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This paper investigates whether macroeconomic time series are better characterized as stationary 
fluctuations around a deterministic t&read or as non-stationary processes that have no :cndency 
to return to a dhrministic path. Using long historical time series for the U.S. we ale unable to 
reject the hypotit ls that these series are non-stationary stochastic processes with no tendency 
to return to a trend be. Based on these findings and an unobserved components model for 
output that decomposes fluctuations into a secular or growth component and a cyclical 
component we infer that shocks to the former, which we associate with real disturbances, 
contribute substantially to the variation in observed output. We conclude that macroeconomic 
models that focus on monetary disturbances as a source of purely transitory fluctuations may 
never be successful in explaining a large fraction of output variation and that stochastic 
variation due to real factors is an essential element of any model of macroeconomic fluctuations. 

1. Introduction 

It is common practice in macroeconomics to decompose real variables 
such as output, and sometimes nominal variables, inlo a secular or growth 
component and a cyclical component. In the case of output, the secuk 
component is viewed as being in the domain of growth theory with real 

. factors such as capital accumulation, population growth, and technological 
change as the primary determinants. The cyclical component, on tbe other 
hand, is assumed to be transitory (stationary) in nature with monetary and, 
Q a lesser extent, real factors being featured as primary causes. Since cyclical 
tluctuations are assumed to dissipate over time, any long-run or permanent 
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movement (non-stationh,lrity) is neclessarily attributed tc the secular 
component. 

The notion that the secular component does not fluctuate much over 
short periods of time, such as a year c\ar a quarter, but rather moves slowly 
and smoothly relative to the cyclical component has led to the practice of 
‘detrending’ time series by regression on time (or* perhaps a polynomial in 
time). The residuals are then interpreted as the cyclical component to be 
explained by business cycle theory. 1 For example, Bodkin (1969), L,ucas 
(1973), Barro (1978), Sargem (1978), Taylor (1979), Hall (l980), and Kydland 
and Prescott (1980) all implicitly OT explicitly regard residuals from fitted 
linear or quadratic tim e trends as the relevant data. for business cycle 
analysis.* 

Secular movement, however, need not be modeled by a deterministic trend, 
For example, the class of integrated stochastic processes exemplified by the 
random walk, also exhibit secular movement but do not follow a 
deterministic path. If the secular movement in macroeconomic time series is 
of a stochastic rather than deterministic nature, then models based on time 
trend residuals arc misspecified.3 

The types of misspecification that arise from ina,ppropriate detrending can 
be illustrated by considering the properties of residuals from a regression of a 
random walk on time. These properties are investigated in recent papers by 
Chan, Hayya and Ord (1977) and Nelson and Kang (1981). The 
autocorrelation function of the residuals is shown to be a statistical artifact 
in the sense that it is determined entirely by sample size and it implies strong 
positive autocorrelation at low lags with pseudo-periodic behavior at long 
lags.4 Empirical investigations of output fluctuations that do not consider the: 
possible source of this autocorrelation might be led to over-estimate both the 
persistence and variance of the business cycle. Conversely, the importance of 
real factors that influence the secular component would be under-estimsltt 4 

In this paper we investigate whether macroeconomic times .series act. 
consistent with the time trend decomposition usually employed. Section 2 
discusses the statistical issues involved in t,esting for deterministic trends and 
section 3 presents the results of formal and informal tests using long 
historical time series for the U.S. We are unable to reject the hypothesis that 

‘Or equivalently, time is included as an explanatory variable. 
2Btxns and Mitchell (1946): in their pioneering empirical investigation of business cycles, were 

concerned with the method of trend removal and went to great lengths to justify their 
procedures (see pp. 37-41, and ch. 7). 

3HaU’s (1980) use of the time trend model for real GNF is particularly pw::ling since in 
previous work @Iall (1978)] he argues that aggregate consumption behaves like a random waik. 
Without some rather implausible restrictions on the ether components of GNP, aggregate GNP 
wiii then incUe random walk characteristics and linear d&rending is likely to be inappropriate. 

41t is interesting to note that McChlloch (1975) finds evidence of periodicity in logs of real 
income investment, and consumption after fitting a linear trend, but does not find ~riod~~jty in 
their fixi differences. 
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these series are non-stationary stochastic processes with no tendency to 
return to a trend line. The implications of this finding are explored in 
sections 4 and 5. Assuming that any stochastic fluctuations in output of a 
permanent variety must be associated with secular movements, and thus real 
factors, the evidence presented in section 3 leads us to the inference that (i) 
real shocks associated with the secular component contribute substantially to 
the variation in observed output, and (ii) either these shocks are correlated 
with the innovations in the cyclical component or the secular component 
contains transitory fluctuations (or both). We conclude that macroeconomic 
models that focus on monetary disturbances as a source of purely transitory 
(stationary) fluctuations may never be successful in explaining a very lsrge 
fraction of output fluctuations and that stochastic variation due to real 
factors is an essential element of .any model of economic fluctuations. Some 
recent efforts in this direction inJude the equilibrium stochastic growth 
models studied by Black (1979), Lzjng and Plosser (1380), King and Plosser 
(1981) and Kydland and Prescott (‘. 981). 

2. Statistical background 

The basic statistical issue is the appropriate representation of non- 
stationarity in economic time series. We are primarily concerned with ilon- 
stationarity in the mean of the series. Such behavior implies that the series 
lacks a fixed long-term mean, or put positively, has a tendency to move 
farther away Tram any given initial state as time goes on. 

