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This paper investigates whether macroeconomic time series are better characterized as stationary
fluctuations around a deterministic trend or as non-stationary processes that have no “¢ndency
to return to a deterministic path. Using long historical time series for the U.S. we 2.¢ unable to
reject the hypetiisis that these series are non-stationary stochastic procssses with no tendency
to return to a trend line. Based on these findings and an unobserved components model for
output that decomposes fluctuations into a secular or growth component and a cyclical
component we infer that shocks to the former, which we associate with real disturbances,
contribute substantially to the variation in observed output. We conclude that macroeconomic
models that focus on monetary disturbances as a source of purely transitory fluctuations may
never be successful in explaining a large fraction of output variation and that stochastic
variation due to real factors is an essential element of any model of macrceconomic fluctuations.

1. Introduction

It is common practice in macroeconomics to decompose real variables
such as output, and sometimes nominal variables, inio a secular or growth
component and a cyclical component. In the case of output, the secula-
component is viewed as being in the domain of growth theory with real

“factors such as capital accumulation, population growth, and technological
change as the primary determinants. The cyclical component, on the other
hand, is assumed to be transitory (stationary) in nature with monetary and,
‘o a lesser extent, real factors being featured as primary causes. Since cyclical
jluctuations are assumed to dissipate over time, any long-run or permanent
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is entirely ours. Heejoon Kang, Gordon McDonald and Nejat Seyhun assisted in programming
and computation. Nelson’s participation in this research was supported by the National Science
Foundation under grant SOC-7906948 and Plosser’s by the Center for Research in Government
Policy and Business at the University of Rochester.
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movement (non-statiorarity) is necessarily attributed tc¢ the secular
component.

The notion that the secuiar component does not fluctuzte much over
short periods of time, such as a year or a quarter, but rather moves slowly
and smoothly relative to the cyclical component has led to the practice of
‘detrending’ time series by regression on time (or perhaps a polynomial in
time). The residuals are then interpreted as the cyclical component to be
explained by business cycle theory.! YFor example, Bodkin (1969), Lucas
(1973), Barro (1978), Sargem (1978), Taylor (1979), Hall (1980), and Kydland
and Prescott (1980) all implicitly or explicitly regard residuals from fitted
linear or quadratic tims trends as the relevant data for business cycle
analysis.?

Secular movement, however, need not be modeled by a deterministic trend.
For example, the class of integrated stochastic processes exemplified by the
random walk, also exhibit secular movement but do not follow a
deterministic path. If the secular movement in macroeconomic time series is
of a stochastic rather than deterministic nature, then models based on time
trend residuals arc misspecified.?

The types of misspecification that arise from inappropriate detrending can
ve illustrated by considering the properties of residuals from a regression of a
random walk on time. These properties are investigated in recent papers by
Chan, Hayya and Ord (1977) and Nelson and Kang (1981). The
autocorrelation function of the residuals is shown to be a statistical artifact
in the sense that it is determined entirely by sample size and it implies strong
positive autocorrelation at low lags with pseudo-periodic behavior at long
lags.* Empirical investigations of output fluctuations that do not consider the
possible source of this autocorrelation might be led to over-estimate both the
persistence and variance of the business cycle. Conversely, the importance of
real factors that influence the secular component would be under-estimate ?

In this paper we investigate whether macroeconomic times series ar.
consistent with the time trend decomposition usually employed. Section 2
discusses the statistical issues involved in testing for deterministic trends and
section 3 presents the results of formal and informal tests using long
historical time series for the U.S. We are unable to reject the hypothesis that

'Or equivalently, time is included as an explanatory variable.

*Burns and Mitchell (1946), in their pioneering empirical investigation of business cycles, were
concerned with the method of trend removal and went to great lengths to justify their
procedures (sce pp. 37-41, and ch. 7).

3Hall's (1980) use of the time trend model for real GNP is particularly puzzling since in
previous werk [Hall (1978)] he argues that aggregate consumption behaves like a random walk.
Without some rather implausible restrictions on the cther components of GNP, aggregate GN#
wili then include random walk characteristics and linear detrending is likely to be inappropriate.

“It is interesting to note that McCulloch (1975) finds evidence of periodicity in logs of real

income_investrent, and consumption after fitting a linear trend, but does not find periodicity in
their ficst differcnces.
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these series are non-stationary stochastic processes with no tendency to
return to a trend line. The implications of this finding are explored in
sections 4 and 5. Assuming that any stochastic fluctuations in output of a
permanent variety must be associated with secular movements, and thus real
factors, the evidence presented in section 3 leads us to the inference that (i)
real shocks associated with the secular component contribute substantially to
the variation in observed output, and (ii) either these shocks are correlated
with the innovations in the cyclical component or the secular component
contains transitory fluctuations (or both). We conclude that macroeconomic
models that focus on monectary disturbances as a source of purely transitory
(stationary) fluctuations may never be successful in explaining a very large
fraction of output fluctuations and that stochastic variation due to real
factors is an essential element of any model of economic fluctuations. Some
recent efforts in this direction in.lude the equilibrium stochastic growth
models studied by Black (1979), Long and Plosser (1980), King and Plosser
(1981) and Kydland and Prescott (" 981).

2. Statistical background

The basic statistical issue is the appropriate represeutation of non-
stationarity in economic time series. We are primarily concerned with non-
stationarity in the mean of the series. Such behavior implies that the series
lacks a fixed long-term mean, or put positively, has a tendency to move
farther away from any given initial state as time goes on.

