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Summary. We propose the Bayesian bridge estimator for regularized regression and classifi-
cation. Two key mixture representations for the Bayesian bridge model are developed: a scale
mixture of normal distributions with respect to an α-stable random variable; a mixture of Bartlett–
Fejer kernels (or triangle densities) with respect to a two-component mixture of gamma random
variables. Both lead to Markov chain Monte Carlo methods for posterior simulation, and these
methods turn out to have complementary domains of maximum efficiency. The first representa-
tion is a well-known result due to West and is the better choice for collinear design matrices.The
second representation is new and is more efficient for orthogonal problems, largely because it
avoids the need to deal with exponentially tilted stable random variables. It also provides insight
into the multimodality of the joint posterior distribution, which is a feature of the bridge model
that is notably absent under ridge or lasso-type priors. We prove a theorem that extends this
representation to a wider class of densities representable as scale mixtures of beta distribu-
tions, and we provide an explicit inversion formula for the mixing distribution. The connections
with slice sampling and scale mixtures of normal distributions are explored. On the practical
side, we find that the Bayesian bridge model outperforms its classical cousin in estimation and
prediction across a variety of data sets, both simulated and real. We also show that the Markov
chain Monte Carlo algorithm for fitting the bridge model exhibits excellent mixing properties,
particularly for the global scale parameter. This makes for a favourable contrast with analogous
Markov chain Monte Carlo algorithms for other sparse Bayesian models. All methods described
in this paper are implemented in the R package BayesBridge. An extensive set of simulation
results is provided in two on-line supplemental files.

Keywords: Bayesian methods; Bridge estimator; Data augmentation; Prior distributions;
Sparsity

1. Introduction

1.1. Penalized likelihood and the Bayesian bridge
This paper develops the Bayesian analogue of the bridge estimator in regression, where y =
Xβ +" for unknown β = .β1, : : : , βp/′. Given α∈ .0, 1] and ν ∈R+, the bridge estimator β̂ is the
minimizer of

Qy.β/= 1
2
‖y −Xβ‖2 +ν

p∑
j=1

|βj|α: .1/

This bridges a class of shrinkage and selection operators, with the best subset selection penalty
at one end, and the l1- (or lasso) penalty at the other. An early reference to this class of models
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can be found in Frank and Friedman (1993), with recent papers focusing on model selection
asymptotics and on computational strategies for fitting the model (Huang et al., 2008; Zou and
Li, 2008; Mazumder et al., 2011).

Our approach differs from this line of work in adopting a Bayesian perspective. Specifically,
we treat p.β|y/∝exp{−Qy.β/} as a posterior distribution having the minimizer of equation (1)
as its global mode. This posterior arises in assuming a Gaussian likelihood for y, along with a
prior for β that decomposes as a product of independent exponential power priors (Box and
Tiao, 1973):

p.β|α, ν/∝
p∏

j=1
exp.−|βj=τ |α/, τ =ν−1=α: .2/

Rather than minimizing equation (1), we sample from the joint posterior distribution for β and
the model hyperparameters.

1.2. Relationship with previous work
Our paper emphasizes several interesting features of the Bayesian approach to estimating the
bridge regression model.

1.2.1. Comparison with Bayesian ridge and lasso priors
There is a large literature on Bayesian versions of classical estimators related to the exponential
power family, including the ridge (Lindley and Smith, 1972), lasso (Park and Casella, 2008;
Hans, 2009, 2010) and elastic net (Li and Lin, 2010; Hans, 2011). Yet the bridge penalty has a
crucial feature that is not shared by these other approaches: it is concave over .0, ∞/. From a
Bayesian perspective, this implies that the prior for β has heavier-than-exponential tails. As a
result, when the underlying signal is sparse, and when further regularity conditions are met, the
bridge estimator satisfies the oracle property (Fan and Li, 2001; Huang et al., 2008). Although
this property per se is of no relevance to a Bayesian treatment of the problem, it does correspond
to a feature of certain prior distributions that Bayesians have long found important: the property
of yielding a redescending score function for the marginal distribution of y (e.g. Pericchi and
Smith (1992)), such that

lim
y→±∞

d
dy

log{m.y/}=0, m.y/=
∫

Θ
p.y|θ/p.θ/dθ:

This property is desirable in sparse situations, as it avoids the overshrinkage of large coefficients
even in the presence of sparsity (Polson and Scott, 2011a; Griffin and Brown, 2010).

1.2.2. Comparison with classical bridge estimator
Both the classical and the Bayesian approaches to bridge estimation must confront a signifi-
cant practical difficulty: exploring and summarizing a multimodal surface in high dimensional
Euclidean space. We argue that this feature of the problem recommends a full Bayes approach.
For one thing, it is misleading to summarize a multimodal surface in terms of a single point
estimate, no matter how appealingly sparse that estimate may be. Moreover, Mazumder et al.
(2011) reported computational difficulties with local modes in attempting to minimize equation
(1). Our sampling-based approach, although not immune to the problem of local modes, seems
effective at exploring the whole likelihood surface. As Section 2 will show, there are good reasons
for expecting this to be so, based on the structure of the data augmentation strategy that we
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pursue. In this respect, Markov chain Monte Carlo (MCMC) sampling behaves like a simulated
annealing algorithm that never cools.

In addition, previous researchers have emphasized three other points about penalized
likelihood rules that will echo in the examples of Section 5. First, one must choose a penalty
parameter ν. Doing so via cross-validation, as is common practice, ignores uncertainty in the
penalty parameter. The Bayesian approach is to average over uncertainty in the posterior dis-
tribution, under some default prior for the global variance component τ2 (e.g. Gelman (2006)).
In the case of the bridge estimator, this logic may also be extended to the concavity parameter
α, for which even less prior information is typically available.

