# Markov chain<sup>1</sup>

- Markov chain
- Stationary distribution
- Ergodicity
- Inefficiency factor and effective sample size
- Centra limit theorem
- Reversible chains

<sup>&</sup>lt;sup>1</sup>Based on Gamerman and Lopes (2007) *Markov Chain Monte Carlo:* Stochastic Simulation for Bayesian Inference, Chapman&Hall/CRC.<sup>Page 1 of 16</sup>

A Markov chain is a stochastic process where given the present state, past and future states are independent, i.e.

$$Pr(\theta^{(n+1)} \in A | \theta^{(n)} = x, \theta^{(n-1)} \in A_{n-1}, \dots, \theta^{(0)} \in A_0)$$

equals

$$Pr(\theta^{(n+1)} \in A | \theta^{(n)} = x)$$

for all sets  $A_0, \ldots, A_{n-1}, A \subset S$  and  $x \in S$ .

When the above equation does not depend on n, the chain is said to be *homogeneous* and a transition function, or kernel P(x, A), can be defined as:

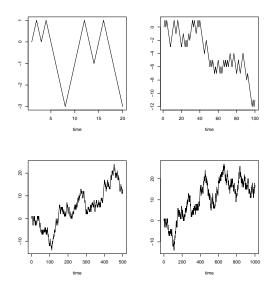
- 1. for all  $x \in S$ ,  $P(x, \cdot)$  is a probability distribution over S;
- 2. for all  $A \subset S$ , the function  $x \mapsto P(x, A)$  can be evaluated.

## Example i. random walk

Consider a particle moving independently left and right on the line with successive displacements from its current position governed by a probability function f over the integers and  $\theta^{(n)}$  representing its position at instant  $n, n \in N$ . Initially,  $\theta^{(0)}$  is distributed according to some distribution  $\pi^{(0)}$ . The positions can be related as

$$\theta^{(n)} = \theta^{(n-1)} + w_n = w_1 + w_2 + \ldots + w_n$$

where the  $w_i$  are independent random variables with probability function f. So,  $\{\theta^{(n)} : n \in N\}$  is a Markov chain in Z. The position of the chain at instant t = n is described probabilistically by the distribution of  $w_1 + \ldots + w_n$ .



 $Pr\{\theta^{(n)} = \theta^{(n-1)} + i\} = 1/2$ , for i = -1, 1 and  $\theta^{(0)} = 0.0$ . Page 4 of 16

#### Discrete state spaces

If S is finite with r elements,  $S = \{x_1, x_2, ..., x_r\}$ , a transition matrix P with (i, j)th element given by  $P(x_i, x_i)$  can be defined as

$$P = \begin{pmatrix} P(x_1, x_1) & \dots & P(x_1, x_r) \\ \vdots & & \vdots \\ P(x_r, x_1) & \dots & P(x_r, x_r) \end{pmatrix}$$

Transition probabilities from state x to state y over m steps, denoted by  $P^m(x, y)$ , is given by the probability of a chain moving from state x to state y in exactly m steps. It can be obtained for  $m \ge 2$  as

$$P^{m}(x, y) = Pr(\theta^{(m)} = y|\theta^{(0)} = x)$$
  
=  $\sum_{x_{1}} \cdots \sum_{x_{m-1}} Pr(y, x_{m-1}, \dots, x_{1}|x)$   
=  $\sum_{x_{1}} \cdots \sum_{x_{m-1}} Pr(y|x_{m-1}) \dots Pr(x_{1}|x)$   
=  $\sum_{x_{1}} \cdots \sum_{x_{m-1}} P(x_{m-1}, y) \cdots P(x, x_{1})$ 

