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Dynamic linear models2

Dynamic linear models are defined by a pair of equations, called
the observation equation and the evolution or system equation,
respectively given by

Observation equation : yt = F ′tθt + vt , vt ∼ N(0,Vt)

Evolution equation : θt = Gtθt−1 + wt , wt ∼ N(0,Wt)

with θ0 ∼ N(m0,C0) and {yt} is a sequence of observations
through time, conditionally independent given θt and Vt .

I Ft : vector of explanatory variables,

I θt : regression coefficients or state variables at time t,

I Gt : evolution matrix,

I The errors vt and wt are mutually independent.

2Harrison and Stevens (1976), West and Harrison (1997) 2



Dynamic regression

Dynamic regression models are defined by Gt = Id , ∀t.

Observation equation : yt = F ′tθt + vt , vt ∼ N(0,Vt)

Evolution equation : θt = θt−1 + wt , wt ∼ N(0,Wt)

These are also known, for instance in the macro econometrics
literature, as time-varying parameter (TVP) models.

If, in addition, Wt = 0, the standard (heteroskedastic) normal
linear regression model is obtained:

yt = F ′tθt + vt , vt ∼ N(0,Vt).
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First order DLM

The simplest time series model is the first order model, also known
as local level model. It is given by equations

yt = θt + vt , vt ∼ N(0,Vt)

θt = θt−1 + wt , wt ∼ N(0,Wt)

and θt is scalar.

The model can be thought of as a first order Taylor series
approximation of a smooth function representing the time trend of
the series.

This model is useful for stock control, production planning and
financial data analysis. Observational and system variances may
evolve in time, offering great scope for modeling the variability of
the system.
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Second order DLM

The linear growth model is slightly more elaborate by incorporation
of an extra time-varying parameter θ2 representing the growth of
the level of the series:

yt = θ1,t + vt

θ1,t = θ1,t−1 + θ2,t−1 + w1,t

θ2,t = θ2,t−1 + w2,t ,

where vt ∼ N(0,Vt) and wt = (w1,t ,w2,t)
′ ∼ N(0,Wt).

This model can be written in the general form with

F ′t = (1, 0) and Gt =

(
1 1
0 1

)
.
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The choice of Ft and Gt depends on the desired model and the
nature of the series one wishes to describe.

Complete specification of the model requires full description of the
variances Vt and Wt .

In general they are assumed to be constant in time with Vt

typically larger than the entries of Wt in applications.
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Sequential inference

One of the main aspects of a dynamic model is that at any time t,
inference can be based on the updated distribution of θt |y t .

Sequential inference then carries this through time.

There are three basic operations involved here: evolution,
prediction and updating. These operations are presented here in
this order.
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Evolution from p(θt−1|y t−1) to p(θt |y t−1)

Consider that at time t − 1, the updated distribution is

θt−1|y t−1 ∼ N(mt−1,Ct−1).

The system equation can be written as θt |θt−1 ∼ N(Gtθt−1, Wt).

These specifications can be combined and lead to:

θt |y t−1 ∼ N(at ,Rt)

with at = Gtmt−1 and Rt = GtCt−1G
′
t + Wt ;
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One-step-ahead prediction p(yt |y t−1)

One-step-ahead prediction can be made by noting that

p(yt , θt |y t−1) = f (yt |θt)p(θt |y t−1).

Again, the joint distribution of yt , θt |y t−1 can be reconstructed
and lead to the marginal distribution

yt |y t−1 ∼ N(ft ,Qt)

with ft = F ′tat and Qt = F ′tRtFt + Vt is obtained.
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Updated p(θt |y t)
Finally, updating is achieved by the standard Bayes’ theorem
operation of including the observed yt into the set of available
information. The updated posterior distribution is obtained by

p(θt |y t) = p(θt |yt , y t−1) ∝ f (yt |θt) p(θt |y t−1) .

The resulting posterior distribution is

θt |y t ∼ N(mt ,Ct)

with mt = at + Atet and Ct = Rt − AtA
′
tQt , where At = RtFt/Qt

and et = yt − ft .

This result follows the identity C−1t = R−1t + F ′tFt/Vt .

