (approximate likelihood) becomes

\[L(\theta) = \prod_{t=3}^{n} p_N(y_t|\alpha + \phi y_{t-1}, \sigma^2), \]

which is usually straightforward to handle regardless from both frequentist or Bayesian viewpoints.
Example: \(n = 100 \)

\[\alpha = 0.1, \ \phi = 0.9, \ \sigma^2 = 1 \]
Likelihood of ϕ based on y_1

$$y_1|\phi \sim N[\alpha/(1-\phi),\sigma^2/(1-\phi^2)]$$

True: $\alpha = 0.1$, $\phi = 0.9$, $\sigma^2 = 0.1$, $y_1 = 1.701$

$$y_1|\phi \sim N[\alpha + \phi b, \phi^2 B + \sigma^2]$$

Hyperparameters: $b = 0$, $B = 1$
Likelihoods of ϕ based on y_1 and y_2, \ldots, y_n

\[y_1|\phi \sim N[\alpha/(1-\phi), \sigma^2/(1-\phi^2)] \]

\[y_1|\phi \sim N[\alpha+\phi b, \phi^2 B + \sigma^2] \]
Posterior of ϕ (based on noninformative prior)1

Basically the likelihood of ϕ based on y_1, \ldots, y_n.1
AR(2) process

Assume that we want to model time series data \(\{ y_1, \ldots, y_n \} \) as a random realization from a simple Gaussian AR(2) process:

\[
y_t = \alpha + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \epsilon_t \quad \epsilon_t \sim N(0, \sigma^2).
\]

A key practical issue concerns the (unobservable) initial values \(y_0 \) and \(y_{-1} \). Should they be fixed? If so, at what values? If not, how to handle them probabilistically?

Let us assume that

\[
(y_0, y_{-1})' \sim N(b, B),
\]

where

\[
b = (b_1, b_2)' \quad \text{and} \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{12} & B_{22} \end{pmatrix}
\]
Picking b and B via stationarity

When (ϕ_1, ϕ_2) are within the boundaries of stationarity (remember the fancy triangular region?), b and B can be built based on the equilibrium (unconditional) distribution of any two contiguous observations, say y_t and y_{t-1}, from an AR(2) process.

Stationary mean:

$$
\mu = E(y_t) = \alpha + \phi_1 E(y_{t-1}) + \phi_2 E(y_{t-2}) + E(\epsilon_t) = \alpha + \phi_1 \mu + \phi_2 \mu + 0,
$$

implying that the stationary mean is

$$
\mu = \frac{\alpha}{1 - \phi_1 - \phi_2}
$$
Covariance and correlation functions

Replacing α by $\mu(1 - \phi_1 - \phi_2)$ in the AR(2) leads to

$$y_t = \mu(1 - \phi_1 - \phi_2) + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \epsilon_t$$
$$y_t - \mu = \phi_1 (y_{t-1} - \mu) + \phi_2 (y_{t-2} - \mu) + \epsilon_t,$$

so the autocovariance functions are

$$\gamma_j = E[(y_t - \mu)(y_{t-j} - \mu)] = \phi_1 E[(y_{t-1} - \mu)(y_{t-j} - \mu)] + \phi_2 E[(y_{t-2} - \mu)(y_{t-j} - \mu)] + E[\epsilon_t(y_{t-j} - \mu)]$$

$$= \begin{cases}
\phi_1 \gamma_{j-1} + \phi_2 \gamma_{j-2} & j = 1, 2, \ldots, \\
\phi_1 \gamma_1 + \phi_2 \gamma_2 + \sigma^2 & j = 0
\end{cases}$$

In terms of autocorrelations:

$$\rho_j = \frac{\gamma_j}{\gamma_0} = \phi_1 \rho_{j-1} + \phi_2 \rho_{j-2} \quad j = 1, 2, \ldots,$$

with $\rho_0 = 1$.
Since

\[
\begin{align*}
\rho_1 &= \phi_1 \rho_0 + \phi_2 \rho_{-1} = \phi_1 + \phi_2 \rho_1 \\
\rho_2 &= \phi_1 \rho_1 + \phi_2 \\
\gamma_0 &= \phi_1 \rho_1 \gamma_0 + \phi_2 \rho_2 \gamma_0 + \sigma^2,
\end{align*}
\]

it follows that

\[
\begin{align*}
\rho_1 &= \frac{\phi_1}{1 - \phi_2} \quad \text{and} \quad \rho_2 = \frac{\phi_1 (1 + \phi_1 - \phi_2)}{1 - \phi_2} \\
\gamma_0 &= \frac{(1 - \phi_2)}{(1 + \phi_2)[(1 - \phi_2)^2 - \phi_1^2]} \sigma^2 \\
\gamma_1 &= \rho_1 \gamma_0 = \frac{\phi_1}{(1 + \phi_2)[(1 - \phi_2)^2 - \phi_1^2]} \sigma^2
\end{align*}
\]
Now we are ready to go back to \((y_0, y_{-1})' \sim N(b, B)\):

\[
\begin{align*}
 b_1 &= b_2 = \mu = \frac{\alpha}{1 - \phi_1 - \phi_2} \\
 B_{11} &= B_{22} = \gamma_0 = \frac{(1 - \phi_2)}{(1 + \phi_2)[(1 - \phi_2)^2 - \phi_1^2]} \sigma^2 \\
 B_{12} &= \gamma_1 = \frac{\phi_1}{(1 + \phi_2)[(1 - \phi_2)^2 - \phi_1^2]} \sigma^2
\end{align*}
\]

