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A Markov chain is a stochastic process where given the present
state, past and future states are independent, i.e.

Pr(θ(n+1) ∈ A|θ(n) = x , θ(n−1) ∈ An−1, . . . , θ
(0) ∈ A0)

equals
Pr(θ(n+1) ∈ A|θ(n) = x)

for all sets A0, . . . , An−1, A ⊂ S and x ∈ S .

When the above equation does not depend on n, the chain is said
to be homogeneous and a transition function, or kernel P(x ,A),
can be defined as:

1. for all x ∈ S , P(x , ·) is a probability distribution over S ;

2. for all A ⊂ S , the function x 7→ P(x , A) can be evaluated.
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Example i. random walk

Consider a particle moving independently left and right on the line
with successive displacements from its current position governed by
a probability function f over the integers and θ(n) representing its
position at instant n, n ∈ N. Initially, θ(0) is distributed according
to some distribution π(0). The positions can be related as

θ(n) = θ(n−1) + wn = w1 + w2 + . . . + wn

where the wi are independent random variables with probability
function f . So, {θ(n) : n ∈ N} is a Markov chain in Z .
The position of the chain at instant t = n is described
probabilistically by the distribution of w1 + . . . + wn.
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Pr{θ(n) = θ(n−1) + i} = 1/2, for i = −1, 1 and θ(0) = 0.0.
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Discrete state spaces
If S is finite with r elements, S = {x1, x2, . . . , xr}, a transition
matrix P with (i , j)th element given by P(xi , xj) can be defined as

P =




P(x1, x1) . . . P(x1, xr )
...

...
P(xr , x1) . . . P(xr , xr )


 .

Transition probabilities from state x to state y over m steps,
denoted by Pm(x , y), is given by the probability of a chain moving
from state x to state y in exactly m steps. It can be obtained for
m ≥ 2 as

Pm(x , y) = Pr(θ(m) = y |θ(0) = x)

=
X
x1

· · ·
X
xm−1

Pr(y , xm−1, . . . , x1|x)

=
X
x1

· · ·
X
xm−1

Pr(y |xm−1) . . . Pr(x1|x)

=
X
x1

· · ·
X
xm−1

P(xm−1, y) · · ·P(x , x1)
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Chapman-Kolmogorov equations

Pn+m(x , y) =
X

z

Pr(θ(n+m) = y |θ(n) = z , θ(0) = x)

× Pr(θ(n) = z |θ(0) = x)

=
X

z

Pn(x , z)Pm(z , y)

and (more generally)

Pn+m = PnPm.

Marginal distributions
Let

π(n) = (π(n)(x1), · · · , π(n)(xr ))

with the initial distribution of the chain when n = 0. Then,

π(n)(y) =
∑

x∈S

Pn(x , y)π(0)(x)

or, in matrix notation,

π(n) = π(0)Pn

π(n) = π(n−1)P
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Example ii. 2-state Markov chain
Consider {θ(n) : n ≥ 0}, a Markov chain in S = {0, 1} with π(0)

given by
π(0) = (π(0)(0), π(0)(1))

and transition matrix

P =

(
1− p p

q 1− q

)
.

It is easy to see that

Pr(θ(n) = 0) = (1− p)Pr(θ(n−1) = 0) + qPr(θ(n−1) = 1)

= (1− p − q)nπ(0)(0) + q
n−1X

k=0

(1− p − q)k

If p + q > 0,

Pr(θ(n) = 0) =
q

p + q
+ (1− p − q)n

„
π(0)(0)− q

p + q

«

If 0 < p + q < 2 then

lim
n→∞Pr(θ(n) = 0) =

q

p + q
and lim

n→∞Pr(θ(n) = 1) =
p

p + q
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Stationary distributions

A fundamental problem for Markov chains is the study of the
asymptotic behavior of the chain as the number of iterations
n →∞.
A key concept is that of a stationary distribution π. A distribution
π is said to be a stationary distribution of a chain with transition
probabilities P(x , y) if

∑

x∈S

π(x)P(x , y) = π(y), ∀y ∈ S

or in matrix notation as πP = π.
If the marginal distribution at any given step n is π then the next
step distribution is πP = π.
Once the chain reaches a stage where π is its distribution, all
subsequent distributions are π.
π is also known as the equilibrium distribution.
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Example iii. 10-state Markov chain
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Ergodicity

A chain is said to be geometrically ergodic if ∃λ ∈ [0, 1), and a
real, integrable function M(x) such that

‖Pn(x , ·)− π(·)‖ ≤ M(x)λn

for all x ∈ S . If M(x) = M, then the ergodicity is uniform.