Page 5 of 16

# Chapman-Kolmogorov equations

$$P^{n+m}(x,y) = \sum_{z} Pr(\theta^{(n+m)} = y|\theta^{(n)} = z, \theta^{(0)} = x)$$
$$\times Pr(\theta^{(n)} = z|\theta^{(0)} = x)$$
$$= \sum_{z} P^{n}(x,z)P^{m}(z,y)$$

and (more generally)

$$P^{n+m}=P^nP^m.$$

#### Marginal distributions

Let

$$\pi^{(n)} = (\pi^{(n)}(x_1), \cdots, \pi^{(n)}(x_r))$$

with the initial distribution of the chain when n = 0. Then,

$$\pi^{(n)}(y) = \sum_{x \in S} P^n(x, y) \pi^{(0)}(x)$$

or, in matrix notation,

$$\pi^{(n)} = \pi^{(0)} P^n$$
 Page 6 of 16

Example ii. 2-state Markov chain

Consider  $\{\theta^{(n)}: n \ge 0\}$ , a Markov chain in  $S = \{0, 1\}$  with  $\pi^{(0)}$  given by

$$\pi^{(0)} = (\pi^{(0)}(0), \pi^{(0)}(1))$$

and transition matrix

$$P=\left(\begin{array}{cc}1-p&p\\q&1-q\end{array}\right).$$

It is easy to see that

$$Pr(\theta^{(n)} = 0) = (1 - p)Pr(\theta^{(n-1)} = 0) + qPr(\theta^{(n-1)} = 1)$$
$$= (1 - p - q)^n \pi^{(0)}(0) + q \sum_{k=0}^{n-1} (1 - p - q)^k$$

If p + q > 0,  $Pr(\theta^{(n)} = 0) = \frac{q}{p+q} + (1 - p - q)^n \left(\pi^{(0)}(0) - \frac{q}{p+q}\right)$ If 0 then $<math>\lim_{n \to \infty} Pr(\theta^{(n)} = 0) = \frac{q}{p+q}$  and  $\lim_{n \to \infty} Pr(\theta^{(n)} = 1) = \frac{p}{p+q}$ Page 7 of 16

# Stationary distributions

A fundamental problem for Markov chains is the study of the asymptotic behavior of the chain as the number of iterations  $n \rightarrow \infty$ .

A key concept is that of a *stationary distribution*  $\pi$ . A distribution  $\pi$  is said to be a stationary distribution of a chain with transition probabilities P(x, y) if

$$\sum_{x\in \mathcal{S}}\pi(x)P(x,y)=\pi(y),\quad orall y\in \mathcal{S}$$

or in matrix notation as  $\pi P = \pi$ .

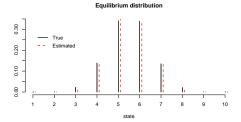
If the marginal distribution at any given step *n* is  $\pi$  then the next step distribution is  $\pi P = \pi$ .

Once the chain reaches a stage where  $\pi$  is its distribution, all subsequent distributions are  $\pi$ .

 $\pi$  is also known as the *equilibrium distribution*.

### Example iii. 10-state Markov chain





Top panel: transition probabilities, Pr(x|y)Bottom panel: equilibrium distribution,  $\pi(x)$ .

Page 9 of 16

# Ergodicity

A chain is said to be geometrically ergodic if  $\exists \lambda \in [0, 1)$ , and a real, integrable function M(x) such that

$$\|P^n(x,\cdot)-\pi(\cdot)\|\leq M(x)\lambda^n$$

for all  $x \in S$ . If M(x) = M, then the ergodicity is uniform.

Uniform ergodicity  $\Rightarrow$  geometric ergodicity  $\Rightarrow$  ergodicity.

The smallest  $\lambda$  satisfying the above condition is called the rate of convergence.

A very large value of M(x) may slow down convergence considerably.

# Ergodic theorem

Once ergodicity of the chain is established, important limiting theorems can be stated. The first and most important one is the ergodic theorem.

The ergodic average of a real-valued function  $t(\theta)$  is the average  $\bar{t}_n = (1/n) \sum_{i=1}^n t(\theta^{(i)})$ . If the chain is ergodic and  $E_{\pi}[t(\theta)] < \infty$  for the unique limiting distribution  $\pi$  then

$$\overline{t}_n \stackrel{\text{a.s.}}{
ightarrow} E_\pi[t( heta)] \,\, as \,\, n 
ightarrow \infty$$

which is a Markov chain equivalent of the law of large numbers.

It states that averages of chain values also provide strongly consistent estimates of parameters of the limiting distribution  $\pi$  despite their dependence.