We consider two fundamentally diffe.ent classes of non-stationary
processes as alternztive hypotheses. The first class of processes consists of
those that can be uxpressed as a deterministic function of time, called a
trend, plus a stationary stochastic process with mean zero. We refer to these
as trend-stationary ‘TS) processcs. The tendency of economic time series to
exhibit variation that increases in mean and dispersion in proportion to
absolute level motivates the transformation to natural logs and the
assumption that trends are linear in the transformed data. We also assume
that the deviations from trend have a representation as a stationary and
invertible ARMA process. Denoting the natural logs of the series by z, and
the deviations from trend by ¢,, the linear TS class has the form

o=k Bt 4 ¢y,

{1
(L), = O(L)u,; u,~1i.d.(0,¢2),

where o and § are fixed parameters, L is the lag operator, and ¢(L) and 6(L)
are polynomials in L ihat satisfy the conditions for stationarity and
invertibility.

The fundamental leterminism ¢ the process is captured in the properties
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of long-term forecasts and uncertainty around such forecasts. While
autocorrelation in ¢, can be expioited in short-term forecasting, it is clear
that over long horizons the only information about a future z is its mean (x
+ ft). Therefore neither current nor past events will alter long-term
expectations. Further, the long-term forecast error must be ¢ which has
firite variance. Thus uncertainty is bounded, even in the indefinitely distant
future.

The second class of non-stationary process considered in this paper is that
class for which first or higher order differences is a stationary and invertible
ARMA process (DS processes). The counterpart of the linear TS process is
the first-order DS process in natural logs written as

(1- L)Zt=ﬁ+dh
2
(L)d, = ML)u,; u, ~1.i.d.(0, 62),

where (1 —L) is the difference operator and &(L) and A(L) are polynomials
satisfying the stationarity and invertibility conditions. The simplest member
of the class is the random walk for which the changes are serially
uncorrelated, that is d,=u,.

To see the fundamental difference between the TS and DS classes it is
useful to express z, as the value at some reference point in the past, time
zery, plus all subsequent changes,

t
zy=zo+ft+ Y, d,. (3)
=1

Eqgs. (3) and (1} indicate that the two types of processes can be written as a
linear function of time plus the deviation from it. The intercept in (1),
howaver, is a fixed parameter while in (3) it is a function of historical events,
and the deviations from trend in (1) are stationary while in (3) they are
accumulations of stationary changes. The accumulation in (3) is not
stationary but rather its variance increases without bound as ¢ gets large. It
is not difficult to see that the long-term forecast of a DS process will always
be influenced by historical events and the variance of the forecast error will
increase without bound.

The DS class is purely stochastic in nature while the TS class is
fundamentally deterministicc. When one assumes the latter class is
appropriate one is implicitly bounding uncertainty and greatly restricting the
relevance of the past to the future. Empirical tests may be quite sensitive to
this distinction. For example, Shiller (1979) finds that the variance of holding
pericd returns on long-term bonds is larger than would be consistent with a
particuiar efficient markets (rational expectations) version of term structure
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theory if short rates are assumed to be stationary «:ound a fixed mcan. They
are not too large, however, if short-term rates are assumed stationary only
after differencing. The crucial factor causing the discrepancy is that under the
DS assumption any movement in short rates will have some impact on the
long-term expectations embodied in long rates, but will have very little
impact under the TS assumption.’

The fundamental difference between the two classes of processes can also
be expresscd in terms of the roots of the AR and MA polynomials. If we
first-difference the linear TS model the result is

M1 — Lz] = BHL= D +(1 - L(Ljx,, (4)

where ¢(L =1) is a constant obtained by evaluating the pelvnomial ¢(L) at
L=1. Eq. (4) indicates that a unit root will be present in the MA part of
the ARMA process describing the first differences [(1—L)z,]. The simplest
example would be the case of a linear tr:nd plus random noise (¢,=u,). The
presence of the unit root implies that the process is not invertible; that is, it
does not have a convergent autoregressive representation. Recall that the first
differences of a DS process are both stationary and invertible.
Correspondingly, when we write the DS in terms of levels we obtain from
Pl
O(LX1 L)z, =B L= 1)+ AL)u,, )

which contains a unit root in the AR polynomial. It wouid appear then that
if a series is generated by a member of the linear TS subclass we should fail
to reject the hypothesis of a unit MA root in the ARMA model for its firt
difference, and if i! is generated by a member of the first order DS subclass
we should fail to reject the hypothesis of a unit AR root in the ARMA model
for its levels.®

Unfortunately, the standard asymptotic theory developed for stationary
and invertible ARMA models is not valid for testing the hypotheses that
either polynomial contains a unit root. To get some idea of the problem,
consider the simplest version of (5) where the null hypothesis is that z, is a
random walk with drift,

Zt@ﬁpz,wl‘*“ﬁ“““,,

s0 p=1 is the hypothesis we wish to test. The standard expression for the

In a subsequent paper Shiller (1981) finds the variance of linearly cett endec} stock reiurns is
similarly excessive if dividends are also assumed tc be stationary around a linear tg-end (both
variables deflated and in logs), but he does not report the impact of the TS assumgtion on the
results.

6pierce (1975) discusses a technique for distinguishing between deierministic and stochastic
non-stationarity by inspection of sample autocorretation functions.
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large sample variance of the least square estimator g is [(1 —p?)/T] which
would be zero under the null hypothesis. The true variance of course is not
zero; the problem is that the conventional asymptotic theory is inappropriate
in this case. Dickey (1976) and Fuller (1976) develop the limiting distribution
of p and the conventionally calcuiated least squares t-stitistic, which we
denote t for the null hypothesis p=1, and tabulate the distributions. They
demonstrate that if =0 then the distribution of g is biased towards zero
and skewed to the left, that is towards stationarity.’

