Stochastic Volatility Models

Hedibert Freitas Lopes

The University of Chicago Booth School of Business 5807 South Woodlawn Avenue, Chicago, IL 60637 http://faculty.chicagobooth.edu/hedibert.lopes hlopes@ChicagoBooth.edu

> <ロト<問ト<臣ト<臣ト 1/48

Stochastic volatility model

The canonical stochastic volatility model (SV-AR(1), hereafter), is

$$y_t = e^{h_t/2} \varepsilon_t$$

$$h_t = \mu + \phi h_{t-1} + \tau \eta_t$$

where ε_t and η_t are N(0,1) shocks with $E(\varepsilon_t \eta_{t+h}) = 0$ for all hand $E(\varepsilon_t \varepsilon_{t+l}) = E(\eta_t \eta_{t+l}) = 0$ for all $l \neq 0$.

 au^2 : volatility of the log-volatility.

 $|\phi| < 1$ then h_t is a stationary process.

Let
$$y^n = (y_1, \dots, y_n)'$$
, $h^n = (h_1, \dots, h_n)'$ and $h_{a:b} = (h_a, \dots, h_b)'$.

<ロト<問ト<臣ト<臣ト 2/48

Prior information

Uncertainty about the initial log volatility is $h_0 \sim N(m_0, C_0)$.

Let $\theta = (\mu, \phi)'$, then the prior distribution of (θ, τ^2) is normal-inverse gamma, i.e. $(\theta, \tau^2) \sim NIG(\theta_0, V_0, \nu_0, s_0^2)$:

$$egin{array}{rcl} heta & | au^2 & \sim & N(heta_0, au^2 V_0) \ au^2 & \sim & IG(
u_0/2,
u_0 s_0^2/2) \end{array}$$

For example, if $u_0 = 10$ and $s_0^2 = 0.018$ then

$$E(\tau^2) = \frac{\nu_0 s_0^2/2}{\nu_0/2 - 1} = 0.0225$$

Var(\tau^2) = $\frac{(\nu_0 s_0^2/2)^2}{(\nu_0/2 - 1)^2(\nu_0/2 - 2)} = (0.013)^2$

Hyperparameters: m_0 , C_0 , θ_0 , V_0 , ν_0 and s_0^2 .

Posterior inference

The SV-AR(1) is a dynamic model and posterior inference via MCMC for the the latent log-volatility states h_t can be performed in at least two ways.

<ロ > < 団 > < 臣 > < 臣 > 王 > 王 2000 4/48

Let $h_{-t} = (h_{0:(t-1)}, h_{(t+1):n})$, for t = 1, ..., n-1 and $h_{-n} = h_{1:(n-1)}$.

• Individual moves for h_t

$$(\theta, \tau^2 | h^n, y^n) (h_t | h_{-t}, \theta, \tau^2, y^n), \text{ for } t = 1, \dots, n$$

▶ Block move for *hⁿ*

$$(\theta, \tau^2 | h^n, y^n) (h^n | \theta, \tau^2, y^n)$$

Sampling $(\theta, \tau^2 | h^n, y^n)$

Conditional on $h_{0:n}$, the posterior distribution of (θ, τ^2) is also normal-inverse gamma:

$$(\theta, \tau^2 | y^n, h_{0:n}) \sim NIG(\theta_1, V_1, \nu_1, s_1^2)$$

where $X = (1_n, h_{0:(n-1)}), \nu_1 = \nu_0 + n$

$$V_1^{-1} = V_0^{-1} + X'X$$

$$V_1^{-1}\theta_1 = V_0^{-1}\theta_0 + X'h_{1:n}$$

$$\nu_1 s_1^2 = \nu_0 s_0^2 + (y - X\theta_1)'(y - X\theta_1) + (\theta_1 - \theta_0)'V_0^{-1}(\theta_1 - \theta_0)$$

・ ロ ト ・ @ ト ・ 差 ト ・ 差 ・ 2006
5/48

Sampling $(h_0|\theta, \tau^2, h_1)$

Combining

$$h_0 \sim N(m_0, C_0)$$

and

$$h_1|h_0 \sim N(\mu + \phi h_0, \tau^2)$$

leads to (by Bayes' theorem)