We consider :npo fundamentally diffe, en: classes of non-stationary 
processes as aitermtive hypotheses. The first class of processes consists of 
thaw that can be expressed as a deterministic function of time, called a 
trend, plus a stationary stochasrlc process wit!1 mean zero. We refer to these 
m trend-stationary , .” rS) processes. The tendency of economic time series to 
exhibit variation that increases in mean and dispersion in proportion to 
&solute level motivates the transformation to natural logs and the 
~~su~~ptio~ that trends are linear in the transformed data. We also assume 
that the deviations from trend have a representation as a stationary and 
~~~v~rt~b~~ ARMA process. Denoting the natural logs of the series by z, and 
t.he deviations from trend by c,, the linear TS class has the form 

4(fI)c, = O(L)u,; u, w i.i.d.(O, rr,“), 

where 61 and p arc fixed parameters, L is the lag operator, and &k) and 8(1-J 
arc p~ly~~ornia~s in L ihat satisfy the conditions for stationarity and 
invertibj~ity~ 

The fun ental Merminism c’^ the process is captured in the properties 
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of k!ng-term forecasts and uE:certainty around such forecasts. While 
autocorrelation in c, can be exploited in short-term forecasting, it is clear 
that over long horizons the only information about a future z is its mean (CII 
+/It). Therefore neither current nor past events will alter long-term 
expectations. Further, the long-term forecast error must be c which has 
fir&e variance. Thus uncertainty is bounded, even in the indefinitely distant 
future. 

The second class of non-saationary process considered in this paper is that 
class for which first or higher order differences is a stationery and kvertible 
ARMA process (DS processes). The counterpart of the linear TS process is 
the first-order DS process in natural logs written as 

(1 -L)z,=/C&, 
(2 

6(L)d, = A(L)u,; U, m i.i.d.(O, ai), 

where (1 -L) is the difference operator and 6(L) and A(L) are polynomials 
satisfying the stationarity and invertibility conditions. The simplest member 
of the class is the random walk for which the changes are serially 
uncarrelated, that is rf,=u,. 

To see the fundamental difference betweell the TS and DS classes it is 
useful to express z, as the value at some reference point in the past, time 
zero;, plus all subsequent changes, 

z,=z,+pt+ i d,. 
j=l 

(3) 

Eqs. (3) and (1) indicate that the two types of processes can be written as a 
linear function of time: plus the deviation from it. The intercept in (1), 
however, is a fixed parameter while in (3) it is a fimction of historical events, 
and the deviations from trend in (1) are stationary while in (3) they are 
accumulations of stationary changes. The accumulation in (3) is not 
stationary but rather its variance increases without bound as t gets large. It 
is not difficult to see that the long-term forecast of a DS process will nlwnys 
be influenced by historical events and the variance of the forecast error will 
increase without bound.. 

The DS class is purely stochastic in nature while the TS class is 
fundamentally deterministic. When one assumes the latter class is 
appropriate one is implicitly bounding uncertainty and greatly restricting the 
relevanfce of the past to the future. Empirical tests may be quite sensitive to 
this distinction. For example, Shiller (1979) finds that the variance of holding 
period returns on long-term bonds is larger than would be consistent with a 
particuiar efficient markets (rational expectations) version of term structure 
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theory if short rates are assumed to be stationary a: q?lnd a fixed mean. They 
are not too large, however, if short-term rates are assumed stationary only 
after differencing. The crucial factor causing the discrepzqcy is that under the 
DS assumption any movement in short rates will have some impact on the 
long-term ex tions embodied in long rates9 but will have very little 
impact under the TS assumption.’ 

The fundamental difference between the two classes of processes can also 
be expressed in terms of the roots of the AR and MA polynnmials. If we 
first-difkrmce the finear TS model the result is 

where &IL== 1) k a constant obtained by evaluating the poivnonkl 4(L) at 
L= 1. Eq. (4) indicates that a unit root will be present in the MA part of 
the ARMA process describing the first differences [( 1 - L)z,J. The simplest 
example would be the case of a linear tr :nd ply random noise (c, = u,). The 
presence of the unit root implies that tire process is not invertible; that is, it 
does not have a convergent autoregressive representation. Recall that the first 
differences of a DS process are both stationary and invertible. 

Correspondingly, when we write the DS in terms of levels we obtain from 
(3 

s(L)(l -L)z,=/?4L= l)+II(L)u,, (9 

which contains a unit root in the AR polynomial. It wouid appear then that 
if a series is generated by a member of the linear TS subclass we should fail 
to reject the hypothesis of a unit MA root in the PaRMA model for its !kt 
difference, and if i,: is generated by a member of the first order DS subclass 
we should fail to reject the hypothesis of a unit AR root in the ARMA model 
for its IevekP 

Unfartunateiy, the standard asymptotic theory developed for stationary 
and invertible ARMA models is not valid for testing t.he hypotheses that 
either polynomial contains a unit root. To get some idea of the problem, 
consider the simplest version of (5) where the null hypothesis is that t, is a 
random walk with drift, 

so p= 1 is the hypothesis we wish to test. The standard expression for the 

‘In B sutiluent pwpr !P&r (1981) finds the vatian= of linearly d&ended stock returns is 
sitnilap-ly CXCX&W if dividennb BID alao as~med to be stationary around a linear trend (both 
vllriables d&ted asld in lo but he does not report the impact of the I’S assumy;tion on the 
results.. 

gPiex-c (1975) discus H technique for distinguishing between deterministic anA stochastrc 
non-stationarity by inspeccxtion of snmpk autocorrelation TuncGons. 
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large sample variance of the least square estimator $ is [(I -p2)/7’l which 
would be zero under the null hypothesis. The true variance of course is not 
zero; the problem is that the conventional asymptotic theory is inappropriate 
in this case. Dickey (1976) and Ful!er (1976) develop the limiting distribution 
of j! and the conventionally calcuiated least squares t-stztistic, which we 
denote z for the null llzypothesis p= 1, and tabulate the distributions. They 
demonstrate that if p=O then the distribution of b is biased towards zero 
and skewed to the left, that is towards stationarity.’ 

In addition, Dickey and Fuller provide a set of results that allow us to test 
the DS hypothesis against the TS hypothesis as long as we are willing to 
assume that only AR terms are required to obitain satisfactory 
representations. Tile szategy is to embed both hypotheses in a common 
model. The simpleiqt alternatives are a TS process with first order i\R 
deviations and a rarrdom walk (DS procers) with drift which are both special 
cases of 

z, = o!+ pt + *Q/( 1 - c/L), 

or cqu.ivalently, after multiplication by (I- c#L), of 

If the TS hypothesis is correct then 141 c 1. if the DS hypothesis is correct 
then C#J = I and (6) reduces to 

z,=z,- 1 -I-b+u,. 

