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Motivation

Summary: Causal diagrams for empirical research

Pearl, 1995

Show how graphical models can be used as a mathematical language
for integrating statistical and subject-matter information.
In particular, the paper develops a principled, nonparametric
framework for causal inference, in which diagrams are queried to
determine if the assumptions available are sufficient for identifying
causal effects from nonexperimental data.



Motivation

Classical example due to Cochran

The experiment:

Experiment in which soil fumigants, X , are used to increase oat crop
yields, Y , by controlling the eelworm population, Z .
Note that X may also have direct effects, both beneficial and adverse,
on yields beside the control of eelworms.

Classical case of counfounding bias:

Controlled randomised experiments are infeasible: farmers insist on
deciding for themselves which plots are to be fumigated;
Farmers’ choice of treatment depends on last year’s eelworm
population, Z0, an unknown quantity strongly correlated with this
year’s population.



Motivation

Classical example due to Cochran

Fortunately, through laboratory analysis of soil samples, we can
determine the eelworm populations (Z ) before and after the
treatment.
Furthermore, because the fumigants are known to be active for a short
period only, we can safely assume that they do not affect the growth
of eelworms surviving the treatment.
Instead, eelworm growth depends on the population of birds and other
predators (B), which is correlated, in turn, with last year’s eelworm
population and hence with the treatment itself.



Motivation

First step: construct a causal diagram

Z1: the eelworm population, both size and type, before treatment;
Z2: the eelworm population, both size and type, after treatment;
Z3: the eelworm population, both size and type, at the end of the
season;
Z0: represents last year’s eelworm population (because it is an unknown
quantity, it is represented by a hollow circle);
B , the population of birds and other predators (also unknown).



Motivation

First step: construct a causal diagram

Links in the diagram are of two kinds: those that connect unmeasured
quantities are designated by dashed arrows, those connecting
measured quantities by solid arrows.
The missing arrow between Z1 and Y signifies the investigator’s
understanding that pre-treatment eelworms cannot affect oat plants
directly; their entire influence on oat yields is mediated by
post-treatment conditions, namely Z2 and Z3.

Note

The purpose of the paper is not to validate or repudiate such
domain-specific assumptions but, rather, to test whether a given set of
assumptions is sufficient for quantifying causal effects from nonexperimental
data, for example, estimating the total effect of fumigants on yields.



Motivation

Conclusions based on the proposed method

(a) The total effect of X on Y can be estimated consistently from the
observed distribution of X , Z1, Z2, Z3 and Y .

(b) The total effect (assuming discrete variables throughout) is given by
the formula:

pr(y |x̌) =
∑
z1

∑
z2

∑
z3

pr(y |z2, z3, x)p(z2|z1, x)
∑
x ′

pr(z3|z1, z2, x ′)pr(z1, x
′),

(1)
where the symbol x̌ , read ’x check’, denotes that the treatment is set to
level X = x by external intervention.

(c) Consistent estimation of the total effect would not be feasible if Y were
confounded with Z3; however, confounding Z2 and Y will not invalidate the
formula for pr(y |x̌).



Graphical models and manipulative account of causation

Graphs and conditional independence

Conditional independence relationships implied by recursive product
decompositions:

pr(x1, ..., xn) =
∏
i

pr(xi |pai ), (2)

where pai stands for the realisation of some subset of the variables that
precede X, in the order (X1,..., Xn).

If we construct a directed acyclic graph (DAG) in which the variables
corresponding to pai , are represented as the parents of Xi , then the
independencies implied by the decomposition can be read off the graph
using the d-separation criterion.



Graphical models and manipulative account of causation

Definition: d-separation

Let X , Y and Z be three disjoint subsets of nodes in a DAG G , and let p
be any path between a node in X and a node in Y , where by ’path’ we
mean any succession of arcs, regardless of their directions.

Then Z is said to block p if there is a node w on p satisfying one of the
following two conditions:

Conditions for d-separation

w has converging arrows along p, and neither w nor any of its
descendants are in Z , or,
w does not have converging arrows along p, and w is in Z.

