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Abstract 

We consider the analysis of the Brazilian industrial production index (IPI) 
using statistical tools recently developed for time series. The main purpose is 
short-term forecasting and structural decomposition of the data through an au­
toregressive model that allows, but not imposes, nonstationary behavior. A very 
strong point of this model is that it incorporates all kinds of uncertainties by 
averaging forecasts across competing models, weighted by their posterior prob­
abilities, in contrast with traditional analyses which assign probability one to 
a particular model. Additionally, the model considers innovation errors with 
heavy-tailed distributions and consequently accomodates for outlying observa­
tions. We interpret the results of the analysis in terms of its relation to the 
Brazilian economy. 

Resumo 

Analisamos 0 indice da produ<,;ao industrial brasileira (IPI) atraves de meto­
dos estatisticos recentemente desenvolvidos para series temporais. As principais 
metas desse trabalho sao previsoes de curto-prazo e a decomposi<,;ao estrutural do 
indice atraves de modelos autoregressivos que permitam, mas nao imp6em nen­
hum comportamento nao-estacionario. Vma das principais vantagens de nosso 
modelo e a incorpora<,;ao de todos os tipos de incerteza atraves da combina<,;ao 
de previs6es vindas de varios modelos concorrentes, ponderados por suas prob­
abilidades a posteriori) diferentemente de analises tradicionais que tomam por 
verdadeiro urn particular modelo. Adicionalmente, consider amos que os erros do 
modelo seguem uma distribui<,;ao com caudas pesadas e) consequentemente, aco­
modam observa<,;6es espurias. Nos interpretamos os resultados da analise atraves 
de suas rela<,;6es com a economia brasileira. 
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1. Introduction. 

Several authors had explained and made short and long term pre­
dictions of the Brazilian Industrial Production Index (IPI) or some of 
its variants. For example, Lopes et al. (1999) ,Schmidt et al. (1999) , 
Gamerman and Moreira (1998) use dynamic linear models (DLMs) 
with local linear trends, seasonality and cycles, to describe the be­
havior of the monthly observed 1PI. Although the analyses based on 
these models are relevant for the IPI, they do not account for the un­
certainty due to the specifications of the trend/seasonal/cycle terms. 
All of these papers produce their results by using a particular model 
selected with some optimal criteria. 

Enormous amount of work has been devoted to develop useful 
models, but little to incorporate model uncertainty as another crucial 
aspect in statistical analysis. For instance, Draper (1995) states that 
model uncertainty should be taken very seriously to produce forecasts 
and obtain parameter estimates. In time series, model uncertainty 
was introduced by Harrison and Stevens (1976) that developed the 
multi-process approach to combine aspects of different DLMs under 
consideration. More recently Barnett et al. (1996) , Barbieri and 
O'Hagan (1997) ,  Troughton and Godsill (1997) ,  Huerta and West 
(1999) developed Markov Chain Monte Carlo (MCMC) methods to 
incorporate model uncertainty within a linear autoregressive (AR) 
framework. 

Specifically, in this paper we analyze the Brazilian IPI using the 
AR model with prior specifications on latent components and char­
acteristic roots as in Huerta and West (1999) . These specifications 
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lead to a new class of prior distributions in autoregressive component 
structure which has the following properties: 

" they permit arbitrary collections of real and complex conjugate 
pairs of characteristic roots; 

" they allow for zero values among the characteristic roots, so 
taking care of prior uncertainty about model order; 

.. they allow unit roots, and so cater for persistent low frequency 
trends and sustained quasi-periodic components; 

e they incorporate unobserved initial values of the data process 
as uncertain latent variables, so that all resulting inferences are for­
mally based on incorporating full uncertainties about initial values. 

In particular, such a class of priors naturally avoids any of the 
corrections in significance tests proposed for the unitary root problem 
through posterior probability statements on the number and type 
of unitary roots. For example, Cribari-Neto (1993) illustrates the 
complications of frequentist procedures when testing whether a root 
is unitary or not. Detailed discussion about unit root tests and their 
pitfalls is presented by Campbell and Perron (1991) . Furthermore, 
the class of priors is identified by a small number of hyperparameters, 
which may be chosen based on specific forms of quantitative prior 
information. Alternatively, these hyper-parameters can be assigned 
essentially uniform of "reference" prior distributions themselves, so 
inducing what may be viewed as a non-informative analysis. 