It would appear then that one would want to run the regression 

z,=p++z~-~+yt+u~ (7) 

and test the null hypothesis y = 1, y q =0 which 1s equivalent to $ = 1 in (6). 
Under this null hypori&.- the usual t-ratios are not t-distributed but Dickey 
and Fuller provide tabuhtions of the distribution of the t-ratio for JJ again 
denoted T, for testing the null hypothesis cl= 1.’ Dickey and Fuller (1979) 

-The proMem of testi-lg for unit roots in MA polynomials is more discouraging. MA 
PI- are only idntified under the restriction that the roots lie on or outside the unit circle; 
therefore’estimates will be bounded away from the unit root. Plosser and Schwert (1977) have 
demonstrated in the In&order MA case that application of r-tests o- likelihood rrttio tests, 
which would be appropriate for null hypotheses within the invertrbrhty region, lead to rcjeclinn 
in the vast majority of ‘instances when the null hypothesis of a unit roct is true. 

‘They do not develop z statistic for the +,t test or for y alone. H %wever, a test on p alone is 
sufficient given that. we do not consider a pr&xss with p” 1 and y #@.a~ part of the ‘model 
spa=. A process with p= 1 and y#O would be one in which’ differences in logs (rates of change) 
followed a deterministic path, implying ever increasing (7~0) or even decreasing (~-CO) rates of 
change. We rule out this kind of behavior in economx time s&z., on a priori grounds. Similarly 
we rule lout quadratic or higher degree time polynomial trends, 



state that the distributions of /; and a) is not .-iffected by whether ~1 is zero 
or not, but T@) would be normal if y #O (the case we have excluded). To 
illustr;ite these properties we have conducted a Monte Car!0 experiment 
which is summarized in table 1. The sample length is 1tX observations with 
!500 on% In I the ting process is a random walk with a 

ro do@ in Case II them is non-zert) drift. As indicated by Dickey and 
u&r, customary testing procedm rejtit the null in favor of stationarity 

far too often in both cases. The distribution of /; is centered around 0.9 
instead of 1.0 in both cases. In :.ddition, it is clear that the t-ratio for testing 
the hypothesis that y=O [denoted t(f)], is biased towards indicating a trend. 
Thus, standard t&kg procedures are strongly biased towards finding 
stationarity around a trend; they tend to reject the hypothesis p= 1 when it 
is true in favor of p-c 1 and “tend to reject the hypothesis y =0 when it is true. 

ReWs of FuRer (1976) allow us to use the distributions of fi xrd r(b) in 
higher order cafe In generai we want to distinguish between a TS process 
with AR component of crder k and a DS procx-s with AR representation of 
order (k- 1). In levels we write the DS model as an AR of order k with one 

Table 1 

Srunpling disttibusbns for tire estimators in regression model (7),1 

:,=~+~z,_,+~r+Ii,, 

CW I: /r=O, p= 1.Q. y=o. 

Case Ila c(“1.0, f”l.0, i’“0. 
-P- - 

Standard Excess Stucientized Percent 
Mefin deviation SLewness Kurtosis range rejections 

.WW PsP-^-PI.-v - 

G&Q? f 

$1 -0*049 --WI7 0x5 1.84 0.879 0.490 -0.615 4.12 13.?1 s.C.7 x.8 
c 0.895 8.064 -1.11 1 K-3 6.15 
;1,1, =‘T” - O.ao 2.26 \ WI63 a013 - 0.237 0.212 0.6SS 2.27 7.4 7.91 I 65.2 

t(3, -0.093 I.84 1).124 - O.BU7 5.08 35.6 
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root on ahe uni: circle. The alternatives are imbedded in the model 

where c +i= 1 and y =0 if the DS hypothesis is true. The terms in lagged Z’S 
can be rearranged in the format 

+-+(--(pJ(zt++: -z,-&+p+yt+jft. Pb 

Fuller (1976, p. 374) shows that if the coefficient of z,- 1 is unity in (9), as it 
would be under the DS hypothesis, then the leasl: squares estimator of that 
coeffxcient has the same large sample distribution as fi in model (7), and 
similarly for its r-ratio.g 

We note that in the Dickey-Fuller procedure the null hypothesis is the DS 
specification while the alternative is the TS specification. As usual, acceptance 
of the null hypothesis is not disproof of the alternative hypothesis. It is 
important therefore to have a check on the power of the test. To provide this 
check we include in our data set a series that on a priori grounds is likely to 
be a member of the TS class (albeit with zero slope) rather than the DS class. 
namely the unemployment rate. 

3. Analysis of U.S. historical data 

We turn now to the analysis of the U.S. historical time series listed in table 
7 which include measures of output, spending, money, prices, and interest ..I 
rates.‘* The data are annual, generally averages for the year, with start’ 
dates from 1860 to 1909 and ending in 1970 in all cases. All series except 
bond yield are transformed to natural logs. 

Sample autocorrelations of the levels are tabulated in table 2 a 
typically start at around 0.96 at lag one and decay slowly with increasi 
Jag. This is consistent with the behavior of sample autocorrelntions from a 
random walk as indicated by the values calculated from 8 formula due to 
Wichern {1973). One exception to this characterization is the ~nem~l~yrn~nt 
rate which exhibits mare rapid decay as would be expected of a stationary 

‘Dickey and Futler (1981) have recently extended their analysis to likelihood raticl statistics. 
‘*Data cources are as Iollows. GNP setics, industrial production, employment 1929-1970, 

unemployment rate, consumer prices, snd stock prices: &on& %rn Eeoaamic Growth, (1973). 
X1.‘, ~CS, money stock, and bond yield: Historica Statistics of the U.S., Colonid Times to &YQ, 
(1975). Velocity: Friedman and Schwartz (1963) with revisions kindly provided by Anna 
Schwartz. Employment 189@-1928: Lebergott (1964). Data files available from the authors upon 
request.. 
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Table 2 

Sample autocorrelations of the natural logs of annul data. 
