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Unit root nonstationarity

In some studies, interest rates, foreign exchange rates, or the
price series of an asset are of interest.

These series tend to be nonstationary.

For a price series, the nonstationarity is mainly due to the
fact that there is no fixed level for the price.

In the time series literature, such a nonstationary series is
called unit-root nonstationary time series.

The best known example of unit-root nonstationary time
series is the random-walk model.
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Random walk

A time series {pt} is a random walk if it satisfies

pt = pt−1 + at

where p0 is a real number denoting the starting value of the
process and {at} is a white noise series.

If pt is the log price of a particular stock at date t , then p0

could be the log price of the stock at its initial public
offering (IPO) (i.e., the logged IPO price).

If at has a symmetric distribution around zero, then
conditional on pt−1, pt has a 50-50 chance to go up or down,
implying that pt would go up or down at random.
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Example

set.seed(1234)

n=1000

p = rep(0,n)

a = rep(0,n)

p[1] = 0

a[1] = 1

for (t in 2:n){

a[t] = sample(c(-1,1),size=1)

p[t] = p[t-1] + a[t]

}

par(mfrow=c(2,2))

ts.plot(p[1:50],ylab="")

abline(h=0,lty=2)

ts.plot(p[1:100],ylab="")

abline(h=0,lty=2)

ts.plot(p[1:200],ylab="")

abline(h=0,lty=2)

ts.plot(p[1:1000],ylab="")

abline(h=0,lty=2)
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AR(1) and random walk

If we treat the random-walk model as a special AR(1)
model, then the coefficient of pt−1 is unity, which does not
satisfy the weak stationarity condition of an AR(1) model.

A random-walk series is, therefore, not weakly stationary,
and we call it a unit-root nonstationary time series.

The random-walk model has widely been considered as a
statistical model for the movement of logged stock prices.
Under such a model, the stock price is not predictable or
mean reverting.
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Mean reverting
The 1-step-ahead forecast of model pt = pt−1 + at, at the
forecast origin h is

p̂h(1) = E(ph+1|ph, ph−1, . . .) = ph.

The 2-step-ahead forecast is

p̂h(2) = E(ph+2|ph, ph−1, . . .) = E(ph+1|ph, ph−1, . . .) = ph,

which again is the log price at the forecast origin.

In fact, for any forecast horizon l > 0, we have

p̂h(l) = ph

Therefore, the process is not mean reverting.
7 / 40



Predictability

The MA representation of the random-walk model is

pt = at + at−1 + at−2 + · · ·

First, the l-step ahead forecast error is

eh(l) = ph+l − p̂h(l)

= ph+l − ph
= ah+l + ah+l−1 + · · ·+ ah+1

so that
V [eh(l)] = lσ2

a →∞ as l→∞.

This result says that the usefulness of point forecast p̂h(l)
diminishes as l increases, which again implies that the model
is not predictable.
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Memory

The impact of any past shock at−i on pt does not decay over
time.

The series has a strong memory as it remembers all of the
past shocks.

In economics, the shocks are said to have a permanent effect
on the series.

The strong memory of a unit-root time series can be seen
from the sample ACF of the observed series.

The sample ACFs are all approaching 1 as the sample size
increases.
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Random walk with drift
Log return series of a market index tends to have a small
and positive mean, so the model for the log price is

pt = µ+ pt−1 + at

The constant term µ represents the time trend of the log
price pt and is often referred to as the drift of the model.

Assume that the initial log price is p0:

p1 = µ+ p0 + a1,

p2 = µ+ p1 + a2 = 2µ+ p0 + a2 + a1,

p3 = µ+ p2 + a3 = 3µ+ p0 + a3 + a2 + a1,
...

pt = µt+ p0 +

t∑
i=1

ai.
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The log price consists of a time trend and a pure
random-walk process:

pt = p0 + µt+

t∑
i=1

ai.

The conditional standard deviation of pt, σa
√
t, grows at a

slower rate than the conditional expectation of pt, p0 + µt.

Let n = 10, 000 and at iid N(0, 0.06372) so

pt = µ+ pt−1 + at

where p0 = 0 and µ = 0 or µ = 0.0103.
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RW with drift
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Interpretation of the
Constant Term

MA(q) model: the constant term is the mean of the series.

Stationary AR(p) or ARMA(p, q) models: the constant term
is related to the mean via

µ =
φ0

1− φ1 − · · · − φp
.

Random walk with drift: the constant term becomes the
time slope of the series.
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Trend-stationarity

The simplest trend-stationary time series model,

pt = β0 + β1t+ rt,

where rt is a stationary time series, say a stationary AR(p).

Major difference between the two models:

• Random walk with drift model

E(pt) = p0 + µt and V (pt) = σ2
at.

• Trend-stationary model

E(pt) = β0 + β1t and V (pt) = V (rt)

with V (rt) finite and time invariant.
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General unit-root models

Consider an ARMA model. If one extends the model by
allowing the AR polynomial to have 1 as a characteristic
root, then the model becomes the well-known autoregressive
integrated moving-average (ARIMA) model.

An ARIMA model is said to be unit-root nonstationary
because its AR polynomial has a unit root.