 $h_0|h_1 \sim N(m_1, C_1)$

where

$$C_1^{-1}m_1 = C_0^{-1}m_0 + \phi\tau^{-2}(h_1 - \mu)$$

$$C_1^{-1} = C_0^{-1} + \phi^2\tau^{-2}$$

<ロト < 団 > < 臣 > < 臣 > 王 2000 6/48

Conditional prior distribution of h_t

Given h_{t-1} , θ and τ^2 , it can be shown that, for t = 1, ..., n-1, $\begin{pmatrix} h_t \\ h_{t+1} \end{pmatrix} \sim N \left\{ \begin{pmatrix} \mu + \phi h_{t-1} \\ (1+\phi)\mu + \phi^2 h_{t-1} \end{pmatrix}, \tau^2 \begin{pmatrix} 1 & \phi \\ \phi & (1+\phi^2) \end{pmatrix} \right\}$ so $E(h_t|h_{t-1}, h_{t+1}, \theta, \tau^2)$ and $V(h_t|h_{t-1}, h_{t+1}, \theta, \tau^2)$ are

$$\mu_t = \left(\frac{1-\phi}{1+\phi^2}\right)\mu + \left(\frac{\phi}{1+\phi^2}\right)(h_{t-1}+h_{t+1})$$

$$\nu^2 = \tau^2(1+\phi^2)^{-1}$$

respectively. Therefore,

 $\begin{array}{ll} (h_t | h_{t-1}, h_{t+1}, \theta, \tau^2) & \sim & \mathcal{N}(\mu_t, \nu^2) & \quad t = 1, \dots, n-1 \\ (h_n | h_{n-1}, \theta, \tau^2) & \sim & \mathcal{N}(\mu_n, \tau^2) \end{array}$

where $\mu_n = \mu + \phi h_{n-1}$.

Sampling h_t via random walk Metropolis Let $\nu_t^2 = \nu^2$ for t = 1, ..., n - 1 and $\nu_n^2 = \tau^2$, then $p(h_t|h_{-t}, y^n, \theta, \tau^2) = f_N(h_t; \mu_t, \nu_t^2) f_N(y_t; 0, e^{h_t})$ for t = 1, ..., n.

A simple random walk Metropolis algorithm with tuning variance v_h^2 would work as follows:

For
$$t = 1, ..., n$$

1. Current state: $h_t^{(j)}$
2. Sample h_t^* from $N(h_t^{(j)}, v_h^2)$
3. Compute the acceptance probability

$$\alpha = \min\left\{1, \frac{f_N(h_t^*; \mu_t, \nu_t^2)f_N(y_t; 0, e^{h_t^*})}{f_N(h_t^{(j)}; \mu_t, \nu_t^2)f_N(y_t; 0, e^{h_t^{(j)}})}\right\}$$

New state:

Example i. Simulated data

Simulation setup

- ▶ *n* = 500
- $h_0 = 0.0$
- ▶ µ = -0.00645
- ► φ = 0.99
- ▶ $\tau^2 = 0.15^2$
- Prior distribution
 - ▶ $\mu \sim N(0, 100)$

 - $\tau^2 \sim IG(10/2, 0.28125/2)$

<ロト<問ト<臣ト<臣ト 9/48

- ▶ $h_0 \sim N(0, 100)$
- MCMC setup
 - $M_0 = 1,000$
 - ▶ *M* = 1,000

Time series of y_t and $\exp\{h_t\}$

time

ㅁㅏ 《鄙ㅏ 《혼ㅏ 《혼ㅏ

Parameters

・ロト ・四ト ・ヨト ・ヨト

æ

Autocorrelation of h_t

◆□> ◆圖> ◆ヨ> ◆ヨ> 三田

Volatilities

Tuning parameter: $v_h^2 = 0.01$

time

Sampling h_t via independent Metropolis-Hastings

The full conditional distribution of h_t is given by

$$p(h_t|h_{-t}, y^n, \theta, \tau^2) = p(h_t|h_{t-1}, h_{t+1}, \theta, \tau^2)p(y_t|h_t) \\ = f_N(h_t; \mu_t, \nu^2)f_N(y_t; 0, e^{h_t}).$$

Kim, Shephard and Chib (1998) explored the fact that

$$\log p(y_t|h_t) = \operatorname{const} - \frac{1}{2}h_t - \frac{y_t^2}{2}\exp(-h_t)$$

and that a Taylor expansion of $\exp(-h_t)$ around μ_t leads to

$$\begin{array}{lll} \log p(y_t|h_t) &\approx & {\rm const} - \frac{1}{2}h_t - \frac{y_t^2}{2} \left(e^{-\mu_t} - (h_t - \mu_t) e^{-\mu_t} \right) \\ g(h_t) &= & \exp \left\{ -\frac{1}{2}h_t (1 - y_t^2 e^{-\mu_t}) \right\} \end{array}$$

<ロ > < 回 > < 国 > < 国 > < 国 > 目 2000 14/48

Proposal distribution

Let
$$\nu_t^2 = \nu^2$$
 for $t = 1, ..., n-1$ and $\nu_n^2 = \tau^2$.