Further, Z is said to d-separate X from Y , in G , if and only if, Z blocks
every path from a node in X to a node in Y .



Graphical models and manipulative account of causation

Definition: d-separation

’D’ stands for dependence or directed. A path p is d-separated or blocked
by a set of nodes Z if and only if (Pearl, 2000):

Conditions for d-separation

p contains a chain, u ← m← v , such that m is in Z , or
p contains a fork, u ← m→ v , such that m is in Z , or
p contains an inverted fork (or collider), u → m← v , such that m
is not in Z and no descendant of m is in Z.

Intuition: in causal forks and causal chains the two extreme variables are
marginally dependent but become independent (blocked) once we condition
on the middle variable.



Graphical models and manipulative account of causation

Examples: d-separation

A causal chain: X → Z → Y

By (2):P(X ,Y ,Z) = P(Y |Z)P(Z |X )P(X ). But P(X ,Y ,Z) = P(X ,Y |Z)P(Z), so that
P(X ,Y |Z) = P(Z |X )P(X )P(Y |Z)

P(Z)
= P(X |Z)P(Y |Z).

(X and Y are independent, conditioning on Z , or they are d-separed)

A causal fork: X ← Z → Y

By (2):P(X ,Y ,Z) = P(Y |Z)P(X |Z)P(Z). But P(X ,Y ,Z) = P(X ,Y |Z)P(Z), so that
P(X ,Y |Z) = P(X |Z)P(Y |Z).
(X and Y are independent, conditioning on Z , or they are d-separed)

Collider: X → Z ← Y

By (2):P(X ,Y ,Z) = P(X )P(Y )P(Z |X ,Y ). But P(X ,Y ,Z) = P(X ,Y |Z)P(Z), so
that P(X ,Y |Z) = P(X )P(Y )P(Z |X ,Y )

P(Z)
6= P(X |Z)P(Y |Z).

(X and Y are not independent, conditioning on Z , or they are not d-separed)



Graphical models and manipulative account of causation

Graphs as models of interventions

Causal interpretation of directed graphs, based on nonparametric structural
equations, which owes its roots to early works in econometrics.

In other words, each child-parent family in a directed graph G represents a
deterministic function:

Xi = fi (pai , εi ), i = (1, ..., n), (3)

where pai , denote the parents of variable Xi , in G , and εi (1 ≤ i ≤ n) are
mutually independent, arbitrarily distributed random disturbances.

Disturbances represent exogenous factors that the investigator chooses not
to include in the analysis. If is judged to be influencing two or more
variables, then must enter the analysis as an unmeasured, or latent,
variable, to be represented in the graph by a hollow node.



Graphical models and manipulative account of causation

Graphs as models of interventions

This equational model is the nonparametric analogue of a structural
equations model, with one exception: the functional form of the
equations, as well as the distribution of the disturbance terms, will
remain unspecified.

For the first example:
Z0 = f0(ε0), Z2 = f2(X ,Z1, ε2), B = fB(Z0, εB), Z3 = f3(B,Z2, ε3),
Z1 = f1(Z0, ε1), Y = fY (X ,Z2,Z3, εY ), X = fX (Z0, εX )



Graphical models and manipulative account of causation

Graphs as models of interventions

Characterising each child-parent relationship as a deterministic
function, instead of by the usual conditional probability pr(x |pai ),
imposes equivalent independence constraints on the resulting
distributions, and leads to the same recursive decomposition that
characterises DAG models (2).
This occurs because each ε, is independent of all nondescendants of X .
The functional characterisation Xi = fi (pai , εi ),also provides a
convenient language for specifying how the resulting distribution would
change in response to external interventions.



Graphical models and manipulative account of causation

Definition: causal effect

The simplest type of external intervention is one in which a single
variable, say Xi , is forced to take on some fixed value x .
Such an intervention, which we call atomic, amounts to lifting X ,
from the influence of the old functional mechanism and placing it
under the influence of a new mechanism that sets its value to x , while
keeping all other mechanisms unperturbed.