-- - -___ 

Sample autocorrelations 

Period 

Random wlrlkb 
Ti b 

Money stock 
vtkcity 
Bond yield 
Common stock pric4zs 

1909-1970 
1909-1970 
f909-fW0 
t 86@-19’90 
1890-1970 
l&9@-1970 
1889-1970 
MO-197Q 
MB-1970 
f9W-1970 
1889-1970 
1869-1970 
19oQ-1970 
1871-1970 

100 0.95 0.90 0.85 0.81 0.76 0.70 

100 0.?6 0.91 0.86 0.82 0.77 0.73 
62 6) 3s 090 0.84 0.79 0.74 0.69 
62 0.95 0.89 0.83 0.77 0.72 0.67 
62 0.95 0.88 0.81 0.75 0.70 0.65 

111 0.97 0.94 0.90 0.87 0.84 0.81 
81 0.96 0.91 0.86 0.81 0.76 0.71 
81 0.75 0.47 0.32 0.17 0.04 -0.01 
82 0.96 0.93 0.89 0.84 0.80 0.76 

111 0.96 0.92 0.87 0.84 0.81 0.77 

:1 
0.96 0.91 0.86 0.82 0.77 0.73 
0.96 0.92 0.88 0.84 0.80 0.75 

82 0.96 009 0.89 0.85 0.81 0.77 
102 0.96 0.92 0.88 0.85 0.81 0.79 
?I 0.84 0.72 0.60 0.52 0.46 0.40 

100 0.96 0.90 0.85 0.79 0.75 0.71 
l 

‘The natural logs of ati the data are used except for the bond yield. T is the sample size md ri 
is the itb order autocorrefation coefficient. The large sample standard error under th: null 
hypothesis of no autocorrelation is T-+ or roughly 0.11 for series of the length considered Ilere. 

Computed by the authors from the ap,woximation due to Wichern (1973). 

series. Satrdple autocorrelations of first differences are presented in tattle 3 
and in each instance are positive and significant at lag one, but in r.lany 

cases are not significant at longer lags. 
One explanation of positive autocorrelation at lag one only is that the 

annual series are constructed by averaging shorter interval observations 
which themselves are generated by a DS process. Working (1960) 
demonstrates this e%xt of time gation on a random walk and shows 
that positive autocorrelation at e approaches -1-0.25 as the number of 

~~rv~tio~s hein egatcd becomes large. Tiao (1972) shows 
that the Working neralizes to the temporal aggregation of any DS 

of serial dependence in the underlying ~U.-XM is 
ion, in this case one year. 
real GNP, nominal GNP, real per capita 

GNP, ~I~~~~yrn~nt, nominal and real wages, and common stock prices 
display positive autocorrelation at lag ore only which is characteristic of 
~rst~~~der MA processes. This representation of the data is inconsiymt with 
the TS model, The only TS process that gives rise to autocorrelation only at 
lag one is the case of serially random deviations around the trend. The value 

e a~~t~c~~r~~ation, however, would be -0.50. To salvage a TS 
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representation for these series we would steed to hypothesize the presence of 
an autoregretive component in the deviations from trend that has a root 
close enough to unity to obscure the effect of diffcrencing on the 
autocorrelation structure. For example, suppose the deviations from trend 
were generated by the ARMA process 

so that the Arst differen= oft, have the representation 

(11) 

The ratio (I- L)l(l - t#tL) has the expansion [ 1 - (1 - +)L - @( 1 - $I)@ - . . . 1, 
which may be difficult to distinguish empirically from unity if t#~ is close to 
one, leaving the ap+arance of a first order MA process (1 - BL) for ((1 
-L&J. 

The GNP deflator, consumer prices, the money stock, and the bond yield, 
exhibit more persistent autocorrelation in first differences. None, however, 
shows evidence of being generated from a process containing MA terms with 
a unit root or AR terms arising from inversion of such an MA term as one 
would expect to find in a TS prooess that has been differenced. The presence 
of strong positive autocorrelation in deviations from trend (or from a. fixed 
mean) may again be the explanation. The conclusion we are pointed toward 
is that if these series do belong to the TS class, then the deviations from 
trend must be sufficiently autocorrelated to make it diffcult to distinguish 
them from the DS class on the basis of sample autocorrdations. 

The evidence against the TS represent? tion from levels and difWences is 
reinfor& by the sample autocorrelations ?f the deviations from fitted trend 
lines printed in table 4, The pattern i.; strikingly similar across series 
(except fat the unemployment rate) startir$ at about 0.9 at lag one and 

ly exponentially, The first two lines in table 4 give the 
ted s~nple autocorrelations for deviations of random walks of 61 and 

obmrvarions from a fitted trend line [l?elson and Kang (1931): and 
the data wlfh a simple form of the DS 
alss show that these results are rather 

lation in first t tiffetencos, s,uch as would be 
present in a tinre a rqated DS pl ocess. 

“Tk ~p~~~x~~&~ t tcci sample autocorrelations are based on the ratios of expeczed 
sample aWmvariances. Simulation cxphmnts by Nels m and Kang (1981) fur 100 
ohmWim~ suapst that tl,c cxoct expected sample autocorrel hns are smaller. At lag me the 
mean sample autmorrelatht was -3.88 instead of 0.91 and at Ia& 6 it was 0 43 instead of QSI. 
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Table 4 

Sample autocorrelatr,lns of the deviations from the time trend. 