Additionally, we extend the prior modeling of Huerta and West 
(1999) to allow heavy-tailed innovation errors which permits the ac­
como dation of outlying observations. Such extensions and modeling 
issues are presented in Section 2, along with prior elicitation, poste­
rior and predictive inference. We strongly believe that an AR model 
that fully recognizes uncertainty on the order, model parameters, 
number of unitary roots and considers heavy-tailed errors, IS very 
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helpful to describe economics as encompassed by the Brazilian IPI. 
Empirical arguments are provided in Section 3. Section 4 presents 
our final remarks and possible extensions. 

1. Time Series Model and Methods. 

2.1 The Model and a Decomposition Result. 

Define {xt} as the realization of an AR process of order p, 

Xt = ¢(B)Et 

where BXt = Xt-l and t E {O,l, ... n}. ¢(u) = 1 - ¢IU 
¢puP is the characteristic polynomial, ¢ = (¢l, ... , ¢p)' is the vector 
of standard coefficients, and {Et} are zero-mean uncorrelated errors 
with Et � N (0, 0'2I'Yt). The quantities It are assumed independent 
with a common distribution p btl. Note that the introduction of 
the parameters It implies a scale mixture of Normals on the error 
terms which allows for heavy-tailed innovations. Some cases of a 
scale mixture of Normals include the Laplace, exponential power 
and Student t distributions. This is important in our application 
since it is well-known that several macroeconomic interventions took 
place in Brazil during the last two decades. By allowing heavy­
tailed distributions for the innovations, such temporal interventions 
will have lower impact in the model specification and conclusions. 
We will return to this point later when we discuss the analysis of the 
IPI. 

Denote by {etl, ... , etp} the reciprocals of the characteristic roots 
or solutions of the equation ¢(u) = O. If letjl ::; 1 for all j ,  the 
process is stationary with unitary roots if any of these moduli equal 
one. Assume there are C pairs of complex conjugate roots and R = 
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p - 2C real roots. Denote the complex pairs by rj exp(±iwj) for 
j = 1, ... , C, and the real roots by rj for j = 2C + 1, ... ,p. As 
presented in West (1997) ,  it can be shown that 

C p 
Xt = L Ztj + L atj 

j=l j=2C+l 

where the Ztj and atj are latent processes related to the complex 
and real roots respectively. Corresponding to the real roots j = 

2C + 1, ... ,p, we have 

for some real constants bj; thus the atj are correlated AR processes 
of order one. Corresponding to the complex conjugate pairs of roots 
j = 1, ... , C, we have 

for further real constants dj and ej; thus the Ztj are AR, moving 
average processes of order (2, 1) . In other words, a series that follows 
an autoregressive process can be expressed as the sum of simpler 
processes, some of periodic behavior and some with low frequency 
variation. In fact, the decomposition implies that Ztj has a quasi­
periodic behavior with frequency Wj, or periodicity Aj = 27f /Wj where 
the damping of the component is determined by the modulus of 
the defining complex root. Computation of the latent components 
may be handled through the DLM representation of an AR model 
and has been exemplified in the context of oxygen-isotope series, 
electroencephalogram traces and other types of data, in both 'West 
(1997) ,  West et al. (1999) and West and Harrison (1997) .  
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2.2 Prior Specifications. 

Huerta and West (1999) introduced a class of hierarchical priors de­
fined on the component structure of an AR time series. We briefly 
review these specifications here. 