In addition, Dickey and Fuller provide a set of results that allow us to test
the DS hypothesis against the TS hypothesis as long as we are willing to
assume that only AR terms are required to obtain satisfactory
representations. The sirategy is to embed both hypotheses in a common
model. The simplest alternatives are a TS process with first order AR
deviations and a random walk (DS process) with drift which are both special
cases of

zp=0+ft+-,/(1—@L),
or ¢quivalently, after multiplication by (1 —¢L), of
z,=¢z,_ +[o(1 - @)+ ¢f1+ B(1 — Pt + u,. (6)

If the TS hypothesis is correct then |¢|< 1. if the DS hypothesis is correct
then ¢ =1 and (6) reduces to

=21 +f+u,.
It would appear then that one would want to run the regression
Ze=p+pz,_  +yt+u, M

and test the null hypothesis p=1, y==0 which s equivalent to ¢:==1 in (6).
Under this null hypouiscsi- the usual t-ratios are not ¢-distributed but Dickey
and Fuller provide tabuletions of the distribution of the t-ratio for p, again
denoted 7, for testing the null hypothesis p=1.° Dickey and Fuller (1979)

“The problem of testiag for unit roots in MA polynomials is more discouraging. MA
processes are only id-ntified under the restriction that the roots lie on or outside the unit circle;
therefore estimates will be bounded away ficra the unit root. Plosser and Schwert (1977) have
demonstrated in the iirst-order MA case that application of r-tests o- likelihood ratio 12sts,
which would be appropriate for null hypotheses within the invertibility region, lead to rejection
in the vast majority of instances when the null hypothesis of a unit roct is true.

*They do not develop = statistic for the jouwt test or for y alone. H wever, a test on p alone is
sufficient given that. we ‘do- not consider a process with p=1 and y#0 as part of the model
spuce. A process with p=1 and y+#0 would be one in which differences in logs (rates of change)
followed a deterministic path, implying ever increasing (y>0) or even decreasing {y<0) rates of
change. We rule out this kind of behavior in economic time sesic. on a priori grounds. Similarly
we rule out quadratic or higher degree time polynomial trends.
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state that the distributions of § and () is not affected by whether x is zero
or not, but 1(5) would be normal ii y#0 (the case we have excluded). To
illustrate these properties we have conducted a Monte Carl~ experiment
which is summarized in table !. The sample length is 100 observations with
500 replications. In Case I the generating process is a random walk with a
zero drift; in Case II there is non-zero drift. As indicated by Dickey and
Fuller, customary testing procedures reject the null in favor of stationarity
far too often in both cases. The distribution of g is centered around 0.9
instead of 1.0 in both cases. In .ddition, it is clear that the t-ratio for testing
thc hypothesis that y=0 [denoted (7)), is biased towa.ds indicating a trend.
Thus, standard testing procedures are strongly biased towards finding
stationarity around a trend; they tend to reject the hypothesis p=1 when it
is true in favor of p< i and ‘tend to reject the hypothesis y=0 when it is true.

Results of Fuller (1976) allow us to use the distributions of p and 7(p) in
higher order cases. In general we want to distinguish between a TS process
with AR component of crder k and a DS proces with AR representation of
order (k—1). In levels we write the DS model as an AR of oider k with one

Table 1
Sampling distributions for the estimators in regression model (7).
=+ Pz +Pt+ 4,
Case I: n=0, p=10, y=0,
Case Il: p=10, p=10, 7=0.

Standard Excess Stucdentized  Percent
Mean  deviation Slewness Kurtosis range rejections
Case 1
i -=0.007 0.328 0.490 4.12 1M
) - 0.049 1.54 0079 ~0.613 587 32.8
fi 0.895 0.064 =1t 153 6.15
) =226 9863 ~0.237 0.655 741 §5.2
¥ --0.000 0.013 0212 227 791
Hyo) -0.093 1.84 0.134 -0.807 5.08 356
Case 1
11 0.878 0.503 ~(1.390 0.732 670
t(h 4.00 218 -().524 - (1,569 494 1790
B 0.900 0.034 -~(,787 0.493 567
) -« 2.22 (.769 (0.196 0.284 6.58 660
7 0.009 0.054 0.698 0.303 5.49
WP 2.22 0.717 - (.202 0.454 644 650

*The sampling disttibutions are based on 500 replications of a random walk of sample size
100, witi (Case I} and without (Case T} drift. #% and 1() are the ratios of 4 and j to their
respective standard errors and () is the rativ oi (1) to its standard error. The percent
rejections arc compuied based on the frequency tnat [} J2{f)], and |1(;)] a-e greater than 1.9¢.



146 C.R. Nelson and C.1. Plosser, Trends and random walks in macroeconomic time series

root on the uni” circle. The alternatives are imbedded in the model
Zt=¢lzt—l+.“+¢kzt—k+“-’_)"t+u!’ 8

where } ¢;=1 and y=0 if the DS hypothesis is true. The terms in lagged z’s
can be rearranged in the format

NP E .

+- +(""¢kxzt—k+:“Zt—k)+ﬂ+'}’t+”t- )]

Fuller (1976, p. 374) shows that if the coefficient of z,_, is unity in (9), as it
would be under the DS hypothesis, then the least squares estimator of that
coefficient has the same large sample distribution as p in model (7), and
similarly for its t-ratio.’

We note that in the Dickey~Fuller procedure the null hypothesis is the DS
specification while the alternative is the TS specification. As usual, acceptance
of the null hypothesis is not disproof of the alternative hypothesis. It is
important therefore to have a check on the power of the test. To provide this
check we include in our data set a series that on a priori grounds is likeiy to
be a member of the TS class (albeit with zero slope) rather than the DS class,
namely the unemployment rate.

3. Analysis of U.S. historical data

We turn now to the analysis of the U.S. historical time series listed in table
2 which include measures of output, spending, money, prices, and interest
rates.!® The data are annual, generally averages for the year, with starting
dates from 1860 to 1909 and ending in 1970 in all cases. All series except the
bond yield are transformed to natural logs. |

Sample autocorrelations of the levels are tabulated in table 2 and
typically start at around 0.96 at lag one and decay slowly with increasing
lag. This is consistent with the behavior of sample autocorrelations from a
random walk as indicated by the values calcuiated from a formula due to
Wichern (1973). One exception to this characterization is the unemployment
rate which exhibits more rapid decay as would be expected of a stationary

9D1ckey and Fuiler (1981) have recently extended their analysis to likelihood ratio statistics.

