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Homoskedasticity fails whenever the variance of the
unobserved factors changes across different segments of the
population, where the segments are determined by the
different values of the explanatory variables.

In a savings equation, for example, heteroskedasticity is
present if the variance of the unobserved factors affecting
savings increases with income.
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Homoskedasticity is needed to justify the usual t tests, F
tests, and confidence intervals for OLS estimation of the
linear regression model, even with large sample sizes.

Heteroskedasticity:

• Consequences for ordinary least squares estimation,

• Available remedies when heteroskedasticity occurs, and

• Test for its presence.
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Consequences for OLS

Consider the multiple linear regression model:

y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ε.

The OLS estimators β̂0, . . . , β̂k are unbiasedness and
consistent, under the first four Gauss-Markov assumptions.

The homoskedasticity assumption

V (ε|x1, . . . , xk) = σ2,

plays no role in showing whether OLS was unbiased or
consistent.
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If heteroskedasticity does not cause bias or inconsistency in
the OLS estimators, why did we introduce it as one of the
Gauss-Markov assumptions?

The estimators of the variances, V (β̂j), are biased without
the homoskedasticity assumption.

Since the OLS standard errors are based directly on these
variances, they are no longer valid for constructing
confidence intervals and t statistics.

The usual OLS t statistics do not have t distributions in the
presence of heteroskedasticity, and the problem is not
resolved by using large sample sizes.
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In summary, the statistics we used to test hypotheses under
the Gauss-Markov assumptions are not valid in the presence
of heteroskedasticity.

We will show how the usual OLS test statistics can be
modified so that they are valid, at least asymptotically.
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Consider the model with a single independent variable,
where the first four Gauss-Markov assumptions hold.

yi = β0 + β1xi + εi.

If the errors contain heteroskedasticity

V (εi|xi) = σ2i ,

and knowing that

β̂1 = β1 +

∑n
i=1(xi − x̄)εi∑n
i=1(xi − x̄)2

,

it follows that

V (β̂1) =

∑n
i=1(xi − x̄)2σ2i

{
∑n

i=1(xi − x̄)2}2
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White (1980) showed that a valid estimator of V (β̂1), for
heteroskedasticity of any form is

V̂ (β̂1) =

∑n
i=1(xi − x̄)2ε̂2i

(
∑n

i=1(xi − x̄)2)2
.

In what sense is this a valid estimator of V (β̂1)?
The law of large numbers (LLN) and the central limit
theorem (CLT) play key roles in establishing its validity.
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A similar formula works in the general multiple regression

yi = β0 + β1x1i + · · ·+ βkxki + εi.

It can be shown that a valid estimator of V (β̂j), under
Assumptions MLR.1 through MLR.4, is

V̂ (β̂j) =

∑n
i=1 r̂

2
ij ε̂

2
i{∑n

i=1 r̂
2
ij

}2 ,

where r̂1j , . . . , r̂nj are the residuals from regressing xj on all
other independent variables.√
V̂ (β̂j) is the heteroskedasticity-robust standard error for

β̂j (White, 1980).
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wage1.csv

The data-set wage1.csv was provided with: Wooldridge, Jeffrey M. (200x),

Introductory Econometrics: A Modern Approach, x. Edition, South Western

College Publishing, Mason (Ohio). (Note: x stands for different years/editions)

These are data from the 1976 Current Population Survey, collected by Henry

Farber and contain the following variables (Obs. 526):

1. wage average hourly earnings

2. educ years of education

3. exper years potential experience

4. tenure years with current employer

5. nonwhite =1 if nonwhite

6. female =1 if female

7. married =1 if married

8. numdep number of dependents

9. smsa =1 if live in SMSA

10. northcen =1 if live in north central U.S

11. south =1 if live in southern region

12. west =1 if live in western region

13. construc =1 if work in construc. indus.

14. ndurman =1 if in nondur. manuf. indus.

15. trcommpu =1 if in trans, commun, pub ut

16. trade =1 if in wholesale or retail

17. services =1 if in services indus.

18. profserv =1 if in prof. serv. indus.