_---- - 

Sample autocorrelations 
-- 

Series RXiOd T r1 r2 T3 “4 r5 ?, 

De&ended nandom 
walkb 

Real GNP 
Nominal GNP 
Real per capita GNP 
Industrial production 
Employment 
LJnemployment rate 
GNP dcftator 
Consumer prices 
Wag& 
Real wages 
Money stock 
Velocity 
Bond yield 
Common stock prices 

1909-1970 
1909-1970 
1909-1970 
1860-1970 
1890-1970 
1890-1970 
1889-1970 
1860-1970 
19o(F 1970 
1900-1970 
1889-1970 
1869-1970 
MO-1970 
1871-1970 

101 
61 ‘, 0.85 0.71 

0.91 0.82 
62 0.87 0.66 
62 0.93 0.79 
62 0.87 0.65 

111 0.84 0.67 
81 0.89 0.71 
81 0.75 0.46 
82 0.92 0.81 

111 0.97 0.91 
71 0.93 0.81 
71 0.87 0.69 
82 0.95 0.83 

102 0.91 0.81 
71 0.85 0.73 

100 0.90 0.76 

0.58 t.I.47 0.36 0.27 
0.74 0.66 0.58 0.51 
0.46 0.26 0.19 0.07 
0.65 0.52 0.43 0.05 
0.43 0.24 0.11 0.04 
0.53 0.40 0.30 0.28 
0.55 0.39 0.25 0.17 
0.30 0.15 0.03 -0.01 
(3.67 0.54 0.4,2 0.30 
0.84 0.78 0.71 0.63 
0.67 0.54 0.42 0.31 
0.52 0.38 0.26 0.19 
0.69 0.53 0.37 0.21 
0.72 0.65 0.59 0.56 
0.62 0.55 0.49 0.43 
0.64 0.53 3.46 0.43 

_------ .- 

“The data are residuis from linear least squares regression of the logs of the se+s (except the 
bond yield) on time. See footnote for tiole 3. 

bApproximate expected sample autocorrelations based UII Nelson and Kang (1981). 

To carry out the formal tests of Dickey and Fuller we must estimate 
regressions of the iorm o: eq. (9) which may be rewritten as 

To s@y the marSmum lag k we consider both the values that would be 
suggested by the .:autocorrelations of first diffcences ard by the partial 
zutccorrela.tions of the deviations from trend, ,In cases where MA models fol 
Yist differences seem appropriate we fit AR approximations. In general the 
latter procedure indicates higher order Gtnregressions and our rule is to 
utilize the higher order models on the grounds that leaving out relevant 
terms might bias our results but inclusion of irrelevant onc;s would onfy 
reduce efficiency. l 2 

The results of th#zse regressions are reported in table 5. Recall that we are 
interested in testin;g whether pi differs from unity. The values of fi range 

‘*We do not report. the sample partial autocorrelations of the deviations from trend. 
However, the pattern is very similar across almost .all of the se&s; a sharp cut-off &et lag two 
where there is negatiie and gezkrglly si~&itiiit’ ,p8Ftial.‘aiitdcu~lation, ,TItiyse eh@racteristics 
suggest second-order AR representations with comfjlex rootri, %d th&ef&e I’ pseudoperiiidic 
behavior in the trend deviatious, again a property of de&ended randum walks melson and 
Yang (1981)-j. 
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from a low of 0.706 for the unemployment rate to a high of 1.03 for the bond 
yield. The majority of the estimates fall in the range 0.85 to 0.95 which is 
quite consistent with the mean of 0.900 and standard deviation of 0.054 
reported in table 1 for realizations of a random walk. Also of interest is that 
all but two of the t-statistics for the hypothesis p1 = 1 [i.e., @)] are 
significant by conven’tional standards. However, we know from the sampling 
experiments in table 1 that z(fiJ has a mean of about - 2.2 ~=ier the null 
hypothesis that pz iis unity. Using the distributions tabuated by Fuller 
(1976), only the uuemgloyment rate exhibits ~“r value of z(b) below tkre 0.05 
critical value of - 3.45 for samples sizes of 100. In this case, fi is also smaller 
than the 0.05 critical value given by Fuller. Moreover, there is no evidence 
from this regression that the slope is non-zero and we conclude that the 
series is well described as a stationary process. 

Ta sum up, the evidence we have presented is consistent with the DS 
representation of non-stationaruty in economic time series, l 3 We recognize 
that none of the tests presented, formal and informal, can have power 

against a TS alternative with an _AR root arbitrarily close to unity. However, 
if we are observing stationary deviations from linear trends in these series 
then the tendency to return to the trend line must be so weak as to avoid 
detection Izven in samples as long as sixty years to over a century. 

4. Stodstic representations of the secular component 

Our tests in section 3 suggest that economic time series do no: _ - a’nim %“I ,r.r&a.r 

detemlinistic time trends but contain stochastic trends characteristic of the 
DS class of processes. To investigate the implications of this finding it is 
useful to focus on the behavior of output. Pursuing the decomposition 
discussed earlier we assume that actual jutput (presumably logged) can be 
viewed as the sum of a srcular or growth component, Jli, and a cyclical 
component, c,. If the cyclical tzomponent is assumed to be transitory 
{stationary), then any underlying non-stationarity in output must be 
attributable to the secula;* component. Thus, if actual output can be viewed 

’ 3Tbe contrasting implications of the TS and IX models for long-run uncertainty can 
illustrated by real per capita GNP. &,der the TS hypothesis, uncertainty about future V&.W 1s 
founded by the marginal standard deviation of fluctuations around a linear trend which is 
estimated to be 0.133 (in natural logs) over the sample period. According to the DS model for 
this series, however, the standard deviation of forecast errors is given by SD[e,(k)] = O.O62[1+ 
-1)1.7ilJ*, where e#) denotes the forecast error for k years in tke future. This standar 
deviation exceeds 0.133 for any more than four years in the future and obviously grows without 
bound but at .a decreasing rate. Taking intt, accotni an estimated mean growth rate of 
the lower point of a 95:/, confidence intetvs.1 reaches its minimum when the forecast hori 
24 yearb. At a horizon of 24 years the standard deviation is 0.39 compared with amam 
mean qowth of 0.38. Thus the possibility that ,ictuar real per ~a~t~~ ~v~ul~~ not only show no 
increase 24 years hence but decline by abo 3: 
interval. 