Then, by combining $f_N(h_t; \mu_t, \nu_t^2)$ and $g(h_t)$, for t = 1, ..., n, leads to the following proposal distribution:

$$q(h_t|h_{-t}, y^n, \theta, \tau^2) \equiv N\left(h_t; \tilde{\mu}_t, \nu_t^2\right)$$

<ロト < 回 > < 目 > < 目 > 目 2000 15/48

where $\tilde{\mu}_t = \mu_t + 0.5 \nu_t^2 (y_t^2 e^{-\mu_t} - 1)$.

Metropolis-Hastings algorithm

For
$$t = 1, ..., n$$

- 1. Current state: $h_t^{(j)}$
- 2. Sample h_t^* from $N(\tilde{\mu}_t, \nu_t^2)$
- 3. Compute the acceptance probability

$$\alpha = \min\left\{1, \frac{f_N(h_t^*; \mu_t, \nu_t^2) f_N(y_t; 0, e^{h_t^*})}{f_N(h_t^{(j)}; \mu_t, \nu_t^2) f_N(y_t; 0, e^{h_t^{(j)}})} \times \frac{f_N(h_t^{(j)}; \tilde{\mu}_t, \nu_t^2)}{f_N(h_t^*; \tilde{\mu}_t, \nu_t^2)}\right\}$$

4. New state:

$$h_t^{(j+1)} = \begin{cases} h_t^* & \text{w. p. } \alpha \\ h_t^{(j)} & \text{w. p. } 1 - \alpha \end{cases}$$

<ロト < 回 > < 目 > < 目 > 目 2000 16/48

Parameters

Lag

ヘロト 人間ト 人間ト 人間下

æ

Autocorrelation of h_t

Autocorrelations of h_t for both schemes

/□ ▶ | ∢ ∃ ▶ - ∢ ≣ ▶ æ

Volatilities

time

1 에 비행에 비행하는 비행이 가격하는 것을 하는 것을 수 있다.

Sampling h^n - normal approximation and FFBS

Let
$$y_t^* = \log y_t^2$$
 and $\epsilon_t = \log \varepsilon_t^2$.

The SV-AR(1) is a DLM with nonnormal observational errors, i.e.

$$y_t^* = h_t + \epsilon_t$$

$$h_t = \mu + \phi h_{t-1} + \tau \eta_t$$

where $\eta_t \sim N(0, 1)$.

The distribution of ϵ_t is log χ_1^2 , where

$$E(\epsilon_t) = -1.27$$

 $V(\epsilon_t) = \frac{\pi^2}{2} = 4.935$

▲□ ▶ ▲□ ▶ ▲ ■ ▶ ▲ ■ 21/48

Normal approximation

Let ϵ_t be approximated by $N(\alpha, \sigma^2)$, $z_t = y_t^* - \alpha$, $\alpha = -1.27$ and $\sigma^2 = \pi^2/2$.

Then

$$z_t = h_t + \sigma v_t$$

$$h_t = \mu + \phi h_{t-1} + \tau \eta_t$$

is a simple DLM where v_t and η_t are N(0, 1).

Sampling from

$$p(h^n| heta, au^2, \sigma^2, z^n)$$

<ロト < 団 ト < 臣 ト < 臣 ト 三 22/48

can be performed by the FFBS algorithm.

 $\log\chi_1^2$ and $\mathit{N}(-1.27,\pi^2/2)$

х

<ロト < 団ト < 国ト < 国ト < 国ト 三 23/28

Parameters

iteration

æ

22/28

<ロト <回ト < 注ト < 注ト

Autocorrelation of h_t

◆□ ▶ ◆圖 ▶ ◆ 臣 ▶ ◆ 臣 ▶

Autocorrelations of h_t for the three schemes

Volatilities

time

1 에 세례에 세계에 제공에 가격했다.

Sampling h^n - mixtures of normals and FFBS

The $\log \chi_1^2$ distribution can be approximated by

$$\sum_{i=1}^{7} \pi_i N(\mu_i, \omega_i^2)$$

where

i	π_i	μ_i	ω_i^2
1	0.00730	-11.40039	5.79596
2	0.10556	-5.24321	2.61369
3	0.00002	-9.83726	5.17950
4	0.04395	1.50746	0.16735
5	0.34001	-0.65098	0.64009
6	0.24566	0.52478	0.34023
7	0.25750	-2.35859	1.26261

log χ_1^2 and $\sum_{i=1}^7 \pi_i N(\mu_i, \omega_i^2)$

х

<ロト<回ト<三ト<三ト<三、29/48 29/48

Mixture of normals

Using an argument from the Bayesian analysis of mixture of normal, let z_1, \ldots, z_n be unobservable (latent) indicator variables such that $z_t \in \{1, \ldots, 7\}$ and $Pr(z_t = i) = \pi_i$, for $i = 1, \ldots, 7$.