%Data cources are as follows, GNP series, industrial production, employment 1929-1970,
unemployment rate, consumer prices, and stock prices: Long Term Economic Growth, {1973).
W gs, money stock, and bond vyield: Historical Statistics of the U.S., Coloniul Times to 1970,
(1975). Velocity: Friedman and Schwartz (1963) with revisions kindly;rpmvided‘ by Anna
Schwartz. Employment 1890--1928: Lebergott (1964). Data files available from the authors upon
request..
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Table 2
Sample autocorrelations of the natural logs of annual data.?

Sample autocorrelations

Series Period T ry ry 3 ry rg re
Random walk® 100 095 090 085 081 076 070
Time aggregated®

random walk 100 ¢ 091 08 08 077 073
Real GNP 1909-1970 62 935 090 084 079 074  0.69
Nomina! GNP 1909-1970 62 095 089 083 077 072 067

Real per capita GNP i909-1970 62 035 08 081 075 070 065
Industrial production 1860-1970 111 097 094 090 087 084 0381

Employment 1890-1970 81 096 091 086 081 076 071
Uinemployment rate 1890-1970 81 075 047 032 017 004 -00t
GNP deflator 1889.-1970 82 0% 093 089 084 080 0.76
Consumer prices 1860-1970 111 096 092 087 084 081 077
Wages 1900-1970 T 09% 091 086 082 077 0.73
Real wages 1900-1970 71 09 092 083 084 080 075
Money stock 1889-1970 82 096 092 089 085 081 0.77
Velocity 1869-1970 102 096 092 088 085 081 079
Bond yield 1906-1970 71 084 072 G660 052 046 040

Common stock prices 1871-1970 100 096 09 085 079 075 07t

"The natural logs of a'l the duta are used except for the bond yield. T is the sample size ind r,
is the ith order autocorrelation coefficient. The large sample standard error under th: null
hypothesis of no autocorrelation is T~ * or roughly 0.11 for series of the length considered here.

*Computed by the authors from the approximation due to Wichern (1973).

series. Sample autocorrelations of first differences are presented in tatle 3
and in cach instance are positive and significant at lag one, but in rany
cases are not significant at longer lags.

One explanation of positive autocorrelation at lag one only is that the
annual series are ccnstructed by averaging shorter interval cbservations
which themselves are generated by a DS process. Working (1960)
demonstrates this effect of time aggregation on a random walk and shows
that positive autocorrelation at lag one approaches +0.25 as the number of
underlying observations being aggregated becomes large. Tiao (1972) shows
that the Working result generalizes to the teniporal aggregation cf any DS
process as long as the span of serial dependence in the underlying proc:ss is
shorter than the interval of aggregation, in this case one year.

The autocorrelation structures of real GNP, nominal GNP, real per capita
GNP, employment, nominal and real wages, and common stock prices
display positive autocorrelation at lag one only which is characteristic of
first-order MA processes. This representation of the data is inconsisient with
the TS model. The only TS process that gives rise to autocorrelation only at
lag one is the case of serially random deviations around the trend. The value
of the lag one autocorrelation, however, would be —0.50. To salvage a TS
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representation for :hese series we would need to hypothesize the presence of
an autoregressive component in the deviations from trend that has a root
close enough to umity to obscure the effect of differencing on the
autocorrelation structure. For example, suppose the deviations from trend
were generated by the ARMA process

(1—-¢L)c,=(1-0L)u, (10)
so that the first difference of z, have the representation

(1-LX1-6L)
(1-¢L)

(1—L)z,=8+ u,. (1

The ratio (1 —L)/(1 —¢L) has the expansion [1—(1- ¢)L—d(1—-p)i?—-...],
which may be difficult to distinguish empirically from unity if ¢ is close 0
one, leaving the appearance of a first order MA process (1-—-0L) for {(1
—Ljz,}.

The GNP deflator, consumer prices, the money stock, and the bond yield,
exhibit more persistent autocorrelation in first differences. None, however,
shows evidence of being generated from a process containing MA terms with
a unit root or AR terms arising from inversion of such an MA term as one
would expect to find in a TS process that has been differenced. The presence
of strong positive autocorrelation in deviations from trend (or from a fixed
mean) may again be the explanation. The conclusion we are pointed toward
is that if these series do belong to the TS class, then the deviations from
trend must be sufficiently autocorrelated to make it difficult to distinguish
them from the DS class on the basis of sample autocorrelations.

The evidence against the TS represent:tion from levels and differences is
reinforcec. by the sample autocorrelations »f the deviations from fitted trend
lines prescnted in table 4. The pattern i: strikingly similar across series
(except for the unemployment rate) startiry at about 0.9 at lag one and
declining roughly exponentially. The first two lines in table 4 give the
expected saiple autocorrelations for deviaticns of random walks of 61 and
101 observations from a fitted trend line [Melsor and Kang (1981 and
again -uggesi the consistency of the data with a simple form of the DS
hypothesis.!! Nelson and Kang also show that these results are rather
insensitive to inoderate autocorrelation in first Jifferences, such as would be
present in a time aggrepated DS process.