The prior assumes fixed but arbitrary upper bounds C+ and R+, 
on the number of complex pairs and real roots, hence an upper bound 
p+ = 2C+ + R+ on model order. Independent priors are specified on 
the real roots, the complex roots and the error terms variance. Each 
real root r j has a prior that 

• gives probability 7fr,o to rj = 0, 
e gives probability 7fr,-l to rj = -1, 

e gives probability 7fr,l to rj = 1, and 

• otherwise has a continuous density gr(rj) from -1 to l. 
Each complex conjugate pairs of roots r j exp( ±iwj) has a prior that 

• gives probability 7fc,O to rj = 0, 
e gives probability 7fc,l to rj = 1, and 

• otherwise has rj independent of Wj' The modulus rj follows 
a continuous density gc(rj) with support in (0,1). The wavelength 
Aj = 27f IWj has a continuous density h(Aj) with support on (2, A,,) 
where A" is an upper bound in periods. By default, Au can be fixed 
at n/2, the maximum period observable for a time series of length 
n. 

Notice that the prior is defined on the parameters that determine 
the time series decomp�sition of Section 2.1 and implicitly, quantifies 
prior knowledge on the latent structure of an AR model. In applica­
tions, particular forms for gr(-), gc(-) and h(-) had involved truncated 
Normals, Uniform densities or more general Beta distributions. A 
detailed exploration of how particular forms of these functions de­
termine priors in other quantities of interest, like the standard AR 

6 Revista de Econometria 20 (1) May 2000 



Gabriel Huerta and Hedibert Freitas Lopes 

coefficients, has been fully addressed in Huerta and West (1999) . 
For the analysis of the Brazilian IPI and in a non-informative sense, 
we adopt the benchmark prior known as the component reference 
prior which establishes that gr(-) is a Uniform on (-1, 1) , gc(-) is 
a Beta(3,1) and h(Aj) (X sin(21T/Aj)/AJ with Aj ranging form 2 to 
Au, The marginals of this prior, correspond to the standard refer­
ence prior obtained by treating the parameters of each component 
process Ztj and atj individually. 

Furthermore, the constant scale factor that appears in each error 
term is assumed independent of the roots and has a specific marginal 
prior, usually a conditionally conjugate inverse gamma prior, i. e. , 
p(0"2) � IG(a, b). Priors for the point-masses may be assigned as 
context dependent, but for simplification, we use independent uni­
form Dirichlet distributions, namely Dir( 1Tr,D, 1Tr,l, 1Tr,-lll, 1, 1) and 
Dir(1Tc,D, 1Tc,lll, 1) . Note that the prior point masses at zero for the 
numbers of roots, both complex and real, may fall below the fixed 
upper bounds C+ and R+. This implies that the model order can 
take any value from 0 to p+. Also, the point masses 1Tr,-1 and 1Tc,1 
permit direct inferences on the number of unitary roots distinguish­
ing between real and complex cases, something that is known to 
be controversially important in macroeconomic time series analysis 
(Nelson and Plosser, 1982) . 

We must note that the roots are not identified. The model co­
efficients ¢ are unchanged with arbitrary permutations of the roots. 
Identification of real roots can be imposed simply by relabeling them 
in order of increasing value. Identification may be achieved for the 
complex roots by relabeling them in order of increasing moduli or of 
increasing period or wavelength. 

In extension to Huerta and West (1999) , we assume that each '"It 
is independent of the reciprocal roots and 0"2 with a prior distribution 
P('"(t) � Ga(o:,f3). This specification defines errors that follow a 

Brazilian Review of Econometrics 20 (1) May 2000 7 



Bayesian forecasting and inference in latent structure 

Student t distribution. 

2.3 Posterior and Predictive Analysis. 

Posterior and predictive calculations are developed using Markov 
chain Monte Carlo (MCMC) methods based on the Gibbs sampler. 
For explanations on MCMC methods with theory and applications, 
we recommend Gamerman (1997) and Gilks et al. (1996) . Chib 
and Greenberg (1996) and Gamerman (2000) are references of ap­
plications of MCMC techniques in econometric problems. For our 
MCMC, we briefly outline the form of the relevant conditional pos­
terior distributions. 

First some notation. 'Write X = {Xl, ... ,xn} for the observed 
time series and, given the maximum model order p+ write Y = 
{XO,X_I, ... ,X-(p+-IJ } for the latent initial values. The MCMC in­
cludes formal inference on these initial values. The model parameters 
are denoted by 

l/J={Ctj, j= l, . . .  ,p+; (1frj-l,1frO,1frl) ; (1fco,7fc1 ) ; 

0'2; "It, t = 1, . . . , n}. 