19. profocc =1 if in profess. occupation

20. clerocc =1 if in clerical occupation

21. servocc =1 if in service occupation

22. lwage log(wage)

23. expersq exper^2

24. tenursq tenure^2
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R code
Wage differences: married men/women, single men/women.
Dependent variable is lwage, n = 526 and R2 = 0.461

data = read.csv("wage1.csv",header=TRUE)

attach(data)

n = nrow(data)

# Dummy variables

marrmale = rep(0,n)

marrfem = rep(0,n)

singfem = rep(0,n)

marrmale[(female==0)&(married==1)]=1

marrfem[(female==1)&(married==1)]=1

singfem[(female==1)&(married==0)]=1

# Multiple regression

X = cbind(1,marrmale,marrfem,singfem,educ,exper,expersq,tenure,tenursq)

reg = lm(lwage~X-1)

summary(reg)

# Heterokedasticity-robust standard errors

se = rep(0,ncol(X))

i=1

reg1 = lm(X[,1]~X[,-1]-1)

se[i] = sqrt(sum((reg1$res^2)*(reg$res^2))/(sum(reg1$res^2))^2)

for (i in 2:9){

reg1 = lm(X[,i]~X[,-i])

se[i] = sqrt(sum((reg1$res^2)*(reg$res^2))/(sum(reg1$res^2))^2)

}
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Standard errors

coefficient estimate OLS s.e. HR s.e.

intercept 0.3214 0.100009 0.108528
marrmale 0.2127 0.055357 0.056651
marrfem -0.1983 0.057836 0.058265
singfem -0.1104 0.055742 0.056626
educ 0.0789 0.006695 0.007351
exper 0.0268 0.005243 0.005095
tenure 0.0291 0.006762 0.006881
expersq -0.00054 0.000110 0.000105
tenuresq -0.00053 0.000231 0.000242
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HR F statistic

The HR standard errors provide a method for computing t
statistics that are asymptotically t distributed.

Testing
H0 : V (ε|x1, x2, . . . , xk) = σ2

is the same as testing

H0 : E(ε2|x1, x2, . . . , xk) = σ2

This shows that, in order to test for violation of the
homoskedasticity assumption, we want to test whether ε2 is
related (in expected value) to one or more of the
explanatory variables.
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If H0 is false, the expected value of ε2, given the independent
variables, can be virtually any function of the xj .

A simple approach is to assume a linear function:

ε2 = δ0 + δ1x1 + · · · δkxk + ν,

so the null hypothesis of homoskedasticity is

H0 : δ1 = δ2 = · · · = δk = 0.
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The F statistic depend on the R2
ε̂2 from regression

ε̂2 = δ0 + δ1x1 + · · · δkxk + error,

and is computed as

F =
R2

ε̂2/k

(1−R2
ε̂2

)/(n− k − 1)
.

This F statistic has (approximately) an Fk,n−k−1

distribution under the null hypothesis of homoskedasticity.
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hprice1.txt

Contains data from hprice1.txt

obs: 88

vars: 10

-------------------------------------------------------------

variable variable label

-------------------------------------------------------------

price house price, $1000s

assess assessed value, $1000s

bdrms number of bdrms

lotsize size of lot in square feet

sqrft size of house in square feet

colonial =1 if home is colonial style

lprice log(price)

lassess log(assess

llotsize log(lotsize)

lsqrft log(sqrft)

-------------------------------------------------------------
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R code

data = read.table("hprice1.txt",header=TRUE)

attach(data)

n = nrow(data)

reg1 = lm(price ~ lotsize+sqrft+bdrms)

reg2 = lm(lprice ~ llotsize+lsqrft+bdrms)

summary(reg1)

summary(reg2)

e1sq = reg1$res^2

e2sq = reg2$res^2

R2.e1 = summary(lm(e1sq~lotsize+sqrft+bdrms))$r.sq

R2.e2 =summary(lm(e2sq~llotsize+lsqrft+bdrms))$r.sq

F1 = R2.e1/(1-R2.e1)*(84/3)