"The approximale expected sample autocorrelations are based on the ratios of expecied
sample autocovariances. Simaulation experiments by Nelso»n and Kang (1981) for 100
observations suggest that th.c exact expected sample autocorrel itions arc smaller. At lag one the
mean sample autocorrelation: was 0.88 instead of 0.91 and at lag 6 it was 043 instead of 0.51.
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Table 4 ,
Sample autocorrelations of the deviations frora the time trend.*

Sample autocorrelations

Series feriod T If r, ry ry Ts re
Detrended random 61: 085 071 058 047 036 0.27
walk® 100~ 051 082 074 066 058 051
Real GNP 1909-1970 62 087 066 046 026 019 007
Nominal GNP 1909-1970 62 093 0.79 065 052 043 005

Real per capita GNP 1909-1970 62 087 065 043 024 01! 004
Industrial production 1860-1970 111 084 067 053 040 030 028

Employment 1890-1970 81 089 071 055 039 025 017
Unemployment rate 18901970 81 075 046 030 015 003 -001
GNP deflator 1889-1970 82 092 081 (€67 054 042 030
Consumer prices 1860-1970 111 097 091 084 078 0.7t 0.63
Wages 1900-1970 71 093 081 067 054 042 031
Real wages 1900-1970 71 087 069 052 038 026 019
Mouey stock 18891970 2 095 083 069 053 037 021
Velocity 1869-1970 10z 091 081 072 065 059 056
Bond yvield 1900-1970 71 085 073 062 055 049 043

Common stock prices 1871-1970 100 09 076 064 053 0246 043

*The data are residuais from linear least squares regression of the logs of the seriss (except the
bond vield) on time. See footnote for tavle 3.
®Approximate expected sample autocorrelations based un Nelson and Kang (1981).

To carry out the formal tests of Dickey and Fuller we must estimate
regressions of the iorm o7 eq. (9) which may be rewritten as

k
z,=u+vt+p1z,~1+j§2p,(z,+1~z,-~j)+u,- (12)

Tc specify the maximum lag k we consider both the values that would be
suggested by the autocorrelations of first differences ard by the partial
autccorrelations of the deviations from trend. In cases where MA models for
first differences seem appropriate we fit AR approxiriations. In general the
latter procedure indicates higher order autoregressions and our rule is to
utilize the higher order models on the grounds that leaving out relevant
terms might bias our results but inclusion of irrelevant onus would only
reduce efficiency.!?

The resuits of thase regressions are reported in table 5. Recall that we are
interssted in testing whether p, differs from unity. The values of j range

12We do not report the sample partial autocorrelations of the deviations from trend.
However, the pattern is very similar across almost all of the series; a sharp cut-off after lag two
where there is negative and generally significant ‘partial autocorrelation, These characteristics
suggest second-order AR re.presentanons with ‘complex ‘roots ‘and therefore” pseudopcnbdlc

behavior in the trend deviations, again a property of detrended random walks [Nelson and
Kang (1981)].
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from a low of 0.706 for the unemployment rate to a high of 1.03 for the bond
yield. The majority of the estimates fall in the range 0.85 to 0.93 which is
quite consistent with the mean of 0.900 and standard deviation of 0.054
reported in table 1 for realizations of a random walk. Also of interest is that
all but two of the t-statistics for the hypothesis p, =1 [ie., t(§)] are
significant by conventional standards. However, we know from the sampling
experiments in table 1 that 7(p,) has a mean of about —2.22 vader the null
hypothesis that p, is unity. Using the distributions tabu’ated by Fuller
(1976), only the unemployment rate exhibits a value of 7(4) below the 0.05
critical value of —3.45 for samples sizes of 100. In this case, g is also smaller
than the 0.05 critical value given by Fuller. Moreover, there is no evidence
from this regression that the slope is non-zero and we conclude that the
series is well described as a stationary process.

To sum up, the evidence we have presented is consistent with the DS
representation of non-stationaruty in economic time series.!®> We recognize
that none of the tests presented, tormal and informal, can have power
against a TS alternative with an AR root arbitrarily close to unity. However,
if we are observing stationary deviations from linear trends in these series
then the tendency to return to the trend line must be so weak as to avoid
detection =ven in samples 2s long as sixty years to over a century.

4. Stochastic representations of the secular component

Our tests in section 3 suggest that economic time series do not cc‘ain
deterministic time trends but contain stochastic trends characteristic of the
DS class of processes. To investigate the implications of this finding it is
useful to focus on the behavior of output. Pursuing the decomposition
discussed earlier we assume that actual sutput (presumably logged) can be
viewed as the sum of a sccular or growth component, y,, and a cyclical
component, ¢, If the cyclical component is assumed to be transitory
{stationary), then any underlying non-stationarity in output must be
attributable to the secular component. Thus, if actual output can be viewed

3The contrasting implications of the TS and D% models for long-run uncertainty can be
illustrated by real per capita GNP. Uider the TS hypothesis, uncertainty about future values is
founded by the marginal standard deviation of fluctuations around a linear trend which is
estimared to be 0.133 (in ratural logs) over the sample period. According to the DS model for
this series, however, the standard deviation of forecast errors is given by SD[e(k)]=0.062[1+(k
—~1)1.711]3, where e(k) denotes the forecast erior for k years in the future. This standard
deviation exceeds 0.133 for any more than four years in the future and obviously grows without
bound but at a decreasing rate. Taking into accouni an estimated mean growth rate of 0.016,
the lower point of a 95% confidencs intervsl reaches its minimum when the forecast horizon is
24 years. At a horizon of 24 years the standard deviation is 0.39 compared with accumulated
mean growth of 0.38. Thus the possibility that actual real per capital would not only show no

increase 24 years hence but decline by abou: 33 from its current level is net excluded in 95%
interval.
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as belonging to the DS class, then so must the secular component. This
decomposition of output can be =xpressed as

=yt
=(1—-L)" IB(L)U,‘F Y(L)u,, (13)

where y,=(1—L) 6L, or (1—L)j,=6(L)y,, and ¢,=y(L)y,. The (possibly
infinite order) polynomials &L) and Y(L) are assumed to satisfy the
conditions for statiorarity and invertibility and v, and u, are mean zero
serially uncorrelated random variables. Eq. (13) assigns the non-stationarity
of y to y through the factor (1—L)~!. (Also note that we are ignoring any
drift in y for convenience) Separation of the sccular component from
observed data may be thousht of as a problem in signal extraction when
only information in the ot.served series itself is used, or it may be cast as a
regression problem waen determinants of the growth process are regarded as
known and observable.