33:‘s from its torrent lever is act exclu 
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as belonging to the DS class, then so must the secular component. This 
decomposition of output can be expressed as 

(33) 

where Y; = (1 -. L)- ‘@(Z&I, or (I- L)$ = f$!Ju,, and c, = I,&!&, . The (possibly 
infinite order) polynomials e(L) and I&L) are assumed to satisfy the 
conditions for statior.arity and invertibility and ur and U, are mean zero 
serially uncorrelated random variables. Eq. (13) assigns the non-stationarity 
of y to y’ through the factor (t --Q-l. (Also note that we are ignoring any 
drift in y for convenience.) Separation of the secular component from 
observed data may be thought of as a problem in signal extraction when 
only information in the otJ;erved series itself is used, or it may be cast as a 
regression problem w&n determinants of the growth process are regarded as 
known and observable. 

4.1. Regression srrat&es 

Perhaps the ideaf nethod of dealing with non-stationarity in output (i.e., 
growth or secular n I ,ements) is to include the variables in a regression that 
would account fb& such behavior. For example, Perloff and Wachter ( 1979) 
among many others, fir real GNP to labor, capital, and energy as inputs in a 
translog production function and represent technological change as a time 
trend. The first-order autocorrelation coefficient of the residuals, however, is 
reported to be 0.881, roughly the value expected from regression of a random 
walk on time given the number of observations in question. It would seem 
then that measured input and time trend variables may not adequately 
account for the growth component in real GNP.r4 Another regression 
strategy is to work in per capita values under the assumption that 
population is the primary source of non-stationarity. We can reject this 
strat based on our results in section 3 that indicate per capita real GNP 
also s to the DS class. Thus, using observable variables to account r’or 
growth components ms unsatisfactory since neither factor inputs nor 
p~pul~t~~n seem to 8 and direct measures of teshnology are not readily 
available. L s 

ert (IWO) ~~~~~~~ this issue and others that mult be cmsidered when 
N&I 89 those cstimttxl by PerloB lrnd Wachter (1Y Pl). 

the iX nature of technological change is evident in the c:arly empirical 
of technolagy calculated by Solow (1957) for the period 1909-1949 

(19Sg The Ilog of Solow’s A(t) variable exhibits Me a~tocorrelation in 
8.8) and $ and it8 r-ratio for regression (12) are k$ th close to their 

expected v&es. under the: F~~i~~~~~~~~~ ciistribution, s~l~e~tin~ that the stock 0”’ tecbnoiogy is 
well ch~r~cte~~~~d as a r~~~~r 
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4.2. Signal extraction and an unobseruable components model of output 

Signal extraction procedures imply, or are implied by, some model of the 
underlying compozent structure of the series. Therefore, it seems that prior 
to adoption of an unobserved components model, it should be investigated 
for consistency with the data, or, perhaps preferably, an attempt should be 
made to identify a class of models from the observed sample auto- 
correlations. 

The classic example of signal extraction in economics is the permanent 
income model of Friedman (195’7). I6 One version measures permanent 
income as an exponentially weighted average of past observed incomes. 
Muth (1968) shows that an optimal estimate of permanent income has that 
form if permanent income follows a random walk and transitory income is 
serially random and independent of changes in permanent income. The 
Friedman/Muth permanent income model may be written as a special case of 
ii23 with B(L)=$(L)= 1 

Yt=fi+% %=fi-, +o,, 

where Y; is now the permanent component, 
with innovations u,, and u, is the transitory 

(14) 

generated by a random walk 
component, a purely random 

series that is independent of 0,. The first differences are the stationary process 

(.1-~)Y,=~,+w-~,-l, W) 

illustrating the general fact that differencing does not ‘remove the trend’ since 
;he innovation ;:I the permanent component, u,, is part of ;he first diflfcrenee. 
The first differences are autocorrelated at lag one only with coefficient 

Pl = - a,2/(a,2 + 2c+), W) 

which is confined to the range -0.05 r;pl SO and depends on the relative 
variances of u and U. Apparently, this model cannot account for tie positive 
autocorrelation at lag one only observed in the first difference of the 
historical series studied in section 3. 

In general, if an unobserved components version of (13) is restricted I( 
priori by assuming that (i) y; is a random walk [i.e., 8(L)= 13 and (ii) 11, and u, 
are independent, then the parameters of tire unobserved components model 
will be identified. This is clearly the case for the: permanant income model 

‘?For a genera1 discirssion of signal extraction in wonamic time setiias SC* Piano 11978) and 
Me&we, @ether, and Carvalho j1979). SOW reeerlt examples of ignat cxtrwtio y techniques 
applied to unobserved componects models are Beveridge and Nelson (1S1) rtard Wedrick rend 
Prescott (1980). 
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since at is computable from the autocovariance of the first differences at lag 
one [the numerator of (1611 and CF~ from the variance of the first differences 
[the denominator of (16)] and the computed value of at. If the cyclical or 
stationary component of (13) has the MA representation $@)u, and is of 
order q, then the first diBerence will be 

witb non-zero autocovariances through lag (q c 1). The value of (q + I) can in 
principle be %ferred from a realization of y. There are then (q-t 2) parameters 
to solved For from the (q-f- 2) autocovariance relations implied by (17), 
using values for the autocovariances computed from the data.” 

Ii is clear from our discussion, however, that a decomposition satisfying 
both the above restrictions is not always feasible. The simplest example is a 
process with positive autocorrelation in first differences at lag one only. Eq. 
(17) implies that the Friedman/Muth model is the only linear model that 
satisfies both restrictions and leads to non-zero autocorrelation at lag one 
only. However, it is unable to account for positive autocorrelation at lag one 
only. To do so we must relax either the assumption that jj is a random walk 
(i.e., containing no transitory, only permanent movements) or the assumption 
that tb and u are independent. In general, if either of these assumptions is 
relaxed the parameters of the unobserved compnPc;?ts model are not 
identified. 

Nevertheless, the assumption that the cyclical component is stationary 
combined with the observation that autocorrelations in the first difirences of 
output are positive at lag one and zero elsewhere are sufficient to ‘rnpl/ that the 
variation in actual output changes is dominated by changes 111 secular 
component j& rather than the cyclical component c,. 

