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The observations ¥, ..., y, form a sample from the following finite mixture of normal distributions:

k
p(il0) = wipn (yilus, 03)
j=1
where 0 = (u,0%,w), = (p1,...,ux), 0> = (06%,...,0%), w = (wi,...,wy)’, and and pn(y|u,c?) is the
density of a normal distribution with mean u and variance o2 evaluated at y. Therefore,

n k
p(ylo) = H ijpN(yi\NjaU?)

i=1 | j=1

Using latent indicators zi, ..., 2y, such that z; € {1,...,k} and p(z; = j|0) = w;, the augmented model
for (y, z) has the following joint density:

Py, 210) = p(ylz, 0)p(=10) = H 11 o (wilug. 03) Hp zl0)

j=liel;

where I; = {i:2z; = j}.

Bayesian Inference (MICMC)

The priors are pj ~ N(m,nr?), sz ~ IG(a/2,b/2), m ~ N(mg,Tm), T ~ IG(c/2,d/2), and w ~ D(«), with
a,b,c,d, po, Tm, and a = (a,..., ), known hyperparameters. Let n; = card(I;), n;y; = Zielj yi, and
2
anj =

o [0}ln,2,y] ~ IG (“*”;“,% [0+ 1,82 +n; (1 gj)2+$(ujfm)2])

Y ic I (yi — 9;)%. The full conditional distributions are as follows.
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[zi] € {1,...,k}, with p(z; = j|0,vy;) = ﬁ and w; = wipn (yil, o) for 1 =1,... k.

[T|02, 1, m, y] NIG(

o [w|p, 02, 2,y] ~ D(a+n), where n = (nq,...,ng).
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Maximum Likelihood Inference (EM)

The Expectation-Maximization (EM) algorithm finds  that maximizes the (incomplete) log-likelihood, ie.
6= argm@axl(@\y)

where
n k
_ 1
1(0ly) = Zlog ij(Qﬂ'U?) 1/2 exp{202, (yi —Mj)2}
i=1 j=1 J

by iteratively cycling through the following two steps:
e E-step: Compute the integral Q(6,01) = [log{p(y, 2|0)}p(z|y,0V)d=
e M-step: Find #(+1) such that #!T = argmax, Q(6, 1)

The EM algorithm for the mixture of normal model case, with 6(°) as starting value, cycles through [ =
1,..., L as follows.

Fori=1,...,nand j=1,...,k compute
! ) 20
8ij = plzi = jlyi, 0W) = wpy (il 2V
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It can be shown that the sequence {#(), 03 ..} converges to § = argmaxy [(|y) as | — oo (for more details
about the EM algorithm, see Dempster, Laird and Rubin, 1977).
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