4.1. Regression strat:zies

Perhaps the ideal nethod of dealing with non-stationarity in cutput (ie.,
growth or secular o'+ ‘ements) is to include the variables in a regression that
would account fo. such behavior. For example, Perloff and Wachter (1979),
among many others, {it real GNP to labor, capital, and energy as inputs in a
translog production function and represent technological change as a time
trend. The first-order autocorrelation coefficient of the residuals, however, is
reported to be 0.881, roughly the value expected from regression of a random
walk on time given the number of observations in question. It would seem
then that measured input and time trend variables may not adequately
account for the growth component in real GNP.'* Another regression
strategy is to work in per capita values under the assumption that
population is the primary source of non-stationarity. We can veject this
strategy based on our results in section 3 that indicate per capita real GNP
also belongs to the DS class. Thus, using observable variables to account ior
growth components seems unsatisfactory since neither factor inputs nor
population seem to suffice and direct measures of technology are not readily
available.'s

“plosser and Schwert (1979) discuss this issue and others that muzt be considered when
mte w!mg regressions such as those cstimated by Perloff and Wachter (iv/9).
137t is interesting that the DS nature of technological change is eviden! in the carly empirical
estimates of the implied stock of technology calculated by Solow (1957) fer the period 1909-1949
as corrected by Hogan (1958). The log of Solow’s A(t) variable exhibits iitile 2uiocorrelation in
first differences (Q{12)=8.8) and § and its t-ratio for regression (12) are t.th close to their
expected values under the Fuller/Dickey distribution, suggesting that the stock o technology is
well characterized as a random walk.
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4.2. Signal extraction and an unobservable components model of output

Signal extraction procedures imply, or are implied by, some model of the
underlying comporent structure of the series. Therefore, it seems that prior
to adoption of an unobserved components model, it should be investigated
for consistency with the data, or, perhaps preferably, an attempt should be
made to identify a class of models from the observed sample auto-
correlations.

The classic example of signal extraction in economics is the permanent
income model of Friedman (1957).!1% One version measures permanent
income as an exponentially weighted average of past observed incomes.
Muth (i1960) shows that an optimal estimate of permanent income has that
form if permanent income follows a random walk and transitory income is
serially random and independent of changes in permanent income. The
Friedman/Muth permanent income model may be written as a special case of
(i3Y with H(L)y=y(L)=1

n=y+u, Ve=YVi-1t+0, (14)

where y, is now the permanent component, generated by a random walk
with innovations v,, and u, is the transitory component, a purely random
series that is independent of v,. The first differences are the stationary process

(1-L)y,=v,+u,—u,_y, (15)

illustrating the general fact that differencing does not ‘remove the trend’ since
iie innovatior *» the permanent component, v,, is part of .he first difference.
The first differences are autocorrelated at lag one only with coefficient

py=—0, f(o} +203), (16)

which is confined to the range —0.05<p, <0 and depends on the relative
variances of # and v. Apparently, this model cannot account for tae positive
autocorrelation at lag one only observed in the first difference of the
historical series studied in section 3.

In general, if an unobserved components version of (13) is restricted a
priori by assuining that (i) y, is a random walk [i.e., 9(L)= 1] and (i) v, and u,
are independent, then the parameters of the unobserved components model
will be identified. This is clearly the case for the permancat income model

'®For a general discussion of signal extraction in cconomic time series sce Pierce {1978) and
Nerlove, Grether, and Carvalho (1979). Some recent examples of signal extractio v techniques

applied 1o unobserved components models are Beveridge and Nelson (1481} and Hodrick and
Prescott (1980).
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since o2 is computable from the autocovariance of the firsi differences at lag
one [the numerator of (16)] and ¢ from the variance of the first differences
[the denominator of (16)] and the computed value of 52. If the cyclical or
stationary component of (13) has the MA representation Y(L)u, and is of
order g, then the first difference will be

(t—L)y,=v,+(1 - L}(L)u, (17

with non-zero autocovariances through lag (¢4 1). The value of (g+ 1) can in
principle be inferred from a realization of y. There are then (g+ 2) parameters
to be solved for from the (g-+2) autocovariance relations implied by (17),
using values for the autocovariances computed from the data.'”

I: is clear from our discussion, however, that a decomposition satisfying
both the above restrictions is not always feasible. The simplest example is a
process with positive autocorrelation in first differences at lag one only. Eq.
{17) implies that the Friecdman/Muth model is the only linear model that
satisfies both restrictions and leads to non-zero autocorrelation at lag one
only. However, it is unable to account for positive autocorielation at lag one
only. To do so we must relax either the assumption that y is a random walk
(i.e., containing no transitory, only permanent movements) or the assumption
that v and u are independent. In general, if either of these assumptions is
relaxed the parameters of the unobserved comporeats model are not
identified.

Nevertheless, the assumption that the cyclical comporent is statiornary
combined with the observation that autocorrelations in the first differences of
output are positive at lag one and zero elsewhere are sufficient to imply that the
variation in actual output changes is dominated by changes n secular
component ¥, rather than the cyclical component c,.