It is sometimes referred to as the Kalman filter.
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Smoothing

After sequentially obtaining the updated distributions of θt |y t for
t = 1, . . . , n (Kalman filter), time orientation is reversed from the
distribution of θn|yn so as to successively obtain the distributions
of θt |yn for t = n − 1, . . . , 1.

It can be shown that

θt |yn ∼ N(mn
t ,C

n
t )

where

mn
t = mt + CtG

′
t+1R

−1
t+1(mn

t+1 − at+1)

Cn
t = Ct − CtG

′
t+1R

−1
t+1(Rt+1 − Cn

t+1)R−1t+1Gt+1Ct .
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Stationary AR(2) model
The stationary AR(2) model ca be written as

yt = φ1yt−1 + φ2yt−2 + εt εt ∼ NID(0, τ2).

Define the state vector θt = (yt , yt−1)′ so the transition equation is(
yt
yt−1

)
=

(
φ1 φ2
1 0

)(
yt−1
yt−2

)
+

(
εt
0

)
and measurement equation

yt = (1, 0)θt + vt .

It is easy to see that

I F ′t = (1, 0) and Gt =

(
φ1 φ2
1 0

)
I vt = 0 and Vt = 0

I wt = (εt , 0)′ and Wt =

(
τ2 0
0 0

)
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DLMs in R

Kalman filte/smoother for ML estimation using DLMs can easily
be implemented in R or Matlab.

We will discuss the use of the dlm package for R.

Model Parameter List Name

F FF

V V

G GG

W W

C0 C0

m0 m0

R code implementing several time series models using the dlm

package will be available on the course website.
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Specifying a DLM with the dlm package3

Function Model

dlm generic DLM
dlmModARMA ARMA process
dlmModPoly nth order polynomial DLM
dlmModReg Linear regression
dlmModSeas Periodic, seasonal factors
dlmModTrig Periodic, trigonometric form

Function Task

dlmFilter Kalman filtering
dlmSmooth Kalman smoothing
dlmForecast Forecasting
dlmLL Likelihood
dlmMLE ML estimation

3This and the next several slides are taken from Sebastian Fossati’s notes.14



Simulating mean-zero AR(1) data

> # simulate AR(1) process

> set.seed(4321)

> yt = arima.sim(n=250,list(ar=0.75,ma=0),sd=0.5)

>

> model = Arima(yt,order=c(1,0,0),include.mean=FALSE)

>

> model

Series: yt

ARIMA(1,0,0) with zero mean

Coefficients:

ar1

0.7101

s.e. 0.0441

sigma^2 estimated as 0.2312: log likelihood=-172.04

AIC=348.09 AICc=348.14 BIC=355.13
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Setting up the DLM

The mean-zero AR(1) process

yt = φyt−1 + εt εt ∼ NID(0, σ2)

can be written in state-space form as

yt = θt

θt = φθt−1 + wt

with
F = 1,V = 0,G = φ and W = σ2

# set up DLM

dlm0 = function(parm){

return(dlm(FF=1,V=0,GG=parm[1],W=parm[2]^2,

m0=0,C0=solve(1-parm[1]^2)*parm[2]^2))

}
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MLE and standard errors
The function dlmMLE may be used to compute the MLEs of the
unknown parameters in the dynamic linear model.

> # estimate DLM

> fit = dlmMLE(y=yt,parm=c(0.5,1.0),build=dlm0,hessian=T)

>

>

> # get estimates

> coef = fit$par

> var = solve(fit$hessian)

>

> # print results

> coef; sqrt(diag(var))

[1] 0.7100796 0.4808688

[1] 0.04409398 0.02150515

>

> # get estimated variance

> coef[2]^2

[1] 0.2312348
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G , W and C0

# print DLM model

> dlm0(fit$par)

$GG

[,1]

[1,] 0.7100796

$W

[,1]

[1,] 0.2312348

$m0

[1] 0

$C0

[,1]

[1,] 0.4663996
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Forecasting with dlmForecast

The function dlmForecast may be used to compute h-step ahead
predictions from the state space model.