Uniform ergodicity ⇒ geometric ergodicity ⇒ ergodicity.

The smallest λ satisfying the above condition is called the rate of
convergence.

A very large value of M(x) may slow down convergence
considerably.
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Ergodic theorem

Once ergodicity of the chain is established, important limiting
theorems can be stated. The first and most important one is the
ergodic theorem.

The ergodic average of a real-valued function t(θ) is the average
t̄n = (1/n)

∑n
i=1 t(θ(i)). If the chain is ergodic and Eπ[t(θ)] < ∞

for the unique limiting distribution π then

t̄n
a.s.→ Eπ[t(θ)] as n →∞

which is a Markov chain equivalent of the law of large numbers.

It states that averages of chain values also provide strongly
consistent estimates of parameters of the limiting distribution π
despite their dependence.
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Inefficiency factor

Define the autocovariance of lag k of the chain t(n) = t(θ(n)) as
γk = Covπ(t(n), t(n+k)), the variance of t(n) as σ2 = γ0, the
autocorrelation of lag k as ρk = γk/σ2 and τ2

n/n = Varπ(t̄n).
It can be shown that

τ2
n = σ2

(
1 + 2

n−1∑

k=1

n − k

n
ρk

)
→ τ2 = σ2

(
1 + 2

∞∑

k=1

ρk

)

as n →∞.

The term between parentheses in the above equation can be called
inefficiency factor or integrated autocorrelation time because it
measures how far t(n)s are from being a random sample and how
much Varπ(t̄n) increases because of that.
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Effective sample size
The inefficiency factor can be used to derive the effective sample
size

neff =
n

1 + 2
∑∞

k=1 ρk

which can be thought of as the size of a random sample with the
same variance since

Varπ(t̄n) = σ2/neff.

It is important to distinguish between

σ2 = Varπ[t(θ)] and τ2

the variance of t(θ) under the limiting distribution π and the
limiting sampling variance of

√
n t̄, respectively.

Note that under independent sampling they are both given by σ2.
They are both variability measures but the first one is a
characteristic of the limiting distribution π whereas the second is
the uncertainty of the averaging procedure. Page 13 of 16



Central limit theorem

If a chain is uniformly (geometrically) ergodic and t2(θ) (t2+ε(θ))
is integrable with respect to π (for some ε > 0) then

t̄n − Eπ[t(θ)]

τ/
√

n

d−→ N(0, 1),

as n →∞.

Just as the ergodic theorem provides theoretical support for the
use of ergodic averages as estimates, the above equation provides
support for evaluation of approximate confidence intervals.
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Reversible chains

Let (θ(n))n≥0 be an homogeneous Markov chain with transition
probabilities P(x , y) and stationary distribution π.

Assume that one wishes to study the sequence of states
θ(n), θ(n−1), . . . in reversed order. It can be shown that this
sequence is a Markov chain with transition probabilities are

P∗n(x , y) = Pr(θ(n) = y | θ(n+1) = x)

=
Pr(θ(n+1) = x | θ(n) = y)Pr(θ(n) = y)

Pr(θ(n+1) = x)

=
π(n)(y)P(y , x)

π(n+1)(x)

and in general the chain is not homogeneous.
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If n →∞ or alternatively, π(0) = π, then

P∗n(x , y) = P∗(x , y) = π(y)P(y , x)/π(x)

and the chain becomes homogeneous.

If P∗(x , y) = P(x , y) for all x and y ∈ S , the Markov chain is said
to be reversible. The reversibility condition is usually written as

π(x)P(x , y) = π(y)P(y , x)

for all x , y ∈ S .

It can be interpreted as saying that the rate at which the system
moves from x to y when in equilibrium, π(x)P(x , y), is the same
as the rate at which it moves from y to x , π(y)P(y , x).

For that reason, the above equation is sometimes referred to as the
detailed balance equation; balance because it equates the rates of
moves through states and detailed because it does it for every
possible pair of states.

Page 16 of 16