Note: In fact, conditionally on stationarity, we do not even need to consider \(y_0\) and \(y_{-1}\). Instead, the above result can be directly applied to the pair \(\tilde{y} = (y_1, y_2)\). In this case the joint likelihood for \(\theta = (\alpha, \phi_1, \phi_2, \sigma^2)\) is

\[
L(\theta) = \left[\prod_{t=3}^{n} p_N(y_t|\alpha + \phi_1 y_{t-1} + \phi_2 y_{t-2}, \sigma^2) \right] p_N(\tilde{y}|b, B).
\]
Don’t care about stationarity? Don’t worry!

The joint Gaussian distribution of \(\tilde{y} = (y_1, y_2)' \), say \(N(d, D) \), can be easily derived from the (linear and Gaussian) AR(2) model and the joint Gaussian distribution of \((y_0, y_{-1})' \), \(N(b, B) \), by using two standard probability results:

\[
E(Y) = E[E(Y|X)] \\
V(Y) = E[V(Y|X)] + V[E(Y|X)]
\]

so

\[
d_1 = E(y_1) = E[E(y_1|y_0, y_{-1})] \\
= E(\alpha + \phi_1 y_0 + \phi_2 y_{-1}) \\
= \alpha + \phi_1 b_1 + \phi_2 b_2
\]

\[
d_2 = E(y_2) = E[E(y_2|y_1, y_0)] \\
= \alpha + \phi_1 E(y_1) + \phi_2 b_1 \\
= \alpha(1 + \phi_1) + b_1(\phi_1^2 + \phi_2) + b_2\phi_1\phi_2
\]
\[D_{11} = V(y_1) = V[(E(y_1|y_0, y_{-1})] + E[V(y_1|y_0, y_{-1})] \\
= V(\alpha + \phi_1y_0 + \phi_2y_{-1}) + E(\sigma^2) \\
= \phi_1^2 V(y_0) + \phi_2^2 V(y_{-1}) + 2\phi_1\phi_2 \text{Cov}(y_0, y_{-1}) + \sigma^2 \\
= \phi_1^2 B_{11} + \phi_2^2 B_{22} + 2\phi_1\phi_2 B_{12} + \sigma^2 \]

\[D_{22} = V(y_2) = V[(E(y_2|y_1, y_0)) + E[V(y_2|y_1, y_0)] \\
= \sigma^2 + \phi_1^2 V(y_1) + \phi_2 B_{11} + 2\phi_1\phi_2 \text{Cov}(y_1, y_0) \\
= \sigma^2 + \phi_1^2 V(y_1) + \phi_2 B_{11} + 2\phi_1\phi_2(\phi_1 B_{11} + \phi_2 B_{12}) \]

\[D_{12} = \text{Cov}(y_1, y_2) = \text{Cov}(\alpha + \phi_1y_0 + \phi_2y_{-1}, \alpha + \phi_1y_1 + \phi_2y_0) \\
= \phi_1\phi_2 V(y_0) + \phi_1^2 \text{Cov}(y_0, y_1) \\
+ \phi_1\phi_2 \text{Cov}(y_1, y_{-1}) + \phi_2^2 \text{Cov}(y_0, y_{-1}) \\
= \phi_1\phi_2 B_{11} + \phi_1^2(\phi_1 B_{11} + \phi_2 B_{12}) \\
+ \phi_1\phi_2(\phi_1 B_{12} + \phi_2 B_{22}) + \phi_2^2 B_{12} \]

since

\[\text{Cov}(y_1, y_0) = \text{Cov}(\alpha + \phi_1y_0 + \phi_2y_{-1}, y_0) = \phi_1 B_{11} + \phi_2 B_{12} \]

\[\text{Cov}(y_1, y_{-1}) = \phi_1 B_{12} + \phi_2 B_{22} \]
Therefore, the joint likelihood for $\theta = (\alpha, \phi_1, \phi_2, \sigma^2)$ is

$$L(\theta) = \left[\prod_{t=3}^{n} p_N(y_t | \alpha + \phi_1 y_{t-1} + \phi_2 y_{t-2}, \sigma^2) \right] p_N(\tilde{y} | d, D).$$

Note 1: The above likelihood function is well defined for pairs (ϕ_1, ϕ_2) inside the stationary region as well as outside the stationary region.

Note 2: In practice $p_N(\tilde{y} | b, B)$ or $p_N(\tilde{y} | d, D)$ are ignored and (approximate) inference proceeds “as if” y_1 and y_2 are the initial values and there are only $n - 2$ observations. In these cases the (approximate likelihood) becomes

$$L(\theta) = \prod_{t=3}^{n} p_N(y_t | \alpha + \phi_1 y_{t-1} + \phi_2 y_{t-2}, \sigma^2),$$

which is usually much easier to handle regardless from a frequentist or a Bayesian viewpoint.