Causal effect

- Given two disjoint sets of variables, X and Y , the causal effect of X on
Y , denoted pr(y |x̌), is a function from X to the space of probability
distributions on Y .
- For each realisation x of X , pr(y |x̌) gives the probability of Y = y
induced on deleting from the model (3) all equations corresponding to
variables in X and substituting x for X in the remainder.



Graphical models and manipulative account of causation

Graphical meaning of atomic intervention

In the case of an atomic intervention set(X = x ′), this transformation can
be expressed in a simple algebraic formula that follows immediately from
(3) and Definition of Causal Effect:

pr(x1, ..., xn|x̌ ′i ) =

{
pr(x1, ..., xn)/pr(xi |pai ) if xi = x ′i

0 if xi 6= x ′i
(4)

This formula reflects the removal of the terms pr(xi |pai ) from the product
in (2), since pai no longer influence X .

Graphically, this is equivalent to removing the links between pai and Xi ,
while keeping the rest of the network intact.



Graphical models and manipulative account of causation

Graphical meaning of atomic intervention

To better understanding go back to Pearl, 1993:

The effect of the intervention set(Xi = x ′i ) is encoded by adding to Γ
a link Fi → Xi , where Fi is a new variable taking values in
{set(xi ), idle}, x ′i ranges over domain of Xi and idle represents no
intervention.
Thus the new parent set of Xi in the augmented network is
pa′i = pai ∪ {Fi} and is related to Xi by the conditional probability:

pr(xi |pa′i ) =

{ pr(xi |pai ), if Fi = idle,

0, if Fi = set(x ′i ) and xi 6= x ′i ,

1, if Fi = set(x ′i ) and xi = x ′i .



Graphical models and manipulative account of causation

Graphical meaning of atomic intervention

The effect of the intervention set(Xi = x ′i ) is to transform the original
probability function pr(x1, ..., xn) into a new function

pr(x1, ..., xn|x̌ ′i ) = pr ′(x1, ..., xn|Fi = set(x ′i )),

where pr ′ is the directed markov field dictated by the augmented network
Γ′ = Γ ∪ {Fi → Xi}.



Graphical models and manipulative account of causation

Graphical meaning of atomic intervention

The transformation exhibits the following properties:

Intervention set(Xi = x ′i ) can affect only the descendants of Xi in Γ.
For any set S of variables, we have pr(S |x̌ ′i , pai ) = pr(S |x ′i , pai )

Intervention or passive?

In other words, given Xi = x ′i and pai , it is superfluous to find out whether
Xi = x ′i was established by external intervention or not. This can be seen
directly by the augmented network Γ′, since {Xi} ∪ pai d-separates Fi from
the rest of the network (thus S is independent of Fi , conditioning on
(Xi , pai )).

A necessary and sufficient condition for a external intervention
set(Xi = x ′i ) to have the same effect on Xj as the passive observation
Xi = x ′i is that Xi d-separates pai from Xj .



Controlling confounding bias

Estimation of effects of interventions from passive
(nonexperimental) observations?

Not always possible, as this would require estimation of pr(xi |pai ). The
mere identification of pai (the direct causal factors of Xi ) require
substantive knowledge of the network, which is often unavailable and some
members of pai may be unobservable or latent.

The aim of the paper is to derive causal effects in situations such as
Fig. 1, where some members of pai , may be unobservable.
Assume we are given a causal diagram G together with
nonexperimental data on a subset V0 of observed variables in G , and
we wish to estimate what effect the intervention set(Xi = xi ) would
have on some response variable Xj . In other words, we seek to
estimate p(xj |x̌i ) from a sample estimate of pr(V0).



Controlling confounding bias

Concomitants

The variables in V0 − {Xi ,Xj} , are commonly known as concomitants
or cofounders or covariates (Cox, 1958, p. 48).
In observational studies, concomitants are used to reduce confounding
bias due to spurious correlations between treatment and response.