Second, the minimizer of equation (1) may produce a sparse estimator, but this estimate is
provably suboptimal, in a Bayes risk sense, with respect to most traditional loss functions. If, for
example, we wish either to estimate β or to predict future values of y under squared error loss,
then the optimal solution is the posterior mean, not the mode. Both Park and Casella (2008)
and Hans (2009) gave realistic examples where the ‘Bayesian lasso’ outperforms its classical
counterpart, both in prediction and in estimation. Similar conclusions were reached by Efron
(2009) in a parallel context. Our own examples provide evidence of the practical differences that
arise on real data sets—not merely between the mean and the mode, but also between the classical
bridge solution and the mode of the joint posterior distribution in the Bayesian model, marginal
over τ and σ. In the cases that we study, the Bayesian approach leads to a better estimator.

Third, a fully Bayesian approach can often lead to substantive conclusions that are different
from a traditional penalized likelihood analysis, particularly regarding which components of
β are important in predicting y. For example, Hans (2010) produced several examples where
the classical lasso estimator aggressively zeros out components of β for which, according to a
full Bayes analysis, there is quite a large amount of posterior uncertainty regarding their size.
This is echoed in our analysis of the classic diabetes data set (see, for example, Efron et al.
(2004)). This is not to suggest that one conclusion is right, and the other wrong, in any specific
setting—merely that the two conclusions can be quite different, and that practitioners are well
served by having both at hand.

1.2.3. Comparison with other sparsity inducing priors in Bayesian regression analysis
Within the broader class of regularized estimators in high dimensional regression, there has been
widespread interest in cases where the penalty function corresponds to a normal scale mixture.
Many estimators in this class share the favourable sparsity inducing property (i.e. heavy tails)
of the Bayesian bridge model. This includes the relevance vector machine of Tipping (2001),
the normal–Jeffreys model of Figueiredo (2003) and Bae and Mallick (2004), the normal–
exponential–gamma model of Griffin and Brown (2012), the normal–gamma and normal–
inverse Gaussian (Caron and Doucet, 2008; Griffin and Brown, 2010), the horseshoe prior of
Carvalho et al. (2010) and the double-Pareto model of Armagan et al. (2013).

In most of these models, the primary difficulty is the mixing rate of the MCMC algorithm
that is used to sample from the joint posterior for β. Most MCMC approaches in this realm use
latent variables to make sampling convenient. But this can lead to poor mixing rates, especially
in cases where the fraction of missing information that is introduced by the latent variables
is large. Section 3.3 of Hans (2009) contains an informative discussion of this point. We have
also included an on-line supplement to the paper that extensively documents the poor mixing
behaviour of Gibbs samplers within this realm.

In light of these difficulties, the empirically observed mixing rate of our MCMC approach is
a pleasant surprise. For example, Fig. 1 compares the performance of our bridge MCMC versus
the best known Gibbs sampler for fitting the horseshoe prior (Carvalho et al., 2010) on a 1000-
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variable orthogonal regression problem with 900 zero entries in β. (See the on-line supplement
for details.) The plots show the first 2500 iterations of the sampler, starting from τ = 1. Auto-
correlation under the horseshoe MCMC sampler is much more severe. (Though these results
are not shown here equally large differences emerge when comparing the simulation histories
of the local scale parameters under each method.)

1.3. Computational approach
We would argue that the Bayesian bridge model is an interesting object for study on the basis of
all three of these comparisons. There are, however, corresponding disadvantages. In particular,
posterior inference for the Bayesian bridge is more challenging than in most other Bayesian
models of this type, where MCMC sampling relies on representing the implied prior distribution
for βj as a scale mixture of normal distributions. The exponential power prior in equation (2) is
known to lie within the normal–scale mixture class (West, 1987). Yet the mixing distribution that
arises in the conditional posterior is that of an exponentially tilted α-stable random variable.
This complicates matters, owing to the lack of a closed form expression for the density function.
This fact was recognized by Armagan (2009), who proposed the use of variational methods to
perform approximate Bayesian inference.

These issues can be overcome in two ways. We outline our computational strategy here and
provide further details in Sections 2, 3 and 4. The R package BayesBridge, which is freely
available on line (Windle et al., 2012), implements all methods and experiments that are described
in this paper.

The first approach is to work directly with normal mixtures of stable distributions, using
rejection sampling or some other all-purpose algorithm within the context of a Gibbs sampler.
Some early proposals for sampling stable distributions can be found in Devroye (1996) and
Godsill (2000). Neither of these proved to be sufficiently robust in our early implementations
of the method. But a referee pointed us to a much more recent algorithm from Devroye (2009).
The method is quite complicated, but seems robust, and leads to generally good performance
(see the empirical results in the on-line supplement). Given current technology, it appears to
be the best method for sampling the bridge model when the design matrix exhibits strong
collinearity.