The above proposition can be demonstrated by considering first differences 
of (13) 

of first-order autocorrelation only in (I- L)y, implies (barrin: 
relations) that 8(L) is first-order and e(L) is zero. order so that 

we can wrile 

17 ~~~~rn~n~ i to the caw where the stationary comyorcent includes AR 
tams sixw they may the autacsvariances of the first difference;; for !a$s greater 
than (q-+ 1) using ~ul~~~W~l~e~ equations. We note, however, that we do not have a formal 
proof that the nun-linear autcxovariarnce ec;uations will always have a solution or unique 
soMicra in tekms of inviable values af the +‘s_ 
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with ItI1 < 1 being required by invertibility. While ut and vt may be 
contemporaneously correlated, lagged cross-correlations would imply higher 
than first-order autocorrelation in (1 -LJy, and therefore are ruled out. The 
au,ltocovariance of output changes at lag one is therefore 

y*=ea,2-(i--e)u ;-u;, 

where oUV is the contemporaneous covariance between u and D, Note that y1 
consists of the autocovariance of the change in the secular component, j, at 

lag Q39, I%:, the sum of the cross-covariances at iag one, --(l -6)~,, , and 
the zctncovariance of the char,,:: is the cyclical component, c, at lag one, 
- 0,2, which is necessarily negative. The faGlors that would account for the 
positive value of yt we observe ~xt: therefore (1) a positive value of 8 (positive 
autocorrelation in first differences of the secular component) combined with a 
suffrcientky large value of ai, and/or (2) a sufficiently large negative value of 
the covariiance 6,” which also puts a lower bound on a: due to the farnihar 
inequality oUgU2 la,,l. We now prove that if y1 >O then 0: >c:. 

Since the value of 0,” is unknown, consider first the case @,,&O. For y1 ~0 
and g,,z 0, eq. (20) implies that 6 > 0, i.e., thz secular component must be 
positively autocorrelated. Given this, eq. (20) also implies 

using the fact t.hat 0x8 < 1. The other possible case is rrUv ~0. Using the fact 
that c,c,~ ~u,,~I, we have 

Factoring the first expression yields 

and hence both factors must be positrve or negative. If they are both posittve 
then the second factor gives us cr, > CT,. Note that there is nothing in this case 
to prevent Q from being negative since if the first factor is positive we have 
only that 18~ -(a&J. If both factors are negative then the first factor would 
imply 84 but also that g,> -Q%, > g, (again using the fact that 
0~: fk I), however, the second facictor would imply tr, CC,‘ thus leading to ;% 
contradiction that rules out negative factors. We conclude therefore that the 
standard deviation of innovations in the secular or growth component is 
larger than the standard deviation of innovations in the cyclical component. 

‘We cari now use these results to obtain a plausible range of values of ~,,/pr, 
~Cuder alternative assumptions. Consider first the case q,,=O, so that the 
growth and cyclical components are uncorklated. From (119) and (20) it is 
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easy to show that 

Our enqMcal results give us a reIevant range of values for p, and we know 
that 0414 when Q, =O* Computed values of the ratio of the standard 
deviations are given in the following table: 

Values of cr,,b, for various values of p, and B when Q, = 0. 

Pl 0.3 0.5 0.6 0.8 
-- 

2s 1.8 1.6 
- 3.6 z9 ::: 
- 3u 5.7 3.5 

The blanks in the table are due to tl ?: fact that p1 cannot be larger than 
0/( 1+ 0’) regardless of how large we ma!;e a,“/&. The values in the table suggest 
that the standard deviation of innovatons in the non-stationary component 
may be several times larger than the stimdard deviation of innovations in the 
cyclical compone&. * 

Now consider the case where the secular or non-stationary component is a 
strict random walk, so that 0= 0. The value of p1 is then given bY 

where p,,,, is the contemporaneous correlation between u and v. To account 
for positive vialues of pr, pro must be negative, in fact pyu < --(a,/aJ- l-c 0. 

random walk assumption on y” implies either strong 
n u and u, or a large variance ratio, or both. This 

the values of puv and (CT&,) consistent with observed vaiues 
in the followin 

P! - 0.2 - 0.6 -0.9 

0.0 5.0 1.7 1.1 
0.1 - 4.4 1.2 
0.3 __.” -- 1.0 
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The Manks, in&ate values of pI and put, that are inconsistent with any Q,/c,. 
It is nnteresting to note that the magnitude of c,,/c, implied by assuming 

C,.‘ ==O 0~ fp=O are similar. 
‘P he above results are dependent on the stochastic structure of output 

being a first-order MA process with positive autlocorrelation at lag one. As 
I-nentioned in section 3, the positive autocorrelation could be attributed 
entirely to temporal aggregation. If this is the case then our inferences about 
a,/~, are distorted since it is well-known that time aggregatian amplifies low 
frequency (i.e., long-run) movements relative to high frequency (i.e., short-run) 
movements. However, we are somewhat. reluctant to accept this 
interpretation of the results since it implies that the short-run or c;fclical 
variability we are reducing through aggregation is variation that is dissipated 
within the aggregation interval of a year [see Tiao (f9’72)]. Another way of 
making this point is to say that by looking at annual data, we can make no 
inference regarding the variance of components whose memory (or life) is less 
than a year. We do not believe, however, this is a significant disadvantage of 
the annual time interval since most economists probably identify business 
cycles (transitory components) with periods that are longer than a year.la 

It is instructive to contrast our analysis to the signal extraction strategy 
proposed by Hodrick and Prescott (1980). Hodrick and Prescott decompose 
observed variables into growth and cyclical components under the 
maintained hypothesis that the growth component moves smoothly through 
time. The standard deviation of innovations in the growth component is 
assumed to be very small relative to the standard deviation of innovations in 
the cyclical component (specifically 1/4Oth). Optimal estimates are chosen 
through a criterion function that penalizes variance in the second differences 
of the growth component ar: well as variance in the cycle. A linear time trend 
emerges as a limiting case. 

The Hodrick and Prescott strategy implicitly imposes a components 
model on the data without investigating what restrictions are implied (a 
difficult task in their model) and whether those restrictions are consistent 
with the data. Our strategy, on the other hand., is to use the data as an aid 
in identifying certtin characteristics of an appropriate components model. 