Simpson’s paradox (Karl Pearson et al., 1899)

- Any statistical relationship between two variables may be reversed by
including additional factors in the analysis.
- For example, we may find that students that smoke obtain higher grades
than those who do not smoke, but, adjusting for age, smokers obtain lower
grades in every age group and, further, adjusting for family income, smokers
again obtain higher grades than non smokers in every income-age group.



Controlling confounding bias

Graphical test for concomitants

The condition that renders a set Z of concomitants sufficient for
identifying causal effect, also known as ignorability, has been given a
variety of formulations, all requiring conditional independence
judgments involving counterfactual variables (Rosenbaum & Rubin,
1983; Pratt & Schlaifer, 1988).
Pearl (1993) shows that such judgments are equivalent to a simple
graphical test, named the ’back-door criterion’, which can be applied
directly to the causal diagram.



Controlling confounding bias

Definition: the backdoor criterion

A set of variables Z satisfies the back-door criterion relative to an ordered
pair of variables (Xi ,Xj) in a DAG G if:

The criterion

(a) No node in Z is a descendant of Xi , and
(b) Z blocks every path between Xi , and Xj which contains an arrow into
Xi . If X and Y are two disjoint sets of nodes in G , Z is said to satisfy the
back-door criterion relative to (X ,Y ) if it satisfies it relative to any pair
(Xi ,Xj) such that Xi ∈ X and Xj ∈ Y .

The name ’back-door’ requires that only paths with arrows pointing at Xi

be blocked; these paths can be viewed as entering Xi through the back
door.



Controlling confounding bias

Definition: the back-door criterion

In Fig. 2, for example, the sets Z1 = {X3,X4} and Z2 = {X4,X5} meet the
backdoor criterion, but Z3 = {X4} does not, because X4 does not block
the path (Xi ,X3,X1,X4,X2,X5,Xj).



Controlling confounding bias

Identifiable causal effect

Theorem 1

If a set of variables Z satisfies the back-door criterion relative to (X ,Y ),
then the causal effect of X on Y is identifiable and is given by the formula:

pr(y |x̌) =
∑
z

pr(y |x , z)pr(z) (5)

Identifiability means that pr(y |x̌) can be computed uniquely from any
positive distribution of the observed variables that is compatible with DAG
G .



Controlling confounding bias

A simple example of the back-door criterion

A back-door path is a non-causal path. From the figure we can see
that A← X → Y is a path from A to Y that points into A.
Back-door paths between A and Y generally indicate common causes
(though not always). The simplest possible back-door path is the
common confounding situation (see figure)
When there are unblocked back-door paths, there are two sources of
any association between A and Y : one causal (the effect of A on Y )
and one non-causal (from the back-door path).Thus, with unblocked
(meaning non d-separated) back-door paths, it’s difficult to know if
any association is a result of the causal effect or the back-door path.



Controlling confounding bias

A simple example of the back-door criterion

How to tell if an effect is identifiable from the graph?

The back-door criterion states that an effect of A on Y is identifiable if
either:
(a) No back door paths from A on Y (plausible only in a randomized
experiment).
(b) Measured covariates are sufficient to block all back door paths from A
on Y . (plausible in randomized and also in observational studies).

The criterion tells is there confounding given a DAG, and
if it is possible to removing the confounding, and
what variables to condition on to eliminate the confounding.



Controlling confounding bias

The front door criterion

An alternative criterion, ’the front-door criterion’, may be applied in cases
where we cannot find observed covariates Z satisfying the back-door
conditions.

Consider the diagram in Fig. 3. Although Z does not satisfy any of the
back-door conditions, measurements of Z nevertheless enable consistent
estimation of pr(y |x̌).



