Lab Session 1: Linear regression with t errors

Hedibert Freitas Lopes

The University of Chicago Booth School of Business 5807 South Woodlawn Avenue, Chicago, IL 60637 http://faculty.chicagobooth.edu/hedibert.lopes

hlopes@ChicagoBooth.edu

<ロト < 回 > < 目 > < 目 > 目 ???

NLSY Data

We revisit the NLSY data where y_i is hourly wage (in logs) received by individual *i* and x_i is his/her years of schooling completed, i.e. (for i = 1, ..., n)

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i.$$

Competing models:

Gaussian model (\mathcal{M}_0) : $\epsilon_i \sim N(0, \sigma^2)$ Student's *t* model (\mathcal{M}_1) : $\epsilon_i \sim t_{\nu}(0, \sigma^2)$

Prior distribution: $\beta | \sigma^2 \sim N(0, \sigma^2 10 I_2)$ $\sigma^2 \sim IG(3, 2.5)$ $\nu \sim G(1, 25)$ (Geweke, 1993).

This prior specification allocates substantial prior probability on values of ν below 10 (fat-tails) as well as above 40 (normality).

OLS regression

Normal linear regression model

 $\hat{\beta} = (1.178, 0.091) \text{ and } \hat{\sigma}^2 = 0.267.$ $E(\beta|y, x) = (1.174, 0.091) \text{ and } E(\sigma^2|y, x) = 0.265.$

Posterior inference

< ロ > < 母 > < 差 > < 差 > 差 298

We run a MCMC algorithm with starting at the the OLS estimates for β_0 , β_1 and σ^2 and at $\nu^{(0)} = 1$.

The chains were warmed-up for a $M_0 = 1000$ iterations and every 100-th of the following 100,000 draws were kept for posterior summarization, producing a total of M = 1000 draws.

MCMC output

298

Bivariate marginal posterior

▲□▶▲鄙▶▲吾▶▲吾▶ 吾 ②

Normal versus Student's t

95% posterior credibility interval for ν is (27, 100). 33% is the prior probability for the same interval.