Our results suggest that the ratio of the standard deviations of growth to 
cyclical innovations has a minimum in the neijghborhood of one with likely 
values up 110 five or six rather than the value of 1/4Oth assumed by Hodrick 
and Prescott. 

‘*Although we have not ~;arriti out In analysis using quarterly data, our experience with such 
data suggests tl1if.t our conclusions are not likely to be sensitive to the interval of observation. In 
other words, the autocoSret3tion structure of the quarterly data are not much different from that 
observed in the z.nnual <‘at 1. 
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5. Some implicatiorrs for busi- cy& theorizing 

The analysis of unobserved components models leads us to the inferegce 
that if (a) output is the sum of a non-stationary component of the DS class 
and a stationary (transitory) component, and (b) we observe non-negative 
autocorrelation at lag one only in the first differences of output then (i) the 
variance of the innovations in the non-stationary component must be as 

large or larger than that of the purely stationa* y or transitory component, 
and (ii) either the non-stationary component contains significant transitory 
comnonents (i.e., it is nut a random walk) or, if the non-stationary 
component is assumed to be a random walk, the innovations in the random 
walk are correlated with the transitr.;y componznt. 

These inferences have potentially important implications for business cycle 
research. For example, most of the recent developments in business cycle 
theo, y stress the importance of monetary disturbances as a source of output 
fiuctuations.” However, the disturbances are generally assumed to have only 
transitory impact (i.e., monetary disturbances have no permanent real 
effects).20 Therefore, the inference that the innovations in the non-stationary 
component have a larger variance than the innovations in a transitory 
component implies that real (non-monetary) disturbances are likely to be a 
much more important scurce of output fluctuations than monetary 
disturbances.2 l This co;lclusion is further strengthened if monetary 
disturbances are viewed as only one of several sources of cyclical 
disturbances. In addition, while we have focused on real GNP, we believe the 
fact that other real variables such as real per capita GNP, employment. and 
real wages have similar characteristics provides some corroborating evidence. 
In fact, by investigating in detail severa! series jointly one might be able 
to get a more complete picture of thz relative sizes of iatious 
shocks.22 Several additional points are worth noting. First there is nothing 
in theory or in our empirical resulis that implies that the unobscived 
components model of (13) is economically meaningful. For example, we 
cannot reject the hypothesis that actual output contains only one non- 
stationary component (Le., a, 2 =Q) and thus observed autocorrelation simply 
reflects aut~correltitie~~ in movements in a stochastic growth component. 
Indeed, a stochastic growth process that contains both permanent and 

“For example, s tha m&& of Luccrst (1975) and Barre (1976). 
EaWe are Qnsring in this discussion the potential permanent effects of inflation in the models 

described by fabin (1963, Stockman (1982), and others. 
“‘As noted near the end of section 3, given the observed behavior of output, this result holds 

even if monetary disturbances and real (non-stationary) disturbances are correlated (perhaps 
through policy reaponae). 

22For example one might be able to use 7 known decomposition of output to in turn 
decompose the unern~i~~yrnent rate into ‘natural’ and ‘cyclical’ movements in the unemployment 
rate. Such an effort. however, would probably requi:; more stri;:ture to the problem that we 
have used here. 
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transitory characteristics can arise in the models developed by Long and 
Plosser (1980) and Kydland and Prescott (198 1). In these models, dynamic 
competitive equilibrium is capable of generating fluctuations in a ‘natural 
rate of output’ that, in many ways, mimics the behavior of observed 
output. 

Second, we also cannot prove empirically that cyclical fluctuations are 
stationary. ‘rhe sta.tionarity of this component is als,o an assumption, blA one 
we believe most economists would accept. Nevertheless, the bjrpothesss that 
the business cycle is a stochastic process of the DS class is not refutable from 
the empirical evidence. The general point is that some unobserved 
components representations are rejected by the data, but the data by itself 
cannot reveal the arue structure. 

6. Summary and condadons 

In this paPa Eve try to distinguish between two alternative hypotheses 
concerning the nature of nnn-stationarity in macroeconomic time series, oix 
is the, widely held view that such series represent stationary fluctuations 
around a detern+nistic trend and the other is that non-stationarity arises 
from the accumulation over time of stationary and invertible first differences. 
&r test results are con&tent with the latter hypothesis and would be 
consistent with the former only if the fluctuations around a deterministic 
trend are so highly autocorrelated as to be indistinguibtiable from non- 
stationary series themselves in realizations as long as one hundred years. 

The distinction between the two classes of processes is fundamental and 
acxxptsnce of the purely stochastic view of non-stationarity has broad 
implications for our understanding of the nature of economic phenomena. 
For example, if aggregate output is thought of as consisting of a non- 
staGonary growth component plus a stationary cyclical component, then the 
growth component must itself be a non-stationary stochastic process rather 
than a deterministic trend as has been generally assumed in empirical work. 
Ir,stead of attributing all variation in output changes to the cyclical 
component, the stochastic model aIlows for contributions from variations in 
both components. Therefore, empirica analyses of business cyc!es based on 
residuals from fitted trends lines are likely to confound the two sources of 
variation, greatly overstating the magnitude and duration of the cyclical 
component and understating the importance of the growth component. 
Moreover, to iapose the trend specification is to assume away long-run 
uncertainty in these variables and to remove much of their valriation a priori, 

We also remind the reader that first differencing does not remove a 
stoch&c growth component although it may render the series stationary. 
The first difFerences of the observed series will consist of the sum of the first 
differences of both the secular and cyclical components. While first 
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differences do not exhibit the spurious periodicity of trend residuals neither 
do they discard variation in the secular component; the problem ot’ inferring 
the behavior of each unobserved component from the sum remains. 

Finally, the empirical observation that changes on real output (as well as 
employment and real wages) displays non-negative autocorrelation at lag one 
and zero elsewhere suggests that shocks to the secular or non-stationary 
component account for a substantial portion of the variation observed. 
Assigning a major portion of variance in output to innovations in this non- 
stationary component gives an important role to real factors in output 
fluctuations and places limits on the importance of monetary theories of the 
business cycle. 
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