Controlling confounding bias

The front door criterion

The joint distribution associated with Fig. 3 can be decomposed into

p(x , y , z , u) = pr(u)pr(x |u)pr(z |x)pr(y |z , u), (6)

and from (4), one can compute post intervention distributions (removing
pr(x |u))

p(y , z , u|x̌) = pr(y |z , u)pr(z |x)pr(u). (7)

Summing over z and u then gives

p(y |x̌) =
∑
z

pr(z |x)
∑
u

pr(y |z , u)pr(u). (8)



Controlling confounding bias

The front door criterion

Using the conditional independence assumptions implied by the graph:
pr(u|x , z) = pr(u|x) and pr(y |x , z , u) = pr(y |z , u) yields∑

u

pr(y |z , u)pr(u) =
∑
x

∑
u

pr(y |z , u)pr(u|x)p(x)

=
∑
x

∑
u

pr(y |x , z , u)pr(u|x , z)pr(x)

=
∑
x

pr(y |x , z)pr(x).

(9)

Then, the causal effect of X on Y is given by

p(y |x̌) =
∑
z

pr(z |x)
∑
x ′

pr(y |x ′, z)pr(x ′) (10)



Controlling confounding bias

The front door criterion

Theorem 2

Suppose a set of variables Z satisfies the/allowing conditions relative to an
ordered pair of variables (X ,Y ):
(a) Z intercepts all directed paths from X to Y ,
(b) there is no back-door path between X and Z , and
(c) every back-door path between Z and Y is blocked by X . Then the
causal effect of X on Y is identifiable and is given by (10).
Example: X = smoking, Y = lung cancer, Z = amount of tar deposited in a subject’s lungs, and U = unobserved
carcinogenic genotype that, also induces an inborn craving for nicotine. The theorem gives the means to quantify,
from nonexperimental data, the causal effect of smoking on cancer, assuming that pr(x, y, z) is available and that
smoking does not have any direct effect on lung cancer except that mediated by tar deposits.



Controlling confounding bias

The front door criterion as a two step application of the
back-door criterion

First step: find the causal effect of X on Z , since there is no unblocked
back-door path from X to Z in figure; so the effect is

pr(z |x̌) = pr(z |x).

Second step: compute causal effect from Z to Y , which we can no longer
equate with the conditional probability pr(y |z) because there is a
back-door path Z ← X ← U → Y from Z to Y . However, since X
d-separates this path, X can play the role of the concomitant, which allows
us to compute the causal effect of Z to Y as

pr(y |ž) =
∑
x ′

pr(y |x ′, z)pr(x ′).

Finally, we combine the two causal effects and get (10).



A calculus of intervention

Preliminary notation

Let X , Y and Z be arbitrary disjoint sets of nodes in a DAG G . We denote
by GX̄ the graph obtained by deleting from G all arrows pointing to nodes
in X . Likewise, we denote by GX the graph obtained by deleting from G all
arrows emerging from nodes in X . To represent the deletion of both
incoming and outgoing arrows, we denote GX̄Z .



A calculus of intervention

Inference rules

Theorem 3

Rule 1: (insertion/deletion of observations)

pr(y |x̌ , z ,w) = pr(y |x̌ ,w), if (Y ⊥⊥ Z |X ,W )GX̄

Rule 2:(action/observation exchange)

pr(y |x̌ , ž ,w) = pr(y |x̌ , z ,w), if (Y ⊥⊥ Z |X ,W )GX̄Z

Rule 3:(insertion/deletion of actions)

pr(y |x̌ , ž ,w) = pr(y |x̌ ,w), if (Y ⊥⊥ Z |X ,W )G
X̄Z(W )

where Z (W ) is the set of Z -nodes that are not ancestors of any W -node in
GX̄ .



A calculus of intervention

Inference rules

Rule 1 reaffirms d-separation as a valid test for conditional
independence in the distribution resulting from the intervention
set(X = x), hence the graph GX̄ . This rule follows from the fact that
deleting equations from the system does not introduce any
dependencies among the remaining disturbance terms.
Rule 2 provides a condition for an external intervention set(Z = z) to
have the same effect on Y as the passive observation Z = z . The
condition amounts to X ∪W blocking all back-door paths from Z to
Y in GX̄ , since GX̄Z retains all, and only, such paths.
Rule 3 provides conditions for introducing or deleting an external
intervention set(Z = z) without affecting the probability of Y = y .
The validity of this rule stems, again, from simulating the intervention
set(Z = z) by the deletion of all equations corresponding to the
variables in Z .