> # Forecast next 5 observations using dlmForecast

>

> mod = dlm0(fit$par)

> modf = dlmFilter(yt,mod)

> fore = dlmForecast(modf,nAhead=5,method="plain")

>

> fore$f

Time Series:

Start = 251

End = 255

Frequency = 1

Series 1

[1,] -0.07911367

[2,] -0.05617700

[3,] -0.03989014

[4,] -0.02832518

[5,] -0.02011313
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AR(1) with intercept

The stationary AR(1) model with intercept can be written as

yt − µ = φ(yt−1 − µ) + εt εt ∼ NID(0, σ2)

Define the state vector θt = (µ, yt − µ)′, so the DLM is

yt = (1, 1)θt

θt =

(
µ

yt − µ

)
=

(
1 0
0 φ

)(
µ

yt−1 − µ

)
+

(
0
εt

)
with

F ′ = (1, 1),V = 0,G =

(
1 0
0 φ

)
,W =

(
0 0
0 σ2

)
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Adding determinist terms with dlmModPoly

The function dlmModPoly may be used to incorporate
deterministic terms (mean, time trend, etc.).

For example, dlmModPoly(1,dV,dW) produces

yt = θt + vt

θt = θt−1 + wt

with F = 1, V =dV, G = 1 e W =dW.

Then, to allow for a non-zero mean set dW=0 such that

yt = θt + vt

θt = θt−1(= β)
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Combining dlmModPoly and dlmModARMA

n.obs = 250

yt = 2 + arima.sim(n=n.obs,list(ar=.75,ma=0),sd=.5)

# set parameter restrictions (only variances here)

parm_rest = function(parm){

return( c(parm[1],exp(parm[2])) )

}

# set up DLM

dlm1 = function(parm){

parm = parm_rest(parm)

dlm = dlmModPoly(1,dV=1e-7,dW=c(0)) +

dlmModARMA(ar=parm[1], ma=NULL, sigma2=parm[2])

# set initial state distribution

dlm$C0[2,2] <- solve(1-parm[1]^2)*parm[2]

return(dlm)

}
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Get MLEs and Standard Errors

> # estimate parameters

> fit1 = dlmMLE(y=yt,parm=c(0,0),build=dlm1,hessian=T)

>

> # get parameter estimates of AR(1) part

> coef = parm_rest(fit1$par)

>

> # get standard errors using delta method

> jac = jacobian(func=parm_rest,x=fit1$par)

> var = jac%*%solve(fit1$hessian)%*%t(jac)

>

> # print results

> coef; sqrt(diag(var))

[1] 0.8217966 0.2516931

[1] 0.03704438 0.02255759
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Get MLEs and Standard Errors

The MLE of µ is the first element of mT (i.e., the full sample
filtered value).

> # get parameter estimates (intercept)

> # these are the last filtered values

> mod1 = dlm1(fit1$par)

> mod1filt = dlmFilter(yt,mod1)

>

> # get parameters

> coef = mod1filt$m[n.obs+1]

> covar = dlmSvd2var(mod1filt$U.C[[n.obs+1]],mod1filt$D.C[n.obs+1,])

> coef.se = sqrt(covar[1,1])

> coef; coef.se

[1] 2.061879

[1] 0.1748569
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Displaying DLM

> dlm1(fit1$par)

$GG

[,1] [,2]

[1,] 1 0.0000000

[2,] 0 0.8217966

$W

[,1] [,2]

[1,] 0 0.0000000

[2,] 0 0.2516931
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TVP-CAPM

Consider the time-varying parameter CAPM regression

rt = αt + βtrM,t + εt εt ∼ N(0, σ2)

in the normal dynamic linear model (NDLM) form:

rt = F ′tθt + vt wt ∼ N(0,V )

θt = θt−1 + wt wt ∼ N(0,W )

with F ′t = (1, rM,t), θt = (αt , βt)
′, V = σ2, and W = diag(σ2α, σ

2
β).

Additionally,
θ0 ∼ N(0, κI2),

for large κ.
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S&P500 and IBM
Monthly returns - Jan/62 to Feb/15 - n = 638 obs.
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Time-invariant CAPM

> capm = lm(r~rM)

> summary(capm)

Call:

lm(formula = r ~ rM)

Residuals:

Min 1Q Median 3Q Max

-0.314704 -0.029848 -0.001228 0.030513 0.241841

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.001528 0.002214 0.69 0.49

rM 0.954062 0.050769 18.79 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.05551 on 636 degrees of freedom