F2 = R2.e2/(1-R2.e2)*(84/3)

pval1 = 1-pf(F1,3,84)

pval2 = 1-pf(F2,3,84)

rbind(c(R2.e1,R2.e2),

c(F1,F2),

c(pval1,pval2))
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Regression on levels

> summary(reg1)

lm(formula = price ~ lotsize + sqrft + bdrms)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.177e+01 2.948e+01 -0.739 0.46221

lotsize 2.068e-03 6.421e-04 3.220 0.00182 **

sqrft 1.228e-01 1.324e-02 9.275 1.66e-14 ***

bdrms 1.385e+01 9.010e+00 1.537 0.12795

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 59.83 on 84 degrees of freedom

Multiple R-squared: 0.6724,Adjusted R-squared: 0.6607

F-statistic: 57.46 on 3 and 84 DF, p-value: < 2.2e-16
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Computing errors

ε̂ = price + 21.77− 0.00207lotsize− 0.123sqrft− 13.85bdrms,

and fitting

ε̂2 = δ0 + δ1lotsize + δ2sqrft + δ3bdrms + ν,

leads to R2
ε̂2 = 0.160140744.

The HR F statistic for the null hypothesis

H0 : δ1 = δ2 = δ3 = 0,

is

F =
0.160140744/3

0.8398593/84
= 5.338919368,

with p-value of 0.002047744.

Conclusion: There is strong evidence against the null hypothesis.
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Regression on logs

> summary(reg2)

lm(formula = lprice ~ llotsize + lsqrft + bdrms)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.29704 0.65128 -1.992 0.0497 *

llotsize 0.16797 0.03828 4.388 3.31e-05 ***

lsqrft 0.70023 0.09287 7.540 5.01e-11 ***

bdrms 0.03696 0.02753 1.342 0.1831

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.1846 on 84 degrees of freedom

Multiple R-squared: 0.643,Adjusted R-squared: 0.6302

F-statistic: 50.42 on 3 and 84 DF, p-value: < 2.2e-16
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Computing errors

ε̂ = price + 1.30− 0.168llotsize− 0.700lsqrft− 0.037bdrms,

and fitting

ε̂2 = δ0 + δ1llotsize + δ2lsqrft + δ3bdrms + ν,

leads to R2
ε̂2 = 0.04799136.

The HR F statistic for the null hypothesis

H0 : δ1 = δ2 = δ3 = 0,

is

F =
0.04799136/3

0.9520086/84
= 1.41149767,

with p-value of 0.24514631.

Conclusion: There is not strong evidence against the null
hypothesis, so we fail to reject the null.
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Known heteroskedasticity
Suppose that

yi = β0 + β1xi1 + · · ·+ βkxik + εi

where

V (εi|xi1, . . . , xik) = E(ε2i |xi1, . . . , xik)

= σ2h(xi1, . . . , xik)

≡ σ2hi.

Therefore,

V

(
εi√
hi
| xi1, . . . , xik

)
= σ2,

If ε∗i = εi/
√
hi, then

ε∗1, . . . , ε
∗
n iid (0, σ2)
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It is easy to see that

yi√
hi

= β0
1√
hi

+ β1
xi1√
hi

+ · · ·+ βk
xik√
hi

+
εi√
hi
,

is an homoskedastic regression and OLS can be used to
compute β̂0, . . . , β̂k and respective standard errors.

Alternatively,

y∗i = β0xi0 + β1x
∗
i1 + · · ·+ βkx

∗
ik + ε∗i

with xi0 = 1/
√
hi and V (ε∗i ) = σ2
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OLS vs GLS

The ordinary least square (OLS)estimation of

y∗i = β0 + β1x
∗
i1 + · · ·+ βkx

∗
ik + ε∗i ε∗i ∼ (0, σ2),

yields β̂0, β̂1, . . . , β̂k, the generalized least square (GLS)
estimates of of β0, β1, . . . , βk.

The GLS estimators are used to account for
heteroskedasticity in the errors.