A calculus of intervention

Inference rules

Corollary

A causal effect q = pr(y1, ..., yk |x̌1, ..., x̌m) is identifiable in a model
characterised by a graph G if there exists a finite sequence of
transformations, each conforming to one of the inference rules in Theorem
3, which reduces q into a standard, i.e. check-free, probability expression
involving observed quantities.

Whether the three rules above are sufficient for deriving all identifiable
causal effects remains an open question.



Discussion

Graphs, structural equations and counterfactuals

The primitive object of analysis in the potential-outcome framework is
the unit-based response variable, denoted Yx(u), read: “the value that
outcome Y would obtain in experimental unit u, had treatment X
been x”. This variable has a natural interpretation in structural
equations model: consider a set T of equations

Xi = fi (PAi ,Ui ), (i = 1, ..., n),

which is similar to (3), except we no longer insist on the equations
being recursive or on the Ui ’s being independent.



Discussion

Graphs, structural equations and counterfactuals

Let U stand for the vectors U1, ...,Un, let X and Y be two disjoint
subsets of observed variables, and let Tx be the submodel created by
replacing the equations corresponding to variables in X with X = x .
The structural interpretation of Yx(u) is given by

Yx = YTx (u).

Namely, Yx(u) is the unique solution for Y under the realisation
U = u in the submodel Tx of T .
While the term unit in the counterfactual literature normally stands for
the identity of a specific individual in a population, a unit may also be
thought of as the set of attributes that characterise that individual,
the experimental conditions, which are represented as components of
the vector u in structural modelling.



Discussion

Graphs, structural equations and counterfactuals

If U is treated as a random variable, then the value of the
counterfactual Yx(u) becomes a random variable as well, denoted by
Y (x) or Yx . The counterfactual analysis proceeds by imagining the
observed distribution pr(x1, ..., xn) as the marginal distribution of an
augmented probability function pr* defined over both observed and
counterfactual variables.
Queries about causal effects, written p(y |x̌) in the structural analysis,
are phrased as queries about the marginal distribution of the
counterfactual variable of interest, written pr∗(Y (x) = y).
The new entities Y (x) are treated as ordinary random variables that
are connected to the observed variables via the logical constraints

X = x → Y (x) = Y



Discussion

Graphs, structural equations and counterfactuals

Main conceptual difference between the two approaches

Whereas the structural approach views the intervention set(X = x) as an
operation that changes a distribution but keeps the variables the same, the
potential-outcome approach views the variable Y under intervention to be
a different variable, Yx (inferring probabilistic properties of Yx , then
becomes one of “missing data”) .



Discussion

Graphs, structural equations and counterfactuals

For example, to communicate the understanding that in a randomised
clinical trial, the way subjects react, Y , to treatments X is statistically
independent of the treatment assignment Z , the analyst would write
Y (x) ⊥⊥ Z .
Likewise, to convey the understanding that the assignment process is
randomised, hence independent of any variation in the treatment
selection process, structurally written as UX ⊥⊥ UZ , the analyst would
use the independence constraint X (z) ⊥⊥ Z .



Discussion

Graphs, structural equations and counterfactuals

To further formulate the understanding that Z does not affect Y
directly, except through X , the analyst would write a, so called,
“exclusion restriction": Yxz = Yx .
A collection of constraints of this type might sometimes be sufficient
to permit a unique solution to the query of interest. For example, if
one can plausibly assume that, a set Z of covariates satisfies the
conditional independence Yx ⊥⊥ X |Z , then the causal effect
P(y |set(X = x)) = P∗(Yx = y) can be evaluated to yield:

P∗(Yx = y) =
∑
z

P∗(Yx = y |z)P(z) =
∑
z

P∗(Yx = y |x , z)P(z)

=
∑
z

P∗(Y = y |x , z)P(z) =
∑
z

P(y |x , z)P(z)

(11)
which is the same expression as (5): it mirrors therefore the
“back-door” criterion.
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