Posterior inferences are based on summarizing the full posterior 
p('I/J, YIX) . For any subset I; of elements of'I/J, let 'I/J\I; denote the com­
plementary elements, Le., 'I/J with I; removed. The MCMC method 
iteratively simulate elements of 'I/J and Y from their conditional pos­
teriors with all conditioning parameters fixed at their latest sampled 
values. Specifically, 

• for each j = 2C+ + 1, . . .  , p+, the real roots are sampled indi­
vidually from 

p(Tjl'I/J\Tj, X, Y). 
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Assuming gr (T j) is Uniform from -1 to 1, this conditional poste­
rior is a mixture of a truncated Normal at (-1, 1) with three points 
masses at 0, -1 and 1 respectively. This mixture posterior is easily 
sampled via CDF inversion of a truncated Normal. 

.. For each j = 1, . . .  , C+, the complex roots are sampled indi­
vid ually from 

Even with simple models for gc(Tj) and h(Aj), this conditional 
posterior is difficult. A MCMC reversible jump step is used to sample 
from this conditional distribution which is a mixture of a continuous 
component with two point masses . 

.. The hyperparameters are sampled from conditionally indepen­
dent posteriors 

and 
p(7rco,7rcll1/>\(7rco,7rcl), X,Y). 

Assuming the Dirichlet priors introduced in Subsection 2.2, this con­
ditional distributions are respectively DiT('IT -1 + 1, TO + 1, T1 + 1) 
and DiTClco + 1, C1 + 1) where (T - 1 , TO, Td denote the number of 
real roots equal to -1,0 and 1 respectively. (co, cd are the number of 
complex roots with modulus 0 and 1 respectively . 

.. The error variance is sampled from 

Assuming that p(cr2) � IG(a, b), the conditional posterior fol­
lows an IG(a',b') where 

n , ' ,\", 2 a = a + n/2; b = b + L.. rtEt /2; 
t=1 
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Et = Xt - 'LJ/=I <PjXt-j are the error innovations computed with the 
implied AR parameter vector <P obtained with the current values for 
the roots O:j . 

.. For t = 1, ... ,n each scale parameter "It is sampled individually 
from 

phtl'lf;\"(t, X, V). 

If phd � Ga(o:, (3) , then the conditional posterior follows a 
, , 

Ga( 0: ,(3  ) where 

Once again, Et = Xt - 'L;=I <PjXt-j are the error innovations com­
puted with the implied AR parameter vector <P obtained with the 
current values for the roots O:j . 

.. The initial values are sampled from 

p(YI'If;\Y, X). 

Under the prior specifications of the previous section, the AR pro­
cess is not strictly stationary but it turns out that the reverse time 
model produces samples from the correct conditional distribution for 
the initial latent values. This important result is shown in Huerta 
and West (1999). The simulation consists in sequentially sampling 
XQ, X-I,· .. ,X-(p+-I) in turn, conditioning on the most recent sam­
pled values in the reverse time model Xt = 'L;=I <PjXt+j + Et; t = 

0, . . . , -(p - 1) sampling Et at each step. As for previous conditional 
distributions, the current roots Qj imply current values for <pj. No­
tice that this operation is essentially the same as used in sampling 
future values Xn+k for k > 0,  in forecasting ahead from the end of 
the data using the forward-time model Xt = 'L�=I <PjXt-j + Et. 
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In the next section, we implement this machinery to explore the 
time series behavior and to forecast some of the levels of the Brazilian 
IPI. 