We also propose a second approach that is more efficient than the mixture-of-normals MCMC
method when the design matrix is orthogonal, or nearly so. Specifically, we appeal to the fol-
lowing mixture representation, which is a special case of a more general result based on the
Schoenberg–Williamson theorem for n-monotone densities:

.y|β, σ2/∼N.Xβ, σ2I/,

p.βj|τ , ωj, α/= 1

τω
1=α
j

{
1−

∣∣∣∣∣ βj

τω
1=α
j

∣∣∣∣∣
}

+
, .3/

.ωj|α/∼ 1+α

2
Ga

(
2+ 1

α
, 1

)
+ 1−α

2
Ga

(
1+ 1

α
, 1

)
: .4/

This scale mixture of triangles, or Bartlett–Fejer kernels, recovers exp{−Qy.β/} as the marginal
posterior in β. The mixing distribution is depicted in Fig. 2 and explained in detail in Section 2.2.
It leads to a simple MCMC algorithm that avoids the need to deal with α-stable distributions
and can hop between distinct modes in the joint posterior. This is aided by the fact that the
mixing distribution for the local scale ωj has two distinct components.
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Fig. 2. (a) Triangular densities, or normalized Bartlett–Fejer kernels, of different widths (α = 0.5) ( ,
ω = 1.0; , ω D 1.5; , ω D 3.0) and (b) two examples of mixing distributions for ωj that give rise
to exponential power marginals for βj in conjunction with the Bartlett–Fejer kernel ( , α = 0.75; ,
α = 0.25)

2. Data augmentation for the bridge model

2.1. As a scale mixture of normal distributions
We begin by discussing the two different data augmentation strategies that facilitate posterior
inference for the Bayesian bridge model. The mixture-of-normals representation is well known
(West, 1987). It arises from Bernstein’s theorem, which holds that a function f.x/ is completely
monotone if and only if it can be represented as a Laplace transform of some distribution
function G.λ/:

f.x/=
∫ ∞

0
exp.−sx/dG.s/: .5/

To represent the exponential power prior as a Gaussian mixture for α∈ .0, 2], let x= t2=2. Then

exp.−|t|α/=
∫ ∞

0
exp.−st2=2/g.s/ds, .6/

where g.s/ can be identified by recognizing the left-hand side as the Laplace transform, evaluated
at t2=2, of a positive α-stable random variable with index of stability α=2 (also see Polson and
Scott (2012)).

Similar Gaussian representations have been exploited to yield conditionally conjugate MCMC
algorithms for a variety of models, such as the lasso and the horseshoe priors. Unfortunately,
the case of the bridge is less simple. To see this, consider the joint posterior that is implied by
equations (1) and (6):

p.β, Λ|y/=C exp
(

−ν2=αβ′Λβ − 1
2σ2 β′X′Xβ +β′σ−2X′y

)
p∏

j=1
p.λj/

=C exp
{

−1
2
β′.σ−2X′X+2ν2=αΛ/β +β′σ−2X′y

}
p∏

j=1
p.λj/, .7/

where Λ= diag.λ1, : : : , λj/ and p.λj/=λ
−1=2
j g.λj/, g denoting the stable density from the in-

tegrand in equation (6). The conditional posterior of λj given βj is then an exponentially tilted



Bayesian Bridge 7

stable random variable,

p.λj|βj/= exp.−ν2=α|βj|2λj/p.λj/

E{exp.−ν2=α|βj|2λj/} ,

with the expectation in the denominator taken over the prior. Neither the prior nor posterior
for λj is known in closed form and can only be written explicitly as an infinite series.

2.2. An alternative approach for n-monotone densities
Bernstein’s theorem holds for completely monotone density functions and can be used to con-
struct scale mixtures of normal distributions by evaluating the right-hand side of equation (5)
at t2=2. As we have seen in the case of the bridge, this results in a conditionally Gaussian
form for the parameter of interest, but a potentially difficult mixing distribution for the latent
variable.

We now construct an alternative data augmentation scheme. Specifically, consider the class
of symmetric density functions f.x/ that are n monotone on .0, ∞/ for some integer n, i.e.
.−1/k f .k/.|x|/�0 for k =0, : : : , n−1, where f .k/ is the kth derivative of f , and f .0/ ≡f .

The following result builds on a classic theorem of Schoenberg and Williamson. It establishes
that any n-monotone density f.x/ may be represented as a scale mixture of beta distributions,
and that we may invert for the mixing distribution by using the derivatives of f .

Theorem 1. Let f.x/ be a bounded density function that is symmetric about zero and n

monotone over .0, ∞/, normalized so that f.0/=1. Let C ={2
∫ ∞

0 f.t/dt}−1 denote the nor-
malizing constant that makes f.x/ a proper density on the real line. Then f can be represented
as the following mixture for any integer k, 1�k �n:

Cf.x/=
∫ ∞

0

1
s

k

(
1− |x|

s

)k−1

+
g.s/ds, .8/

where a+ =max.a, 0/, and where the mixing density g.s/ is

g.s/=Ck−1
k−1∑
j=0

.−1/j

j!
{j sjf .j/.s/+ sj+1 f .j+1/.s/}:

Importantly, the mixing density in the k-monotone case has finitely many terms. Moreover,
a function that is completely monotone is also n monotone for all finite n. Thus the proposition
applies to any function for which Bernstein’s theorem holds, allowing an arbitrary (presumably
convenient) choice of n.

Return now to the Bayesian bridge model. The exponential power density for 0 < α � 1 is
completely monotone on the positive real numbers, and therefore any value of k may be used
in equation (8). We focus on the choice k = 2. The kernel functions that arise here have been
referred to as Bartlett kernels in econometrics, a usage which appears to originate in a series
of papers by Newey and West on robust estimation. They have also been called Fejer densities
in probability theory; see Dugué and Girault (1955), who studied them in connection with
the theory of characteristic functions of Polya type. Thus we refer to them as Bartlett–Fejer
kernels.