Like a random-walk model, an ARIMA model has strong
memory because the ψi coefficients in its MA representation
do not decay over time to zero, implying that the past shock
at−i of the model has a permanent effect on the series.
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ARIMA(p, 1, q)

A conventional approach for handling unit-root
nonstationarity is to use differencing.

A time series yt is said to be an ARIMA(p, 1, q) process if
the change series

ct = yt − yt−1 = (1−B)yt

follows a stationary and invertible ARMA(p, q) model.

Price series are believed to be nonstationary, but the log
return series,

rt = log(Pt)− log(Pt−1),

is stationary.
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Unit-root test

To test whether the log price pt of an asset follows a random
walk or a random walk with drift, we employ the models

pt = φ1pt−1 + et (1)

pt = φ0 + φ1pt−1 + et (2)

where et denotes the error term, and consider the null
hypothesis

H0 : φ1 = 1

versus the alternative hypothesis

Ha : φ1 < 1.

This is the well-known unit-root testing problem (Dickey and
Fuller, 1979).
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Dickey-Fuller test

A convenient test statistic is the t ratio of the least-squares
(LS) estimate of φ1 under the null hypothesis.

For equation (1), the LS method gives

φ̂1 =

∑T
t=1 pt−1pt∑T
t=1 p

2
t−1

and σ̂2
e =

∑T
t=1(pt − φ̂1pt−1)2

T − 1

where p0 = 0. The t ratio is

DF ≡ t ratio =
φ̂1 − 1

std(φ̂1)
=

∑T
t=1 pt−1et

σ̂e

√∑T
t=1 p

2
t−1

which is commonly referred to as the Dickey-Fuller (DF)
test.
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If {et} is a white noise series with finite moments of order
slightly greater than 2, then the DF statistic converges to a
function of the standard Brownian motion as T →∞; see
Chan and Wei (1988) and Phillips (1987) for more
information.

If φ0 = 0 but equation (2) is employed anyway, then the
resulting t ratio for testing φ1 = 1 will converge to another
nonstandard asymptotic distribution.

If φ0 6= 0 and equation (2) is used, then the t ratio for
testing φ1 = 1 is asymptotically normal.
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Augmented DF test

To verify the existence of a unit root in an AR(p) process,
one may perform the test

H0 : β1 versus Ha : β < 1

using the regression

xt = ct + βxt−1 +

p−1∑
i=1

φi∆xt−i + et,

where ct is a deterministic function of the time index t and
∆xj = xj − xj−1 is the differenced series of xt.

In practice, ct can be zero or a constant or ct = ω0 + ω1t.
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The t ratio of β̂ − 1,

ADF-test =
β̂ − 1

std(β̂)

where β̂ denotes the least-squares estimate of β, is the
well-known augmented Dickey-Fuller (ADF) unit-root test.
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US quarterly GDP

Consider the log series of U.S. quarterly GDP from 1947.I to
2008.IV.

The series exhibits an upward trend, showing the growth of
the U.S. economy, and has high sample serial correlations.

The first differenced series, representing the growth rate of
U.S. GDP, seems to vary around a fixed mean level, even
though the variability appears to be smaller in recent years.

With p = 10, the ADF test statistic is −1.61 with a p-value
0.45, indicating that the unit-root hypothesis cannot be
rejected.
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R code

install.packages("fUnitRoots")

library(fUnitRoots)

da=read.table("http://faculty.chicagobooth.edu/

ruey.tsay/teaching/fts3/q-gdp4708.txt",header=T)

gdp=log(da[,4])

m1=ar(diff(gdp),method="mle")

adfTest(gdp,lags=10,type=c("c"))

Title:

Augmented Dickey-Fuller Test

Test Results:

PARAMETER:

Lag Order: 10

STATISTIC:

Dickey-Fuller: -1.6109

P VALUE:

0.4569
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S&P500 returns

Consider the log series of the S&P 500 index from January
3, 1950, to April 16, 2008, for 14,462 observations.

Testing for a unit root in the index is relevant if one wishes
to verify empirically that the index follows a random walk
with drift. To this end, we use ct = ω0 + ω1t in applying the
ADF test.

Furthermore, we choose p = 15 based on the sample PACF
of the first differenced series.

The resulting test statistic is −1.998 with a p-value of 0.602.

Thus, the unit-root hypothesis cannot be rejected at any
reasonable significance level.
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da=read.table("http://faculty.chicagobooth.edu/ruey.tsay/teaching/fts3/

d-sp55008.txt",header=T)

sp5=log(da[,7])

m2=ar(diff(sp5),method="mle")

m2$order

adfTest(sp5,lags=2,type=("ct"))

Title:

Augmented Dickey-Fuller Test

Test Results:

PARAMETER:

Lag Order: 2

STATISTIC:

Dickey-Fuller: -2.0179

P VALUE:

0.5708
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Nelson and Plosser1

consumer price index
industrial production
nominal GNP
velocity
employment
interest rate
nominal wages
GNP deflator
money stock
real GNP
stock prices (S&P500)
GNP per capita
real wages
unemployment.