Multiple R-squared: 0.357, Adjusted R-squared: 0.356

F-statistic: 353.1 on 1 and 636 DF, p-value: < 2.2e-16
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Time-invariant CAPM
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Set up DLM

> # set up DLM

> dlm2 = function(parm,x.mat){

+ parm = exp(parm)

+ return(dlmModReg(X=x.mat,dV=parm[1],dW=c(parm[2],parm[3])))

+ }

>

> # estimate parameters

> fit2 = dlmMLE(y=r,parm=c(0.1,0.1,0.1),x.mat=rM,build=dlm2,hessian=T)

>

> # get estimates

> se = sqrt(exp(fit2$par))

> se

[1] 5.403817e-02 3.528289e-06 4.628380e-02

30



Smoothed states

# get parameter estimates over time

# these are the smoothed state values

mod2 = dlm2(fit2$par,rM)

mod2f = dlmFilter(r,mod2)

mod2s = dlmSmooth(mod2f)

# plot filtered and smoothed states

ind = seq(1,length(r),length=5)

date = data[ind,1]

pdf(file="capm-filtering-and-smoothing-intercept.pdf",width=8,height=6)

plot(mod2f$m[,1],axes=FALSE,xlab="Week",ylab=expression(alpha[t]),type="l",main="")

axis(2);axis(1,at=ind,lab=date)

lines(mod2s$s[,1],col=2)

abline(h=capm$coef[1],col=3)

dev.off()

pdf(file="capm-filtering-and-smoothing-slope.pdf",width=8,height=6)

plot(mod2f$m[,2],axes=FALSE,xlab="Week",ylab=expression(beta[t]),type="l",main="")

axis(2);axis(1,at=ind,lab=date)

lines(mod2s$s[,2],col=2)

abline(h=capm$coef[2],col=3)

dev.off()
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Filtered and smoothed intercept
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Filtered and smoothed slope
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Free form seasonal factor - dlmModSeas

For a seasonal model with period s, one can consider an
(s − 1)-dimensional state space, with

F ′ = (1, 0, · · · , 0)

and

G =


−1 −1 · · · −1 −1

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


Seasonal dynamic variation: diag(W , 0, . . . , 0).
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Example: Quarterly data with W = 4.2 and V = 3.5
mod = dlmModSeas(frequency=4,dV=3.5,dW=c(4.2,0,0))

> mod

$FF

[,1] [,2] [,3]

[1,] 1 0 0

$V

[,1]

[1,] 3.5

$GG

[,1] [,2] [,3]

[1,] -1 -1 -1

[2,] 1 0 0

[3,] 0 1 0

$W

[,1] [,2] [,3]

[1,] 4.2 0 0

[2,] 0.0 0 0

[3,] 0.0 0 0
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Quarterly UK gas consumption from 1960 to 1986
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Suppose that we want to describe the series, on a logarithmic
scale, by a DLM containing a local linear trend, Tt , and a quarterly
seasonal component, St .
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Free-form seasonality

y = log(UKgas)

dlm3 = dlmModPoly() + dlmModSeas(4)

buildFun = function(x) {

diag(W(dlm3))[2:3] = exp(x[1:2])

V(dlm3) = exp(x[3])

return(dlm3)

}

fit3 = dlmMLE(y,parm=c(0.1,0.1,0.1),build=buildFun)

dlm3 = buildFun(fit3$par)

ySmooth = dlmSmooth(y, mod = dlm3)

x = cbind(y, dropFirst(ySmooth$s[, c(1, 3)]))

colnames(x) = c("Gas", "Trend", "Seasonal")

plot(x, type = "o", main = "UK Gas Consumption")
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Fourier-form seasonality

dlm4 = dlmModPoly() + dlmModTrig(4)

buildFun = function(x) {

diag(W(dlm4))[2:3] = exp(x[1:2])

V(dlm4) = exp(x[3])

return(dlm4)

}

fit4 = dlmMLE(y,parm=c(0.1,0.1,0.1),build=buildFun)

dlm4 = buildFun(fit4$par)

ySmooth = dlmSmooth(y, mod = dlm4)

x = cbind(y, dropFirst(ySmooth$s[, c(1, 3)]))

colnames(x) = c("Gas", "Trend", "Seasonal")

plot(x, type = "o", main = "UK Gas Consumption")
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Free-form seasonality
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Fourier-form seasonality
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