Corollary 1. Let f.x/ be a function that is symmetric about the origin, integrable, convex
and twice differentiable on .0, ∞/, and for which f.0/=1. Let C ={2

∫ ∞
0 f.t/dt}−1 denote the

normalizing constant that makes f.x/ a density on the real line. Then f is the following mixture
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of Bartlett–Fejer kernels:

Cf.x/=
∫ ∞

0

1
s

{
1− |t|

s

}
+

Cs2 f ′′.s/ds, .9/

where a+ =max.a, 0/.

Using this corollary, the exponential power density with α ∈ .0, 1] can be represented in a
particularly simple way. To see this, transform s→ω ≡ sα and observe that

1
2τ

exp
(

−
∣∣∣∣βτ

∣∣∣∣
α)

=
∫ ∞

0

1
τ

{
1−

∣∣∣∣ β

τω1=α

∣∣∣∣
}

+
p.ω|α/dω

p.ω|α/=αω exp.−ω/+ .1−α/ exp.−ω/:

Further algebra yields a properly normalized mixture of Bartlett–Fejer kernels:

α

2τΓ.1+1=α/
exp

(
−

∣∣∣∣βτ
∣∣∣∣
α ∣∣∣∣

)
=

∫ ∞

0

1
τω1=α

{
1−

∣∣∣∣ β

τω1=α

∣∣∣∣
}

+
p.ω|α/dω

p.ω|α/= 1+α

2
c1ω

1+1=α exp.−ω/+ 1−α

2
c2ω

1=α exp.−ω/:

This is a two-component mixture of gamma distributions, where c1 and c2 are the normalizing
constants of each component. The Bayesian lasso is a special case, for which the second mixture
component drops out.

3. Connection with other latent variable methods

The latent variable scheme that is suggested by theorem 1 was originally motivated by the
potential inefficiencies of working with exponentially tilted stable random variables and does
lead to improvements in the orthogonal case. Here we focus on some potentially interesting
features of the representation in its own right, apart from its application to the bridge model.

The analogy with the auxiliary variable method of Damien et al. (1999) is instructive. In both
cases, the problem is to sample from a posterior distribution of the form L.θ/p.θ/=Z, where L

is a likelihood, p is a prior and Z is the normalization constant. For example, if we slice out the
prior, we introduce an auxiliary variable u, conditionally uniform on 0�u < p.θ/, and sample
from the joint distribution

π.θ, u/= I{u<p.θ/}L.θ/=Z,

where I.·/ is the indicator function. The posterior of interest is simply the marginal distribution
for θ.

The difficulty is that, given u, we need to be able to calculate the slice region where p.θ/>u. In
our data augmentation approach, the analogous inversion problem is already done: it reduces
to the set where |θ|<ω. For example, in the once monotone case, we have

π.θ, ω/= I.|θ|<ω/g.ω/L.θ/=Z,

where ω now plays a role similar to that of u. We have removed the problem of inverting a slice
region, at the cost of generating ω from a non-uniform distribution g.ω/, which is uniquely
identified by theorem 1. Of course, the question of which method leads to simpler calculations
will depend on context. We simply point out that there are many cases where inverting a slice
region is non-trivial. See Damien et al. (1999), Roberts and Rosenthal (1999) or Neal (2003).
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Moreover, the once monotone case is just one example of the wider family. It is well known
that the efficiency of a latent variable scheme is inversely related to the amount of information
about θ that is conveyed by the latent variable. Therefore, all else being equal, one should mimic
the target density as closely as possible when choosing a kernel over which to mix. Theorem 1
gives the designer of sampling algorithms wide latitude in this regard. For example, in the twice
monotone case, we have

π.θ, ω/= I.|θ|<ω/g.ω/.1−|θ|=ω/L.θ/=Z:

For the Bayesian bridge model, this representation is attractive, in that the bimodality of each
marginal posterior for βj is nicely matched by the fact that g.ωj/ has two distinct components
(Fig. 3).

Moving beyond the once monotone case does pose trade-offs. The mixing distribution g.ω/

potentially becomes more complicated, and we must now sample from the tilted distribution
with density proportional to .1 − |θ|=ω/k−1 L.θ/. The difficulty of this step will also depend
on context. In the twice monotone representation of the bridge model, it turns out to be
straightforward. In other cases, one may appeal to the algorithm of Stein and Keblis (2009)
for simulating the triangle distribution, which can be extended to the case of a triangle times
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in posterior draws for β2 in the simulated example, and (c), (d) the same as (a) and (b) respectively for β3,
which in this case facilitate the identification of both modes
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another density. Other general strategies for sampling tilted densities were alluded to in Devroye
(2009).

There is a further connection between our result and the Gaussian mixture representation,
which parallels the relationship between the Schoenberg–Williamson and Bernstein theorems.
To see this, let u=k=s. Observe that we obtain the completely monotonic case as k diverges:

f.x/∝
∫ ∞

0

(
1− ux

k

)k−1

+
dP.u/

→
∫ ∞

0
exp.−sx/dP̃.s/

for positive x and a suitably defined limiting measure P̃.s/, into which a factor of s has been
implicitly absorbed. By evaluating this at s = t2=2, we obtain a scale mixture of normal distri-
butions as a limiting case of a scale mixture of beta distributions. The inversion formula, also,
is similar. In particular, for the case of the exponential power kernel, we have

exp.−|x|α/=
∫ ∞

0
exp.−xs/g.s/ds g.s/=

∞∑
j=1

.−1/j s−jα−1

j!Γ.−αj/
,

which parallels the expression given in theorem 1.
As a final side point, we observe that there may be further cases where the new approach

could prove fruitful. One such example is the type I extreme value distribution, p.x/=exp{−x−
exp.−x/}. From corollary 1, we have

exp.−x/=
∫ ∞

0

(
1− |x|

ω

)
+

exp.−ω/dω,

and therefore exp{exp.−x/} can be written in terms of a gamma mixing measure:

exp{exp.−x/}=
∫ ∞

0

1
ω

(
1− exp.−x/

ω

)
+

ω exp.−ω/dω:

One other approach to slice sampling, which is not pursued here, is the single-variable slice
sampler of Neal (2003). This method avoids the difficulty of inverting a slice region at the cost of
introducing additional tuning parameters. Our method, in contrast, also avoids the inversion of
a slice region, but requires no tuning parameters; the corresponding cost comes in the form of the
additional analytical work in identifying the conditional distribution with density proportional
to .1−|θ|=ω/k−1 L.θ/.

Rather than inverting the slice region explicitly, the single-variable method instead constructs
an interval around the current parameter value that contains all or much of the slice, and then
samples from the part of this interval containing the slice region. This can be done in many ways
that leave the uniform distribution over the slice region invariant, with the two recommended
ways referred to as the ‘stepping-out’ and ‘doubling’ methods. Each method requires the choice
of a tuning parameter wj that controls how quickly the proposed interval around the current
value of βj is allowed to grow. Neal (2003) described the fundamental tension that arises in the
choice of wj:

‘We would like this interval to contain as much of the slice as is feasible, so as to allow the new point
to differ as much as possible from the old point, but we would also like to avoid intervals that are much
larger than the slice, as this will make the subsequent sampling step less efficient’.

The strength of this method is that it can lead to very efficient samplers that require no inversion
of a slice region. The weakness is that it requires p tuning parameters for the ‘stepping-out’
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Fig. 4. (a) Posterior distribution of the concavity parameter α for the diabetes data, using a random-walk
Metropolis sampler, and (b) auto-correlation function of the posterior draws

part of the algorithm to be maximally efficient in each dimension. In cases where the parameter
space is unbounded, these may be difficult to tune optimally. In contrast, updating the concavity
parameter α involves a draw of a scalar random variable on a bounded interval, for which the
slice sampler is ideally suited. We use the random-walk Metropolis sampler in the next section
to update this parameter, as it is adequate for the problem that we consider (Fig. 4). But the
slice sampler would probably improve matters for the reasons described in Neal (2003) and is
recommended for larger problems.

4. Markov chain Monte Carlo sampling for the Bayesian bridge

4.1. Overview of approach
For sampling the Bayesian bridge posterior, we recommend a hybrid computational approach,
which we have implemented as the default setting in the BayesBridge R package. When
the design matrix X exhibits strong collinearity, the normal–scale mixture representation is
the better choice. In data sets involving many higher order interaction terms, the efficiency
advantage can be substantial. However, when the design matrix is orthogonal, the Bartlett–
Fejer representation usually leads to an effective sampling rate that is roughly 2–3 times that
of the Gaussian method. Finally, the representation is relevant to cases where one wishes to
model a system with an exponential power likelihood, where conditional independence of each
observation will mimic the orthogonal case in regression analysis. See, for example, Godsill
(2000) for an application in acoustics.

Most of the evidence supporting this recommendation is detailed in an on-line supplemental
file. But Table 1 briefly summarizes the absolute and relative speed of the algorithms in two
benchmark scenarios:

(a) the diabetes data set with the original design matrix and all pairwise interactions (64
predictors) and

(b) the Boston house price data set with an orthogonalized design matrix (13 predictors).

We measure the efficiency of each algorithm by using the effective sampling rate, which is defined
as the effective sample size per second of run time. The effective sample size approximates the
number of independent samples that are needed to mimic the performance of the MCMC ergodic
average, as measured by the standard error of the sample mean. The effective sampling rate is
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Table 1. Summary of performance for the two MCMC strategies in two
design matrix scenarios†

Method Results for scenario 1 Results for scenario 2
(strong collinearity) (orthogonal)

Time Median Minimum Time Median Minimum
(s) effective effective (s) effective effective

sampling sampling sampling sampling
rate rate rate rate

Triangle 45.1 15 5 1.6 49559 36737
Normal 33.5 1816 536 5.5 17533 13048

†Scenario 1: diabetes data with all pairwise interactions and the design matrix
on the original scale. Scenario 2: Boston housing data with an orthogonalized
design matrix.

different for each parameter; we report the minimum and the median across all parameters in
the model. See the on-line supplement for further details.

The first scenario is highly unfavourable to the mixture-of-triangles approach: the design
matrix is highly collinear, and the inefficiency of sampling a constrained multivariate normal
distribution is correspondingly severe. In this case, the normal mixture approach is roughly 10
times more efficient. The second scenario is much more favourable to the mixture-of-triangles
approach: the design matrix is orthogonal, and there is no longer a need to sample a high dimen-
sional constrained multivariate normal distribution. In this case, the triangle mixture approach
is roughly three times more efficient. These broad trends held across other examples. Thus we
recommend the triangle mixture approach for orthogonal problems—including principal com-
ponent regression, basis expansions and when using generalized g-priors (Polson and Scott,
2012)—and the normal mixture approach for other problems.

4.2. Sampling β and the latent variables
We use the method that was described in Devroye (2009) for sampling exponentially tilted
α-stable random variables. With this capability in place, it is easy to use equation (7) to gen-
erate posterior draws, appealing to standard multivariate normal theory. Thus we omit a long
discussion of the normal mixture method and focus on the mixture-of-betas approach.