The GLS estimators for correcting heteroskedasticity are
called weighted least squares (WLS) estimators. This name
comes from the fact that the β̂j minimize the weighted sum
of squared residuals, where each squared residual is weighted
by 1/hi.
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Unknown
heteroskedasticity

There are many ways to model heteroskedasticity, but we
will study one particular, fairly flexible approach. Assume
that

V (ε|x1, . . . , xk) = σ2 exp{δ0 + δ1x1 + · · ·+ δkxk}

where x1, x2, . . . , xk are the independent variables appearing
in the regression model, and the δj are unknown parameters.

In the notation of the previous slides

h(x1, . . . , xk) = exp{δ0 + δ1x1 + · · ·+ δkxk}.
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Algorithm

1 Run the regression of y on x1, x2, . . . , xk and obtain the
residuals, ε̂.

2 Create log(ε̂2) by first squaring the OLS residuals and
then taking the natural log.

3 Run the regression of log(ε̂2) on x1, x2, . . . , xk and
obtain the fitted values, ĝ.

4 Exponentiate the fitted values ĥ = exp(ĝ).

5 Estimate the equation

y = β0 + β1x1 + · · ·βkxk + ε

by WLS, using weights 1/ĥ.
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smoke.txt

Obs: 807

educ: years of schooling

cigpric: the per-pack price of cigarettes (in cents)

white: =1 if white

age: measured in years

income: annual income

cigs: number of cigarettes smoked per day

restaurn: =1 if state with restaurant smoking restrictions

lincome: log(income)

agesq: age^2

lcigpric: log(cigprice)
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R code

data = read.table("smoke.txt",header=TRUE)

attach(data)

n = nrow(data)

reg = lm(cigs~lincome+lcigpric+educ+age+agesq+restaurn)

summary(reg)

esq = reg$res^2

R2.e = summary(lm(esq~lincome+lcigpric+educ+age+agesq+restaurn))$r.sq

Ftest = R2.e/(1-R2.e)*((n-7)/6)

pval = 1-pf(Ftest,6,n-7)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.639868 24.078661 -0.151 0.87988

lincome 0.880269 0.727784 1.210 0.22682

lcigpric -0.750854 5.773343 -0.130 0.89656

educ -0.501498 0.167077 -3.002 0.00277 **

age 0.770694 0.160122 4.813 1.78e-06 ***

agesq -0.009023 0.001743 -5.176 2.86e-07 ***

restaurn -2.825085 1.111794 -2.541 0.01124 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 13.4 on 800 degrees of freedom

Multiple R-squared: 0.05274,Adjusted R-squared: 0.04563

F-statistic: 7.423 on 6 and 800 DF, p-value: 9.499e-08
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> R2.e

[1] 0.03997326

> Ftest

[1] 5.551687

> pval

[1] 1.18881e-05

which is very strong evidence of heteroskedasticity.
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GLS

lesq = log(esq)

g = lm(lesq~lincome+lcigpric+educ+age+agesq+restaurn)$fit

hhat = exp(g)

cigs1 = cigs/sqrt(hhat)

ones1 = rep(1,n)/sqrt(hhat)

lincome1 = lincome/sqrt(hhat)

lcigpric1 = lcigpric/sqrt(hhat)

educ1=educ/sqrt(hhat)

age1 = age/sqrt(hhat)

agesq1 = agesq/sqrt(hhat)

restaurn1 = restaurn/sqrt(hhat)

reg.gls = lm(cigs1~ones1+lincome1+lcigpric1+educ1+age1+agesq1+restaurn1-1)

The weighted least squares estimates are

Estimate Std. Error t value Pr(>|t|)

ones1 5.6353434 17.8031310 0.317 0.751678

lincome1 1.2952413 0.4370119 2.964 0.003128 **

lcigpric1 -2.9402848 4.4601431 -0.659 0.509934

educ1 -0.4634462 0.1201586 -3.857 0.000124 ***

age1 0.4819474 0.0968082 4.978 7.86e-07 ***

agesq1 -0.0056272 0.0009395 -5.990 3.17e-09 ***

restaurn1 -3.4610662 0.7955046 -4.351 1.53e-05 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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