Deterministic or Stochastic Trend?

Let us consider two of the simplest versions:

Deterministic trend (DT) :
$$y_t = \beta t + \epsilon_t$$

Stochastic trend (ST) : $y_t = \beta + y_{t-1} + \epsilon_t$,

where ϵ_t is white noise with variance σ^2 (= 1, for simplicity) and $y_0 = 0$ (also for simplicity).

It is easy to see that

$$E_{DT}(y_t) = E_{ST}(y_t) = \beta t$$

but

$$V_{DT}(y_t) = 1$$
 and $V_{DT}(y_t) = t$.

Expectation with respect to all information up to time t = 0.

Simulating DT and ST time series

Time

How to model y_{1t} and y_{2t} ?

Even with n = 100 one can argue that the trend of $\{y_{2t}\}$ "looks" more deterministic than the trend of $\{y_{1t}\}$.

Time

Model y_{1t} and y_{2t} with deterministic trends

Even after removing a determinist trend from y_{1t} , the residuals still behave like a random walk. On the other hand, y_{2t} is definitely *trend-stationary*.

Model y_{1t} and y_{2t} with stochastic trends

After fitting a random walk plus drift for y_{1t} , the residuals behave like a white noise, so y_{1t} is *difference-stationary*.

Fitting a random walk plus drift for y_{2t} (which is trend-stationary), induces an MA(1) behavior in the residuals. 5

If y_t is trend stationary,

$$y_t = \beta t + \epsilon_t$$

then

$$y_{t-1} = \beta(t-1) + \epsilon_{t-1}$$

and

$$\Delta y_t = \beta + v_t$$

where $v_t = \epsilon_t - \epsilon_{t-1}$, such that $E(v_t) = 0$, $V(v_t) = 2$ and

$$Cov(v_t, v_{t-1}) = Cov(\epsilon_t - \epsilon_{t-1}, \epsilon_{t-1} - \epsilon_{t-2}) = -V(\epsilon_t) = -1$$

and $Cov(v_t, v_{t-h}) = 0$, for h > 1. Therefore, the 1st order autocorrelation is

$$\rho(1) = rac{Cov(v_t, v_{t-1})}{V(v_t)} = -0.5.$$

Summary

If y_t is trend-stationary:

- ► Stochastic trend fit: residuals with MA(1) behavior.
- Deterministic trend fit: residuals are white noise.

If y_t is difference-stationary:

- Stochastic trend fit: residuals are white noise.
- Deterministic trend fit: residuals are random walk.

Lesson: ALWAYS check the residuals!