3. Analyzing the Brazilian Industrial Production Index. 

The data we analyze correspond to 215 monthly observations of 
the Brazilian industrial production index (IPI) , from February 1980 
to December 1997. The data, displayed in Figure 1, presents a strong 
seasonal pattern and the "ups" and "downs" characteristic of a trend. 
Any econometric analysis of such macroeconomic series must be per­
formed with extra care, since the brazilian economy has suffered sev­
eral macroeconomic shocks in the past two decades; some of them 
with temporary effects, others with permanent effects. Allowing the 
innovations to follow heavy-tailed distributions is a conservative way 
of weighing the information in the data as it becomes more or less 
important. 

f2 " ,  
1980 1982 1984 1986 1968 1990 1992 1994 1996 1998 

time 

Figure 1: Brazilian Industrial Production Index. 215 monthly obser­
vations taken since February 1980. 
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To study different aspects of the series, a component structured 
AR model was considered with C+ = 20 and R+ = 20 which implies a 
maximal model order p+ = 60. The MCMC described in Subsection 
2.3, was iterated 10000 times with a burn-in of 5000 iterations the 
following 5000 samples used for posterior inference. First, we present 
the marginal posterior distribution for model order in Figure 2. The 
Figure shows that the posterior distribution for p mostly favors values 
from 16 to 35 and has a mode at p = 24. This posterior distribution 
reflects large uncertainty upon the lag of the AR model. 

• 
d 
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Figure 2: Posterior distribution for model order p based on 5000 
posterior samples: C+ = 20 and R+ = 20. 

To exhibit the model structure in terms of complex and real 
roots, in Figure 3 we present the marginal posterior distribution for 
the number of complex pairs of roots and the number of real roots. 
The model prefers 6, 7 or 8 complex pairs with large probability. 
The posterior distribution for the real roots favors a wide range of 
values, which is typical when components of very low frequency exist 
in the data. 
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Figure 3: Posterior distributions for number of complex pairs and 
number of real roots based on 5000 posterior samples; C+ = 20 and 
R+ = 20. 

To summarize some of the posterior samples of the real roots, in 

Figure 4 we show histograms of samples for the 2 smallest and two 

largest real roots when the roots are ordered from lower to higher. 

Also, the positive probabilities of a point mass at -1,0 and 1 are 

reported in the Figure. It is interesting to note that the largest 

root ( labeled r(20) )  has 0.67 probability of being unitary and the 

smallest root ( labeled r(l) ) has 0.41 probability of being equal to 

-1. Indeed, this shows evidence that the data is non-stationary 

with random walks of order one driving the trend of the series. 
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Figure 4: Histograms of samples for the two smallest and the two 

largest real roots with reported (positive) posterior probabilities of 

point masses. 

Posterior summaries for some of the complex pairs of roots ap­

pear in both Figures 5 and 6. The figures show boxplots of samples 

corresponding to the modulus and wavelength of 5 complex pair roots 

respectively. For identification, the roots were ordered by wavelength 

with the label " 1" denoting the root with the larger period and the 

label "5", the root with the smallest period. The boxplots for moduli 

do not consider samples where the modulus is equal to one. Instead, 

the posterior probability of a unitary modulus is reported in the left 

side of Figure 5. 
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We observe that the root that has the larger period or wavelength, 

has a posterior probability of being unitary equal to 0.96 and a period 

of about 12 time units. This complex root defines a quasi-cyclical 

non-stationary component that correspond to the seasonality in the 

data. Also, the other four roots have a positive probability of being 

unitary with periods at about 6, 4, 3, and 2.4 units of time. These 

periodicities are basically harmonics of the fundamental periodicity 

of 12. Notice that the fifth harmonic is more likely to correspond to 

a non-stationary latent component in comparison to the third and 

fourth harmonics. 
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Figure 5: Boxplots of samples for moduli corresponding to the 5 

largest roots ordered by wavelength with reported posterior proba-

bility of a point mass at one. 
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Figure 6: Boxplots of samples for wavelengths corresponding to the 
5 largest roots ordered by wavelength. 