The above proposition can be demonstrated by considering first differences
of (13)

(1= L)y, = (Lo, + (1 — L (L)u,. (18)

The presence of first-order autocorrelation only in (1 L)y, implies (barriny
fortuitous cancelations) that 8(L) is first-order and (L) is zero order so that
we can write

(1=L)y,=v,4-0v, ., +u,~t, 4, (19)

17The argument is easily extended to the case where the stationary comporent includes AR
terms since they may be inferred from the autocovariances of the first differences for lags greater
than (g-+1) using Yule-Walker equations. We note, however, that we do not have a formal
proof that the non-linear autocovariance eguations will always have a solution or unigue
solution in terms of invertible values of the ¢’s.
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with |0|<1 being required by invertibility. While u, and v, may be
contemporaneously correlated, lagged cross-correlations wonid imply higher
than first-order autocorrelation in (1—L)y, and therefore are ruled out. The
sutocovariance of output changes at lag one is therefore

’)’1-——90'5—‘(1—-!9)6.3—'0'3', (20)

where ¢, is the contemporaneous covariance between u and v, Note that y,
consists of the autocovariance of the change in the secular compounent, y, at
lag oue, @62, the sum of the cross-covariances at iag one, —(1—60)s,,, and
the nutocovariance of the chan_g is the cyclical component, ¢, at lag one,
—o2, which is necessarily negative. The faciors that would account for the
positive value of y, we observe are therefore (1) a positive value of 0 (positive
autocorrelation in first differences of the secular component) combined with a
sufficiently large value of 62, and/or (2) a sufficiently large negative value of
the covariance s,, which also puts a lower bound on ¢? due to the familiar
inequality ¢,0,2|0,,| We now prove that if y, >0 then ¢ >¢?.

Since the value of g,, is unknown, consider first the case ¢,,20. For y,>0
and 4,,20, eq. (20) implies that 0>0, ie., the secular component must be
positively autocorrelated. Given this, eq. (20) also implies

¢:>0"t62+(0 - 1o,,>aZ,

using the fact that 0 <0< 1. The other possible case is 7,,<0. Using the fact
that 6,0, |0,,l, we have

652 4+(1 —0)o,0,—02 206% —(1 - 0)0,,—02>0.

Factoring the first expression yields
(0o, +0)o,—0,)>0

and hence both factors must be positive or negative. If they are both positive
then the second factor gives us ¢,:>0,. Note that there is nothing in this case
to prevent A from being negative since if the first factor is positive we have
only that 9> —(a,/6,). If both factors are negative then the first factor would
imply 6<0 but also that ¢,>~-0"'¢,>0, (again using the fact that
0<6<1), however, the second factor would imply o, <0, thus leading to a
contradiction that rules out negative factors. We conclude therefore that the
standard deviation of innovations in the secular or growth component is
larger than the standard deviation of innovations in the cyclical component.
We can now use these results to obtain a plausible range of values of #,/0,
1.nder alternative assumptions. Consider first the case 6,,=0, so that the
growth and cyclical components are uncorrelated. From (19) and (20) it is
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easy to show that

_ bg;—ai
o1+ 00l + 202

or

0,/0,=[—(1+2p,)/p,(1+6%—p; 612, 21

Our empirical results give us a relevant range of values for p, and we know
that 0<0@<1 when ¢,,=0. Computed values of the ratio of the standard
deviations are given in the following table:

Values of ¢, /e, for various values of p, and 0 when a,,=0.

0
Il 0.3 0.5 0.6 0.8
0.1 25 18 1.6 14
0.3 _— 36 29 23
04 — X 5.7 35

The blanks in the table are due to tl. fact that p, cannot bte larger than
0/(1 + %) regardless of how large we ma'e 6Z/0?. The values in the table suggest
that the standard deviation of innovat:ons in the non-stationary component
may be several times larger than the st::ndard deviation of innovatioas in the
cyclical componeit. ’

Now consider the case where the secular or non-stationary component is a
strict random walk, so that 8=0. The value of p, is then given by

= —p,,,,—(a,./o’,,)"
P =G o)+ Aaulo)  +2p

where p,, is the contemporaneous correlation between u and v. To account
for positive values of p;, p,, must be negative, in fact p,, < —(6,/0,)" " <O0.
Thus, imposing the random walk assumption on y implies either strong
negative correlation between u and v, or a large variance ratio. or both. This
is borne out by the values of p,, and (s,/0,) consistent with observed values
of p, presented in the following table:

Values of ¢,/a, for various values of p, anc p,,

when 0=0.
Pur
P -0.2 ~0.6 -09
00 50 1.7 1.1
0.1 — 4.5 1.2

0.3 e - 1.8
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The blanks indicate valucs of p, and p,, that are inconsistent with any s,/a,.
It is interesting to note that the magnitude of ¢/, implied by assuming
6, =0 or =0 are similar.

The above results are dependent cn the stochastic structure of output
being a first-order MA process with positive autocorrelation at lag one. As
wmentioned in section 3, the positive autocorrelation could be attributed
entirely to temporal aggregation. If this is the case then our inferences about
6,/o, are distorted since it is well-known that time aggregation amplifies low
frequency (i.e., long-rui) movements relative to high frequency (i.e., short-run)
movements. However, we are somewhat reluctant to accept this
interpretation of the results since it implies that the short-run or cyclical
variability we are reducing through aggregation is variation that is dissipated
within the aggregation interval of a year [see Tiao (1972)]. Another way of
making this point is to say that by looking at annual data, we can make no
inference regarding the variance of components whose memory (or life) is less
than a year. We do not believe, however, this is a significant disadvantage of
the annual time interval since most economists probably identify business
cycles (transitory components) with periods that are longer than a year.'®

It is instructive to contrast our analysis to the signal extraction strategy
proposed by Hodrick and Prescott (1980). Hodrick and Prescott decompose
observed variables into growth and cyclical components under the
maintained hypothesis that the growth component moves smoothly through
time. The standard deviation of innovations in the growth component is
assumed to be very small relative to the standard deviation of innovations in
the cyclical component (specifically 1/40th). Optimal ¢stimates are chosen
through a criterion function that penalizes variance in the second differences
of the growth component ac well as variance in the cycle. A linear time trend
emerges as a limiting case.