# Inefficiency factor

Define the autocovariance of lag k of the chain  $t^{(n)} = t(\theta^{(n)})$  as  $\gamma_k = Cov_{\pi}(t^{(n)}, t^{(n+k)})$ , the variance of  $t^{(n)}$  as  $\sigma^2 = \gamma_0$ , the autocorrelation of lag k as  $\rho_k = \gamma_k/\sigma^2$  and  $\tau_n^2/n = Var_{\pi}(\bar{t}_n)$ . It can be shown that

$$\tau_n^2 = \sigma^2 \left( 1 + 2\sum_{k=1}^{n-1} \frac{n-k}{n} \rho_k \right) \to \tau^2 = \sigma^2 \left( 1 + 2\sum_{k=1}^{\infty} \rho_k \right)$$

as  $n \to \infty$ .

The term between parentheses in the above equation can be called *inefficiency factor* or *integrated autocorrelation time* because it measures how far  $t^{(n)}$ s are from being a random sample and how much  $Var_{\pi}(\bar{t}_n)$  increases because of that.

## Effective sample size

The inefficiency factor can be used to derive the *effective sample size* 

$$p_{\text{eff}} = \frac{n}{1 + 2\sum_{k=1}^{\infty} \rho_k}$$

which can be thought of as the size of a random sample with the same variance since

$$Var_{\pi}(\bar{t}_n) = \sigma^2/n_{\text{eff}}.$$

It is important to distinguish between

ľ

$$\sigma^2 = \textit{Var}_{\pi}[t( heta)]$$
 and  $au^2$ 

the variance of  $t(\theta)$  under the limiting distribution  $\pi$  and the limiting sampling variance of  $\sqrt{n} \bar{t}$ , respectively.

Note that under independent sampling they are both given by  $\sigma^2$ . They are both variability measures but the first one is a characteristic of the limiting distribution  $\pi$  whereas the second is the uncertainty of the averaging procedure. Page 13 of 16

## Central limit theorem

If a chain is uniformly (geometrically) ergodic and  $t^2(\theta)$   $(t^{2+\epsilon}(\theta))$  is integrable with respect to  $\pi$  (for some  $\epsilon > 0$ ) then

$$rac{\overline{t}_n - E_\pi[t( heta)]}{ au/\sqrt{n}} \stackrel{d}{\longrightarrow} N(0,1),$$

as  $n \to \infty$ .

Just as the ergodic theorem provides theoretical support for the use of ergodic averages as estimates, the above equation provides support for evaluation of approximate confidence intervals.

### Reversible chains

Let  $(\theta^{(n)})_{n\geq 0}$  be an homogeneous Markov chain with transition probabilities P(x, y) and stationary distribution  $\pi$ .

Assume that one wishes to study the sequence of states  $\theta^{(n)}, \theta^{(n-1)}, \ldots$  in reversed order. It can be shown that this sequence is a Markov chain with transition probabilities are

$$P_n^*(x,y) = Pr(\theta^{(n)} = y \mid \theta^{(n+1)} = x)$$
  
= 
$$\frac{Pr(\theta^{(n+1)} = x \mid \theta^{(n)} = y)Pr(\theta^{(n)} = y)}{Pr(\theta^{(n+1)} = x)}$$
  
= 
$$\frac{\pi^{(n)}(y)P(y,x)}{\pi^{(n+1)}(x)}$$

and in general the chain is not homogeneous.

If  $n \to \infty$  or alternatively,  $\pi^{(0)} = \pi$ , then

$$P_n^*(x,y) = P^*(x,y) = \pi(y)P(y,x)/\pi(x)$$

and the chain becomes homogeneous.

If  $P^*(x, y) = P(x, y)$  for all x and  $y \in S$ , the Markov chain is said to be *reversible*. The reversibility condition is usually written as

$$\pi(x)P(x,y) = \pi(y)P(y,x)$$

for all  $x, y \in S$ .

It can be interpreted as saying that the rate at which the system moves from x to y when in equilibrium,  $\pi(x)P(x, y)$ , is the same as the rate at which it moves from y to x,  $\pi(y)P(y, x)$ .

For that reason, the above equation is sometimes referred to as the *detailed balance equation*; *balance* because it equates the rates of moves through states and *detailed* because it does it for every possible pair of states.