To see why the representation in expression (3)–(4) leads to a simple algorithm for posterior
sampling, consider the joint distribution for β and the latent ωjs:

p.β, Ω|τ , y/=C exp
(

− 1
2σ2 β′X′Xβ + 1

σ2 β′X′y
)

p∏
i=1

p.ωj|α/
p∏

i=1

(
1− |βj|

τω
1=α
j

)
+

: .10/

Introduce further slice variables u1, : : : , uj. This leads to the joint posterior

p.β, Ω, u|τ , y/∝ exp
(

− 1
2σ2 β′X′Xβ + 1

σ2 β′X′y
)

p∏
j=1

p.ωj|α/
p∏

j=1
I

{
0�uj �

(
1− |βj|

τω
1=α
j

)}
:

.11/

Note that we have implicitly absorbed a factor of ω1=α from the normalization constant for the
Bartlett–Fejer kernel into the gamma conditional for ωj.



Bayesian Bridge 13

Applying corollary 1, if we marginalize out both the slice variables and the latent ωjs, we
recover the Bayesian bridge posterior distribution,

p.β|y/=C exp
(

− 1
2σ2 ‖y −Xβ‖2 −

p∑
j=1

∣∣∣∣βj

τ

∣∣∣∣
α)

:

We can invert the slice region in expression (11) by defining .aj, bj/ as

|βj|� τ−1.1−uj/ω
1=α
j =bj,

ωj �
( |βj=τ |

1−uj

)α

=aj:

This leads us to a Gibbs sampler that starts at initial guesses for .β, Ω/ and iterates the following
steps.

Step 1: generate .uj|βj, ωj/∼Unif.0, 1−|βj=τ |ω−1=α
j /.

Step 2: generate each ωj from a mixture of truncated gamma distributions as described below.
Step 3: update β from a truncated multivariate normal distribution proportional to

N{β̂, σ2.X′X/−1}I.|βj|�bj for all j/,

where β̂ indicates the least squares estimate for β.

We explored several methods for simulating from the truncated multivariate normal distribu-
tion, ultimately settling on the proposal of Rodriguez-Yam et al. (2004) as the most efficient. As
this method involves running over the individual coefficients, it is important to observe that β
cannot be regenerated at each step, but merely updated componentwise. The conditional pos-
terior of the latent ωjs can be determined as follows. Suppressing subscripts for the moment,
we may write the compute conditional for ω as

p.ω|α/=α{ω exp.−ω/}+ .1−α/ exp.−ω/,

p.ω|a, α/=Ca[α{ω exp.−ω/}+ .1−α/ exp.−ω/}I.ω �a/,

where a comes from inverting the slice region in expression (11) and Ca is the normalization
constant.

We can simulate from this mixture of truncated gamma distributions by defining ω̄ =ω −a,
where ω̄ > 0. Then ω̄ has density

p.ω̄|a, α/=Ca{α exp.−a/.a+ ω̄/exp.−ω̄/+ .1−α/ exp.−a/ exp.−ω̄/}
= α

1+αa
ω̄ exp.−ω̄/+ 1−α.1−a/

1+αa
exp.−ω̄/:

This is a mixture of gamma distributions, where

.ω̄|a/∼
{

Γ.1, 1/ with probability {1−α.1−a/}=.1+αa/,
Γ.2, 1/ with probability α=.1+αa/:

After sampling ω̄, simply transform back using the fact that ω =a+ ω̄.
This representation has two interesting and intuitive features. First, the full conditional for

β in step 3 is centred at the usual least squares estimate β̂. Only the truncations (bj) change at
each step, which eliminates matrix operations.
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Second, the mixture-of-gammas form of p.ω/ naturally accounts for the bimodality in the
marginal posterior distribution, p.βj|y/=∫

p.βj|ω, y/p.ωj|y/dωj. In some cases, in fact, each
mixture component of the conditional for ωj represents a distinct mode of the marginal posterior
for βj. As Fig. 3 shows, this endows the algorithm with the ability to explore the multiple modes
of the joint posterior. These plots come from a simulated data set with p = 20 and n = 200,
with the predictors having pairwise positive correlation of 0:99. We set τ = 0:1 and α = 0:85
and ran the mixture-of-triangles MCMC algorithm for 200000 iterations. (These settings were
arbitrary but identified the effect most clearly out of the several that we tried.) Fig. 3 shows
the posterior draws for two of the coefficients (β2 and β3), stratified by the mixture component
for the most recent draw for the corresponding ωj. In the case of β3, the stratification helps
to identify a mode which might easily be missed in a histogram of draws from the marginal
posterior.

4.3. Sampling hyperparameters
To update the global scale parameter τ , we work directly with the exponential power density,
marginalizing out the latent variables {ωj, uj}. This is a crucial source of efficiency in the bridge
MCMC sampler and leads to the favourable mixing that is evident in Fig. 1. From equation (1),
observe that the posterior for ν ≡ τ−α, given β, is conditionally independent of y and takes the
form

p.ν|β/∝νp=α exp
(

−ν
p∑

j=1
|βj|α

)
p.ν/:

Therefore if ν has a gamma(c, d) prior, its conditional posterior will also be a gamma distribu-
tion, with hyperparameters cÅ = c +p=α and dÅ =d +Σp

j=1 |βj|α. To sample τ , simply draw ν
from this gamma distribution, and use the transformation τ = ν−1=α. Alternative priors for ν
can also be considered, in which case the gamma form of the conditional likelihood in ν will
make for a useful proposal distribution that closely approximates the posterior. As Fig. 1 from
Section 1 shows, the ability to marginalize over the local scales in sampling τ is crucial here in
leading to a good mixing rate.