The Hodrick and Prescott strategy implicitly imposes a components
model on the data without investigating what restrictions are implied (a
difficult task in their model) and whether those restrictions are consistent
with the data. Qur strategy. on the other hand, is to use the data as an aid
in ideatifying certain characteristics of an appropriate components model.
Our results suggest that the ratio of the standard deviations of growth to
cyclical innovations has a minimum in the neighborhood of one with likely

values up 1o five or six rather than the value of 1/40th assumed by Hodrick
and Prescott.

18Although we have not carried out »n analysis using quarterly data, our experience with such
data suggests that our conclusions are not likely to be sensitive to the interval of observation. In

other words, the autoco.relation structure of the quarterly data are not much different from that
observed in the znnual ¢'at ..
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5. Some implications for business cvcle theorizing

The analysis of unobserved components models leads us to the inference
that if (a) output is the sum of a non-stationary component of the DS class
and a stationary (transitory) component, and (b) we observe non-negative
autocorzelation at lag one only in the first differences of output then (i) the
variance of the innovations in the non-stationary component must be as
large or larger than that of the purely staticna'y or transitory component,
and (i) either the non-stationary component contains significant transitory
components (ie, it is nct a random welk) or, if the non-stationary
comyonent is assumed to be a random walk, the innovations in the random
walk are correlated with the transitc..y component.

These inferences have potentially important implications for business cycle
research. For example, most of the recent developments in business cycle
theo. y stress the importance of monetary disturbances as a source of output
ftuctuations.'® However, the disturbances are generally assumed to have only
transitory impact (ie., monetary disturbances have no permanent real
effects).2® Therefore, the inference that the innovations in the non-stationary
component have a larger variance than the innovations in a transitory
component implies that real (non-monetary) disturbances are likely tc be a
mnuch more important scurce of output fluctuations than monetary
disturbances.?! This coaclusion is further strengthened if monetary
disturbances are viewed as only one of several sources of cyclical
disturbaaces. In addition, while we have focused on real GNP, we believe the
fact that other real variables such as real per capita GNP, employment, and
real wages have similar characteristics provides some corroborating evidence.
In fact, by investigating in detail severa! series jointly one might be able
to get a more compleie picture of the relatve sizes of various
shocks.2? Several additional points are worth noting. First there is nothing
in theory or in our empirical resulis that implies that the unobscived
components model of (13) is economically meaningful. For example, we
cannot reject the hypothesis that actual output contains only one non-
stationary component (i.e., 62=0) and thus observed autocorrelation simply
reflects autocorrelutioin in movements in a stochastic growth component.
Indeed, a stochastic growth process that contains both permanent and

For examp!e, see the models of Lucas (1975) and Barro (1976).

20We are igroring in this discussion the potential permanent effects of inflation in the models
described by Tobin (1965), Stockman (1982), and others.

2t As noted near the end of section 3, given the observed behavior of output, this result holds
even if monetary disturbances and real (non-stationary) disturbances are correlated (perhaps
through policy response).

22For example one might be able to use # known decomposition of output to in turn
decompose the unemployment rate into ‘natural” and ‘cyclical’ movements in the unemployment
rate. Such an effort. however, would probably requir. more structure to the problem that we
have used here.
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transitery characteristics can arise in the models developed by Long and
Plosser (1980) and Kydland and Prescott (1931). In these models, dynamic
competitive equilibrium is capable of generating fluctuations in a ‘natural
rate of output’ that, in many ways, mimics the behavior of observed
output.

Second, we also cannot prove empirically that cyclical fluctuations are
stationary. [he stationarity of this component is also an assumption, bzt one
we believe most economists would accept. Nevertheless, the hypothes:s that
the business cycle is a stochastic process of the DS class is not refutabie from
the empirical evidence. The general point is that some unobserved
components representations are rejected by the data, but the data by itself
cannot reveal the irue structure.

6. Summary and conclosions

In this paper we try to distinguish between two alternative hypotheses
concerning the nature of non-stationarity in macroeconomic time series, o2
is the. widely held view that such series represent stationary fluctuations
around a deterministic trend and the other is that non-stationarity arises
from the accumulation over iime of stationary and invertible first differences.
Cor test resulis are conmcistent with the latter hypothesis and would be
consistent with the former only if the fluctuations around a deterministic
trend are so highly autocorrelated as to be indistinguishable from non-
stationary series themselves in realizations as long as one hundred years.

The distinction between the two classes of processes is fundamental and
acceptance of the purely stochastic view of non-stationarity has broad
implications for our understanding of the nature of economic phenomena.
For example, if aggregate output is thought of as consisting of a non-
stationary growth component plus a stationary cyclical component, then the
growth component must itself be a non-stationary stochastic process rather
than a deterministic trend as has been generaily assumed in empirical work.
Instead of attributing all variation in output changzes to the cyclical
component, the stochastic model allows for contributions from variations in
both components. Therefore, empirical analyses of business cycles based on
residuals from fitted trends lines are likely to confound the iwo sources of
variation, greatly overstating the magnitude and duration of the cyclical
component and understating the importance of the growth component.
Moreover, to impose the trend specification is to assume away long-run
uncertainty in these variables and to remove much of their variation a priori.

We also remind the reader that first differencing does not remove a
stochastic growth component although it may render the series stationary.
The hrst differences of the observed series will cousist of the sum of the first
differences of both the secular and cyclical components. While first
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differences do not exhibit the spurious periodicity of trend residuals neither
do they discard variation in the secular component; the problem of inferring
the behavior of each unobserved component from the sum remains.

Finally, the empirical observation that changes on rcal output (as well as
employment and real wages) displays non-negative: autocorrelation at lag one
and zero elsewhere suggests that shocks to the secular or non-stationary
component account for a substantial portion of the variation observed.
Assigning a major portion of variance in output to innovations in this non-
stationary component gives an important role to real factors in output
fluctuations and places limits on the importance of menetary theories of the
business cycle.
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