Posterior samples of the roots directly lead to samples for the 
components associated to the complex and real roots simply because 
these components are functions of the parameters in the AR model. 
In consequence, posterior summaries of the decomposition can be dis­
played as with other quantities of interest. In fact, Figure 7 presents 
the data with posterior means for two components corresponding to 
the complex roots and two components corresponding to the real 
roots. The quasi-cyclical component labeled by (C1) is associated to 
the complex pair that has a periodicity of 12 months and is essen­
tially the underlying seasonality in the data. 
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This component has a time-varying amplitude comparable to the am­

plitude presented by the series. Furthermore, the component has two 

high peaks between 1990-1992, a period where the brazilian economy 

was experiencing major macroeconomic interventions, such as the 

Summer Plan in February 1989, the first and second Collor's Plan in 

March 1990 and February 1991, respectively. Thus, the component 

captures the higher level of uncertainty presented in the data during 

the early 90's. 

(C2l ��·� 

(R3) �� 
(R4) .--

----------�-----

, , . .  . . .  
1980 1962 1984 1956 19S5 1990 1992 1994 1996 

'me 

Figure 7: Data and posterior means for two latent components corre­

sponding to complex roots and two latent components corresponding 

to real roots. Complex components (labeled C1 and C2) are the two 

largest when ordered by wavelength and real components (labeled R3 

and R4) are the corresponding to the maximal and minimal roots. 

Brazilian Review of Econometrics 20 (1) May 2000 17 



Bayesian forecasting and inference in latent structure 

The component labeled by (C2) corresponds to the root that has 

a harmonic periodicity of 6 months. It shows a very low amplitude 

compared to the data and all other complex components have similar 

low amplitudes. The component labeled by (R3) is associated to the 

maximal real root (r(20)) and has an amplitude comparable to the 

amplitude of the data. This component is basically the underlying 

trend of the series. The last component displayed (R4) corresponds 

to the smallest real root (r(l)); its amplitude is very low compared to 

the series and has switches characteristic of an AR(l) process with 

a root equal or close to -1. Mostly, components that have very low 

amplitude represent complicated noise structure in the information. 

Posterior summaries for samples of "It are indicative of possible 

outlying observations. For instance, in Figure 8 we present 95% pos­

terior intervals and posterior means based on 5000 posterior samples 

for "It, t corresponding to the months of February 89 to January 92. 

We assigned a prior for "It � Ga(l, 1) which puts .95 prior probability 

to values between 0.29 and 3. 69. Other Ga(oo, a) prior distributions 

were used essentially leading to the same results. Most of the poste­

rior intervals reported in Figure 8 are consistent with the hypothesis 

that "It may be close to one, except for the intervals corresponding to 

April 1990 and April 1991. Both periods are close to Collor's plans, 

so reassuring the strength of our modeling strategy in describing 

more important movements and trends of the data and giving lower 

weight to specific idiosyncrasies. In these two cases, the small values 

for "It favor a larger error variance <72/"It. The introduction of "It 
helped the AR model to accomodate these anomalous observations. 
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Figure 8: 95 % posterior intervals for some of the parameters "It. "m" 
represents the posterior mean. 

To consider model validation and forecasting, we implemented 
again the MCMC but only with the observations previous to and 
including January 1997. As explained in Subsection 2.3, samples 
of multiple step-ahead forecasts can be generated conditional on all 
other parameters using the autoregressive equation that defines the 
model. Based on 5000 of these posterior samples, Figure 9 presents 
the 95% predictive probability intervals and posterior means for fore­
casts corresponding to February 1997 until December 1997, com­
pared against the actual observed values. In general, we notice that 
the posterior means are lower but close to the observed values. The 
predictive intevals contain the observed data, except for December 
97, where the observation is below the lower limit of the correspond­
ing interval. 
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Figure 9: 95% predictive intervals based on AR model with priors 
on structure components including posterior means and actual ob­
servations for 97/3-97/12. 

