
Deterministic or Stochastic Trend?

Let us consider two of the simplest versions:

Deterministic trend (DT) : yt = βt + εt

Stochastic trend (ST) : yt = β + yt−1 + εt ,

where εt is white noise with variance σ2 (= 1, for simplicity) and
y0 = 0 (also for simplicity).

It is easy to see that

EDT (yt) = EST (yt) = βt

but
VDT (yt) = 1 and VDT (yt) = t.

Expectation with respect to all information up to time t = 0.
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Simulating DT and ST time series
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How to model y1t and y2t?
Even with n = 100 one can argue that the trend of {y2t} “looks”
more deterministic than the trend of {y1t}.
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Model y1t and y2t with deterministic trends
Even after removing a determinist trend from y1t , the residuals still
behave like a random walk. On the other hand, y2t is definitely
trend-stationary.

Modeling y1 with DT
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Modeling y2 with DT
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Model y1t and y2t with stochastic trends
After fitting a random walk plus drift for y1t , the residuals behave
like a white noise, so y1t is difference-stationary.

y1 : random walk + drift
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y2 : random walk + drift
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Fitting a random walk plus drift for y2t (which is trend-stationary),
induces an MA(1) behavior in the residuals. 5



If yt is trend stationary,

yt = βt + εt

then
yt−1 = β(t − 1) + εt−1

and
∆yt = β + vt

where vt = εt − εt−1, such that E (vt) = 0, V (vt) = 2 and

Cov(vt , vt−1) = Cov(εt − εt−1, εt−1 − εt−2) = −V (εt) = −1

and Cov(vt , vt−h) = 0, for h > 1. Therefore, the 1st order
autocorrelation is

ρ(1) =
Cov(vt , vt−1)

V (vt)
= −0.5.
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Summary

If yt is trend-stationary:

I Stochastic trend fit: residuals with MA(1) behavior.

I Deterministic trend fit: residuals are white noise.

If yt is difference-stationary:

I Stochastic trend fit: residuals are white noise.

I Deterministic trend fit: residuals are random walk.

Lesson: ALWAYS check the residuals!
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