Simple instrumental variables regressions1

Hedibert Freitas Lopes

May 2014

1From Wooldridge (2013, Chapter 15)
Return to education (for women)

Estimating the return (log wages) to education for \(n = 428 \) married working women as

\[
l\text{wage}_i = \beta_0 + \beta_1 \text{educ}_i + u_i.
\]

OLS:

\[
\hat{l\text{wage}}_i = -0.1852 + 0.1086 \text{educ}_i; \quad R^2 = 0.1158.
\]

\([0.1852] \quad (0.0144)\)

95% C.I. for \(\beta_1 \): (0.0798, 0.1374).

Conclusion: Roughly 12% return for another year of education.
Fathers education as an instrument for education

1st requirement: $\text{cov}(\text{fathereduc}, u) = 0$.

2nd requirement: $\text{cov}(\text{fathereduc}, \text{educ}) \neq 0$.

$\hat{\text{educ}}_i = 10.2371 + 0.2694\text{fatheduc}_i \quad R^2 = 0.1706.$

(0.2759) (0.0286)

IV regression:

$\hat{\text{lwage}}_i = 0.441 + 0.059\text{educ}_i \quad R^2 = 0.09.$

(0.446) (0.035)

95% C.I. for $\beta_1 : (-0.011, 0.129)$.

Conclusion: About 6% return to education \Rightarrow omitted ability bias.
Call: lm(formula = lwage ~ educ)

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.1852 0.1852 -1.000 0.318
educ 0.1086 0.0144 7.545 2.76e-13 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.68 on 426 degrees of freedom
Multiple R-squared: 0.1179, Adjusted R-squared: 0.1158
F-statistic: 56.93 on 1 and 426 DF, p-value: 2.761e-13

Call: lm(formula = educ ~ fatheduc)

Residuals: Min 1Q Median 3Q Max
-8.4704 -1.1231 -0.1231 0.9546 5.9546

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.23705 0.27594 37.099 <2e-16 ***
fatheduc 0.26944 0.02859 9.426 <2e-16 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 2.081 on 426 degrees of freedom
Multiple R-squared: 0.1726, Adjusted R-squared: 0.1706
F-statistic: 88.84 on 1 and 426 DF, p-value: < 2.2e-16
Return to education (men)

If the number of siblings is an instrument for education, ie.

\[\text{educ}_i = \beta_0 + \beta_1 \text{sibs}_i + u_i, \]

so

\[\hat{\text{educ}}_i = 14.1388 - 0.2279\text{sibs}_i \]

\[R^2 = 0.05625. \]

Assuming that \(\text{cov}(\text{sibs}, u) = 0 \), then the IV fit is

\[\hat{\text{lwage}}_i = 5.13 + 1.122\text{sibs}_i \]

\[\text{OLS: } \hat{\beta}_1 = 0.0598 \text{ with a standard error of } 0.006 \text{ and } R^2 = 0.096. \]

\textbf{Conjecture:} Maybe more siblings means, on average, less parental attention, which could result in lower ability.
R output

Call:
 lm(formula = lwage ~ educ)

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.973062 0.081374 73.4082 < 2e-16 ***
educ 0.059839 0.005963 10.0437 < 2e-16 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.4003 on 933 degrees of freedom
Multiple R-squared: 0.09742, Adjusted R-squared: 0.09645
F-statistic: 100.7 on 1 and 933 DF, p-value: < 2.2e-16

Call:
 lm(formula = educ ~ sibs)

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.138790 0.113138 124.9596 < 2e-16 ***
sibs -0.227922 0.030281 -7.5277 1.22e-13 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 2.134 on 933 degrees of freedom
Multiple R-squared: 0.05726, Adjusted R-squared: 0.05625
F-statistic: 56.67 on 1 and 933 DF, p-value: 1.215e-13
Graphical summaries
Binary/categorical instrument

Angrist and Krueger (1991) proposed \texttt{frstqrt} (=1 if born in the 1st quarter of the year) as an instrumental variable for education.

\[
\text{cov}(\text{l wage} - \beta_0 - \beta_1 \text{educ}, \text{frstqrt}) = 0 \\
\text{cov}(\text{ability}, \text{frstqrt}) = 0
\]

Compulsory school attendance \implies \text{cov(educ, frstqrt)} \neq 0.

Years of education varies only slightly across quarter of birth. Based on \(n = 247,199 \) they found that

- OLS: \(\hat{\beta}_1 = 0.0801 \) (standard error 0.0004)
- IV: \(\hat{\beta}_1 = 0.0715 \) (0.0219).

\textbf{Headache:} Even a small amount of correlation between z and u can cause serious problems for the IV estimator.
Graphical summaries

- Education (highest grade completed)
- Log weekly wage

- 1st quarter birthday
- 2nd–4th quarter birthday