1Nelson and Plosser (1982) Trends and random walks in
macroeconomic time series: Some evidence and implications. Journal of
Monetary Economics, 10(2), 139-162.
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install.packages("fUnitRoots")

install.packages("tseries")

library(fUnitRoots)

library(tseries)

data(NelPlo)

names = c("consumer price index", "industrial production","nominal GNP",

"velocity","employment","interest rate","nominal wages","GNP deflator",

"money stock", "real GNP", "stock prices (S&P500)","GNP per capita",

"real wages", "unemployment")

p = ncol(NelPlo)

pdf(file="nelsonplosser.pdf",width=12,height=8)

par(mfrow=c(3,5))

for (i in 1:p)

ts.plot(NelPlo[,i],main=names[i],ylab="",xlab="Year")

dev.off()

pval.nc = rep(0,p)

pval.c = rep(0,p)

pval.ct = rep(0,p)

for (i in 1:p){

pval.nc[i] = adfTest(NelPlo[,i],type="nc")@test$p.value

pval.c[i] = adfTest(NelPlo[,i],type="c")@test$p.value

pval.ct[i] = adfTest(NelPlo[,i],type="ct")@test$p.value

}

cbind(names,round(pval.nc,2),round(pval.c,2),round(pval.ct,2))
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p-value

variable nc c ct

consumer price index 0.99 0.99 0.93
industrial production 0.99 0.70 0.04
nominal GNP 0.99 0.98 0.57
velocity 0.03 0.18 0.75
employment 0.99 0.83 0.06
interest rate 0.75 0.74 0.72
nominal wages 0.99 0.98 0.43
GNP deflator 0.99 0.99 0.75
money stock 0.99 0.97 0.22
real GNP 0.99 0.94 0.05
stock prices (S&P500) 0.98 0.98 0.41
GNP per capita 0.98 0.90 0.04
real wages 0.99 0.75 0.71
unemployment 0.20 0.01 0.01

nc: a regression with no intercept nor time trend
c: a regression with an intercept but no time trend
ct: a regression with an intercept and a time trend.
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Long memory models

There exist some time series whose ACF decays slowly to
zero at a polynomial rate as the lag increases. These
processes are referred to as long-memory time series.

One such example is the fractionally differenced process
defined by

(1−B)dxt = at − 0.5 < d < 0.5,

where {at} is a white noise series, and

(1−B)d =

∞∑
k=0

(−1)k
d(d− 1) · · · (d− k + 1)

k!
Bk
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History

The study of long memory originated in the 1950s in the field of hydrology,
where studies of the levels of the river Nile (Hurst, 1951) demonstrated
anomalously fast growth of the rescaled range of the time series.

After protracted debates1 about whether this was a transient (finite time)
effect, the mathematical pioneer Benôıt B. Mandelbrot showed that if one
retained the assumption of stationarity, novel mathematics would then be
essential to sufficiently explain the Hurst effect.

In doing so he rigorously defined (Mandelbrot and Van Ness, 1968;
Mandelbrot and Wallis, 1968) the concept of long memory.

Palma (2007) Long Memory Time Series. Wiley.
Beran, Feng, Ghosh, Kulik (2013) Long Memory Processes. Springer.
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Some properties
1. If d < 0.5, then xt is a weakly stationary process and has
the infinite MA representation

xt = at +

∞∑
i=1

ψiat−i

where

ψk =
(k + d− 1)!

k!(d− 1)!

2. If d > −0.5, then xt is invertible and has the infinite AR
representation

xt =

∞∑
i=1

πixt−i + at

where

πk =
(k − d− 1)!

k!(−d− 1)!
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3. For −0.5 < d < 0.5, the ACF of xt is

ρk =
d(1 + d) · · · (k − 1 + d)

(1− d)(2− d) · · · (k = d)
, k = 1, 2, . . . .

In particular, ρ1 = d/(1− d) and

ρk ≈
(−d)!

(d− 1)!
k2d−1 as k →∞.

4. For −0.5 < d < 0.5, the PACF of xt is φk,k = d/(k − d)
for k = 1, 2, . . ..

5. For −0.5 < d < 0.5, the spectral density function f(ω) of
xt, which is the Fourier transform of the ACF of xt, satisfies

f(ω) ∼ ω−2d, as ω → 0,

where ω ∈ [0, 2π] denotes the frequency.
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Of particular interest here is the behavior of ACF of xt
when d < 0.5.

The property says that ρk ∼ k2d−1, which decays at a
polynomial, instead of exponential, rate.

For this reason, such an xt process is called a long-memory
time series.

A special characteristic of the spectral density function is
that the spectrum diverges to infinity as ω → 0.

However, the spectral density function of a stationary
ARMA process is bounded for all ω ∈ [0, 2π].
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If the fractionally differenced series (1−B)dxt follows an
ARMA(p, q) model, then xt is called an ARFIMA(p, d, q)
process, which is a generalized ARIMA model by allowing
for noninteger d.

In practice, if the sample ACF of a time series is not large in
magnitude, but decays slowly, then the series may have long
memory.

For the pure fractionally differenced model, one can estimate
d using either a maximum-likelihood method or a regression
method with logged periodogram at the lower frequencies.
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