In many cases the concavity parameter α will be fixed ahead of time to reflect a particular
desired shape of the penalty function. But it also can be given a prior p.α/, most conveniently
from the beta family, and can be updated by using a random-walk Metropolis sampler. Fig. 4
shows the results of using this sampler under a uniform prior for α in the well-known data set
on blood glucose levels in diabetes patients, which is available in the R package lars (Efron
et al., 2004). There are only 10 predictors for this problem, and therefore significant uncertainty
about the value of α. It is interesting, however, how much the posterior is pulled away from
α=1, which corresponds to the lasso prior.

Similar MCMC algorithms can be used to fit Bayesian analogues of bridge-penalized logistic
regression and quantile regression:

β̂LR =arg min
β∈Rp

[
n∑

i=1
log{1+ exp.−yix

′
iβ/}+

p∑
j=1

|βj=τ |α
]

,

β̂QR =arg min
β∈Rp

[
n∑

i=1
{|yi −x′

iβ|+ .2q−1/.yi −x′
iβ/}+

p∑
j=1

|βj=τ |α
]

,

where binary outcomes are encoded as ±1, or where q∈ .0, 1/ is the desired quantile. To fit these
estimators within a Bayesian framework, one introduces a second set of latent variables corres-
ponding to the n individual terms in the likelihood. This allows the quantile regression and logit
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likelihoods to be represented as mixtures of Gaussian models with respect to known mixing
measures (Polson et al., 2012).

5. Examples

5.1. Diabetes data
We first explore the Bayesian bridge estimator by using the diabetes data, which have already
been described. We fit the Bayesian bridge using a default gamma(2,2) prior for ν. We also fit the
classical bridge, using generalized cross-validation and the EM algorithm from Polson and Scott
(2011b). Both the predictor and the responses were centred, whereas the predictors were also
rescaled to have unit variance. At each step of the MCMC algorithm for the Bayesian model, we
calculated the conditional posterior density for each βj at a discrete grid of values. It is striking
that, even for this relatively information rich problem (10 predictors and 442 observations),
significant differences emerge between the Bayesian and classical methods.

Fig. 5 summarizes the results of the two fits, showing both the marginal posterior density
and the classical bridge solution for each of the 10 regression coefficients. For reference, the
results of a step-down model fit (starting from the full model) using the Akaike information
criterion are also shown. One notable feature of the problem is the pronounced multimodality
in the joint posterior distribution for the Bayesian bridge. Observe, for example, the two distinct
modes in the marginal posteriors for the coefficients that are associated with the taurocholic
acid and glucose predictors (and, to a lesser extent, for the high density lipoprotein and female
predictors). In none of these cases does it seem satisfactory to summarize information about βj

by using only a single number, as the classical solution forces us to do.
Second, the classical bridge solution does not coincide with the joint mode of the fully

Bayesian posterior distribution. This discrepancy can be attributed to uncertainty in τ and
σ, which is ignored in the classical solution and shown in Fig. 5(k). Marginalizing over these
hyperparameters leads to a fundamentally different objective function, and therefore a different
joint posterior mode.

The difference between the classical mode and the Bayesian mode, moreover, need not be
small. Consider the posterior distributions for the total cholesterol and low density lipoprotein
coefficients. These two columns of the design matrix have a sample correlation of −0:897. The
Bayesian solution concentrates in a region of Rp where neither of these coefficients exerts a
large effect. The classical solution, in contrast, leaves both predictors in the model with large
coefficients of opposite sign.

It is surprising that such a marked difference would arise between the full Bayes mode and
the classical mode, and that this difference would alter one’s substantive conclusions about two
predictors out of 10. The full Bayes posterior mean is different yet again. Clearly an important
role here is played by the decision of whether, and how, to account for uncertainty in τ and σ.

5.2. Out-of-sample prediction results
Next, we describe the results from three out-of-sample prediction exercises involving three
benchmark data sets. First, we used the Boston housing data, which are available in the R pack-
age mlbench. The goal is to predict the median house price for 506 census tracts of Boston
from the 1970 census. As covariates, we used the 14 original predictors, plus all interactions and
squared terms for quantitative predictors. Second, we used the data on ozone concentration,
which are available in the R package mlbench. The goal is to predict the concentration of ozone
in the atmosphere above Los Angeles by using various environmental covariates. As covariates,
we used the nine original predictors, plus all interactions and squared terms for quantitative
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predictors. Finally, we used the near infrared glucose data, which are available in the R package
chemometrics. The goal is to predict the concentration of glucose in molecules by using data
from near infrared spectroscopy.

For each data set, we created 100 different train–test splits, using the results from the training
data to forecast the test data. For each train–test split we estimated β by using least squares, the
classical bridge (using the EM algorithm) and the Bayesian bridge posterior mean by using our
MCMC method based on stable mixtures. In all cases we centred and standardized the predic-
tors and centred the response. For the classical bridge estimator, the regularization parameter ν
was chosen by generalized cross-validation, whereas, for the Bayesian bridge, σ was assigned
a Jeffreys prior and ν a default gamma(2,2) prior. We used two different settings for α in the
Bayesian bridge: one with α fixed at a default setting of 0:5, and another with α estimated
by using a random-walk Metropolis step. R scripts implementing all of these experiments are
included as an on-line supplemental file.

