SARIMA(p,d,q)(P,D,Q)

\[\phi_p(L) \Phi_P(L^S) \Delta^d \Delta^D_S y_t = \theta_q(L) \Theta_Q(L^S) \epsilon_t \]

onde

\[\Delta^d = (1 - L)^d \]
\[\phi_p(L) = 1 - \phi_1 L - \phi_2 L^2 - \cdots - \phi_p L^p \]
\[\theta_q(L) = 1 - \theta_1 L - \theta_2 L^2 - \cdots - \theta_q L^q \]

e

\[\Delta^D_S = (1 - L^S)^D \]
\[\Phi_p(L^S) = 1 - \Phi_1 L^S - \Phi_2 L^{2S} - \cdots - \Phi_p L^{pS} \]
\[\Theta_Q(L^S) = 1 - \theta_1 L^S - \theta_2 L^{2S} - \cdots - \Theta_Q L^{QS} \]
Reescrevendo o SARIMA\((1,1,1)(1,1,1)\) no nível

Para dados mensais e sazonalidade anual \((S = 12)\)

\[
(1 - \phi L)(1 - \Phi L^{12})\Delta\Delta_{12}y_t = (1 - \theta L)(1 - \Theta L^{12})\epsilon_t
\]

É fácil verificar que

\[
\Delta\Delta_{12}y_t = y_t - y_{t-1} - y_{t-12} + y_{t-13}
\]

\[
(1 - \phi L)(1 - \Phi L^{12}) = (1 - \phi L - \Phi L^{12} + \phi \Phi L^{13})
\]

\[
(1 - \theta L)(1 - \Theta L^{12}) = (1 - \theta L - \Theta L^{12} + \theta \Theta L^{13})
\]

Portanto

\[
y_t = (1 + \phi)y_{t-1} - \phi y_{t-2} + (1 - \phi + \Phi)y_{t-12} - (1 + \phi \Phi + \Phi)y_{t-13} + (1 + \Phi)\phi y_{t-14} - \Phi y_{t-24} + (1 + \phi)\Phi y_{t-25} - \phi \Phi y_{t-26} + \epsilon_t - \theta \epsilon_{t-1} - \Theta \epsilon_{t-12} + \theta \Theta \epsilon_{t-13}
\]

que é um ARMA\((26,13)\) com várias restrições nos parâmetros.