For comparison with other possible approaches, we computed 
forecasts with AR models that have a constant variance and the 
model order selected using the AIC criteria. For the Brazilian IPI, 
AIC leads to a model order of 13 which has zero posterior probabil­
ity in Figure 2. Under AIC, we obtained the maximum likelihood 
estimator (MLE) of ¢ and 0'2 and generated samples of "future" val­
ues for February 1997-December 1997. Additionally, assuming the 
standard reference prior for the AR model, p(¢,0'2) ex: 1/0'2 , we 
generated samples of "future" values for the same time period with 
the corresponding Normal-Gamma reference posterior. In fact, using 
the posterior mean of the samples as point estimators of the future 
values, we computed the mean square error (MSE) of the AR-AIC 
models and our AR model that incoporates model order uncertainty, 
unitary roots and heavy-tailed errors. The MSE for the AR with the 
standard reference posterior is 67.64; with the MLE treated as the 
"real" parameter, the MSE is 86.06. For our AR model, the MSE 
is 30.14, showing that is worth the effort of recogninzing different 
levels of uncertainty in forecasting time series under AR models. 
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Furthermore, we consider the forecasts produced for the IPI with 
dynamic linear models that have trend/seasonal components as re­
ported in Schmidt et al. (1999) and Gamerman and Moreira (1998) . 
The predictions for March 1997-August 1997 obtained with these 
dynamic models and the predictions we obtained with AR models 
are plotted in Figure lO. We observed that all the five models under­
estimate the actual values and the AR-AIC models have very poor 
predictive performance. The AR with structure prior and heavy­
tailed errors outperforms both dynamic models for May and July 
1997. At March and April of 1997, our AR model is only superior 
to the DLM of Gamerman-Moreira. For this time period, the MSE 
of our AR model is 25.64, for the Gamerman-Moreira DLM is 25.34 
and for the model of Schmidt et al. is 21. 03. 
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Figure lO: Observations and forecasts for 6 months, 97/3-97/8, cor­
responding to five time series models. 
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In terms of predictive intervals, Figure 11 compares the 95% 
probability intervals for the AR models with priors on component 
structure and the dynamic models of Schmidt et al. (1999) and 
Gamerman and Moreira (1998) for the period that covers March 
1997-August 1997. The intervals for the AR model show a general 
tendency for higher predictive values during this time period. Sur­
prisingly, the length of the intervals for the AR model are smaller 
with respect to those lengths obtained with DLMs. 
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Figure 11: 95% predictive intervals for the period 97/3-97/8 based 
on AR models and dynamic linear models. 

We summarize this application section with a list of points we 
find interesting and a few thought-provoking issues: 

• One of the main aspects of our methodology is to allow the 
lag-length in an AR model to be uncertain, an aspect of great im­
portance for economic time series. Figures 2 and 3 suggest that 
arbitrarily choosing an specific value for the lag-length may ignore 
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a great amount of uncertainty and perhaps lead to over-optimistic 
inference and conclusions . 

• Related to the last point is the fact that accounting for model 
uncertainty does not necessarily mean to increase uncertainty when 
forecasting a time series (see Figure 11). 

" Another important issue is that the model can accomodate 
outlying observations that seem to have only marginal impact in the 
modeling by structuring the innovations with heavy-tailed distribu­
tions (see Figure 8). 

" The real/complex unitary roots found represent long-term de­
pendency in the economy. Figure 7 ,  for instance, reveals a stochas­
tically changing seasonality component (C1) and a stochastic trend 
component (R3) in agreement with previous analyses of the IPI. 

4. Summary Remarks. 

This paper analyzes the Brazilian industrial production index 
using a Bayesian methodology based on a new class of prior distri­
butions for AR models that is extended to allow for heavy-tailed 
errors. The analyses show how a unified approach is able to deal 
with model uncertainty, inference on latent structure, inference on 
unitary roots, forecasting and outliers, all at once. This type of 
modeling avoids the imposition of trends and polynomial seasonal 
components to capture structure and multiple significant tests to 
show the presence of an underlying stochastic trend. It also avoids 
the use of "ad-hoc" diagnostic tools to detect outlying observations 
by including scale-mixtures of Normals. 

On the other hand, a current limitation of the model is that the 
generation of samples of futures is based on drawing the respective 
error terms by drawing "It from its prior distribution or assuming 
them equal to one, i.e. , no outlying observations are expected in 
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the future. In this direction, we recognize the need of a full study 
that measures the impact of such prior specifictions or others for 
forecasting and accomodating outlying information in time series. 
This is part of future research. 
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