We measured performance of each method by computing the sum of squared errors in predict-
ing y on the test data set. The results are in Fig. 6. In all three cases, the posterior mean estimator
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Fig. 6. Boxplots of the sum of squared errors in prediction hold-out data by using four methods for estimat-
ing β (maximum likelihood estimation, MLE, the classical bridge with α D 0.5 and ν chosen by generalized
cross-validation, the Bayesian bridge with αD0.5 and the Bayesian bridge with α estimated under a uniform
prior): (a) Boston housing data; (b) near infrared glucose data; (c) ozone data
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Table 2. Average sum of squared errors
in estimating β for three different batches
of 250 simulated data sets

α Results for the following methods:

Least Bridge Bayes
squares bridge

estimation

0.5 2254 1611 99
0.7 1994 406 225
0.9 551 144 85

outperforms both least squares and the classical bridge estimator, and the fixed choice of α=0:5
nearly matched the performance of the model which marginalized over a uniform prior for α.

5.3. Simulated data with correlated design
We conducted three experiments, all with p = 100 and n = 101, for α ∈ {0:9, 0:7, 0:5}. Each
experiment involved 250 data sets constructed by

(a) simulating regression coefficients from the exponential power distribution for the given
choice of α,

(b) simulating correlated design matrices X and
(c) simulating residuals from a Gaussian distribution.

In all cases we set σ = τ = 1. The rows of each design matrix were simulated from a Gaussian
factor model, with covariance matrix V =BB′ + I for a 100×10 factor loadings matrix B with
independent standard normal entries. As is typical for Gaussian factor models with many fewer
factors (10) than ambient dimensions (100), this choice led to marked multicollinearity among
the columns of each simulated X.

For each simulated data set we again estimated β by using least squares, the classical bridge
and the Bayesian bridge posterior mean. Performance was assessed by the sum of squared errors
in estimating the true value of β. Convergence of both algorithms was assessed by starting from
multiple distinct points in Rp and checking that the final solutions were identical up to Monte
Carlo precision. As before, for the classical bridge estimator, the regularization parameter ν
was chosen by generalized cross-validation. For the Bayesian bridge, σ was assigned a Jeffreys
prior and ν a gamma(2,2) prior.

Table 2 shows the results of these experiments. For all three choices of α, the posterior mean
estimator outperforms both least squares and the classical bridge estimator. Sometimes the
difference is drastic—such as when α=0:5, where the Bayes estimator outperforms the classical
estimator by more than a factor of 16.

6. Discussion

This paper has described a series of tools that allow practitioners to estimate the full joint distri-
bution of regression coefficients under the Bayesian bridge model. Our numerical experiments
have shown
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(a) that the classical bridge solution, the posterior mode under a joint Bayesian model and
the posterior mean can often lead to different summaries about the relative importance
of different predictors and

(b) that using the posterior mean offers substantial improvements over the mode when estim-
ating β or making predictions under squared error loss.

Both results parallel the findings of Park and Casella (2008) and Hans (2008) for the Bayesian
lasso.

The existence of a second, novel mixture representation for the Bayesian bridge is of particular
interest and suggests many generalizations, some of which we have mentioned. Our main theo-
rem leads to a novel Gibbs sampling scheme for the bridge that—by virtue of working directly
with a two-component mixing measure for each latent scale ωj—is capable of easily jumping
between modes in the joint posterior distribution. The evidence suggests that it is the best al-
gorithm in the orthogonal case, but that it suffers from poor mixing when the design matrix is
strongly collinear. The chief limiting factor here is our inability to generate samples efficiently
from the truncated multivariate normal distribution. Luckily, in this case, the normal mixture
method based on the work of Devroye (2009) for sampling exponentially tilted stable random
variables performs well. Moreover, both MCMC methods appear to alleviate some of the diffi-
culties that are associated with slow mixing in global–local scale–mixture models described by
Hans (2009) and further studied in the on-line supplemental file. They also allow uncertainty
about the concavity parameter to be incorporated naturally. Both are implemented in the R
package BayesBridge, which is available through the Comprehensive R Archive Network.
Together, they give practitioners a set of tools for efficiently exploring the bridge model across
a wide range of commonly encountered situations.
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Appendix A: Proof of theorem 1

Let Mn denote the class of n-times monotone functions on .0, ∞/. Clearly, for n�2, f ∈Mn ⇒f ∈Mn−1.
Thus it is sufficient to prove the proposition for k =n. As the density f.x/ is symmetric, we consider only
positive values of x.

The Schoenberg–Williamson theorem (Williamson (1956), theorems 1 and 3) states that a necessary
and sufficient condition for a function f.x/ defined on .0, ∞/ to be in Mn is that

f.x/=
∫ ∞

0
.1−ut/n−1

+ dH.u/,

for some H.u/ that is non-decreasing and bounded below. Moreover, if H.u/ = 0, the representation is
unique, in the sense of being determined at the points of continuity of H.u/, and is given by

H.u/=
n−1∑
j=0

.−1/j f .j/.1=u/

j!

(
1
u

)j

:

Let s=1=u. This yields

f.x/=
∫ ∞

0
.1−x=s/n−1

+ dG.s/,

G.s/=
n−1∑
j=0

.−1/jf .j/.s/

j!
sj:
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Now rewrite the kernel as a scaled beta density to give

f.x/=
∫ ∞

0

1
s

n
(

1− x

s

)n−1

+
s

n
dG.s/:

Differentiating the cumulative density function with respect to s and absorbing the factor of s=n into G.s/,
we conclude that the mixing density is

g.s/ds∝n−1
n−1∑
j=0

.−1/j

j!
{jsj f .j/.s/+ sj+1 f .j+1/.s/}ds,

and the result is proven.
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