Therefore, conditional on the z's, y_t is transformed into $\log y_t^2$,

$$\begin{array}{lll} \log y_t^2 &=& h_t + \log \varepsilon_t^2 \\ h_t &=& \mu + \phi h_{t-1} + \tau_\eta \eta_t \end{array} \end{array}$$

which can be rewritten as a normal DLM:

$$\begin{array}{rcl} \log y_t^2 &=& h_t + v_t & v_t \sim \mathcal{N}(\mu_{z_t}, \omega_{z_t}^2) \\ h_t &=& \mu + \phi h_{t-1} + w_t & w_t \sim \mathcal{N}(0, \tau_\eta^2) \end{array}$$

where μ_{z_t} and $\omega_{z_t}^2$ are provided in the previous table.

Then h^n is jointly sampled by using the the FFBS algorithm.

Parameters

Lag

イロト イヨト イヨト イヨト

æ

Autocorrelation of h_t

ヘロン 人間 とくほど 人間と

≣ 32/48

Autocorrelations of h_t for the four schemes

<ロト < 団 ト < 臣 ト < 臣 ト 三 32/28

Volatilities

time

コン 《聞》 《臣》 《臣》 三臣

Comparing the four schemes: parameters

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ▲ 圖 25/28

Comparing the four schemes: volatilities

time

▲□▶ ▲圖▶ ▲園▶ ▲園▶ 三国 …

Lopes and Salazar $(2006)^1$

We extend the SV-AR(1) where

 $y_t \sim N(0, \exp\{h_t\})$

to accommodate a smooth regime shift, i.e.

$$h_t \sim N(\alpha_{1t} + F(\gamma, \kappa, h_{t-d})\alpha_{2t}, \sigma^2)$$

where

$$\alpha_{it} = \mu_i + \phi_i h_{t-1} + \delta_i h_{t-2} \qquad i = 1, 2$$

$$F(\gamma, \kappa, h_{t-d}) = \frac{1}{1 + \exp(\gamma(\kappa - h_{t-d}))}$$

such that $\gamma > 0$ drives smoothness and *c* is a threshold.

¹Time series mean level and stochastic volatility modeling by smooth transition autoregressions: a Bayesian approach, In Fomby, T.B. (Ed.) *Advances in Econometrics: Econometric Analysis of Financial and Economic Time Series/Part B*, Volume 20, 229-242.

Modeling S&P500 returns

Data from Jan 7th, 1986 to Dec 31st, 1997 (3127 observations)

Models	AIC	BIC	DIC
AR(1)	12795	31697	7223.1
AR(2)	12624	31532	7149.2
LSTAR(1,d=1)	12240	31165	7101.1
LSTAR(1,d=2)	12244	31170	7150.3
LSTAR(2,d=1)	12569	31507	7102.4
LSTAR(2,d=2)	12732	31670	7159.4

	Models					
Parameter	AR(1)	AR(2)	LSTAR(1,1)	LSTAR(1,1)	LSTAR(2,1)	LSTAR(2,1)
	Posterior mean					
	(standard deviation)					
μ_1	-0.060	-0.066	0.292	-0.354	-4.842	-6.081
	(0.184)	(0.241)	(0.579)	(0.126)	(0.802)	(1.282)
ϕ_1	0.904	0.184	0.306	0.572	-0.713	-0.940
	(0.185)	(0.242)	(0.263)	(0.135)	(0.306)	(0.699)
δ_1	-	0.715	-	-	-1.018	-1.099
		(0.248)			(0.118)	(0.336)
μ_2	-	-	-0.685	0.133	4.783	6.036
			(0.593)	(0.092)	(0.801)	(1.283)
ϕ_2	-	-	0.794	0.237	0.913	1.091
			(0.257)	(0.086)	(0.314)	(0.706)
δ_2	-	-	-	-	1.748	1.892
					(0.114)	(0.356)
γ	-	-	118.18	163.54	132.60	189.51
			(16.924)	(23.912)	(10.147)	(0.000)
κ	-	-	-1.589	0.022	-2.060	-2.125
			(0.022)	(0.280)	(0.046)	(0.000)
σ^2	0.135	0.234	0.316	0.552	0.214	0.166
	(0.020)	(0.044)	(0.066)	(0.218)	(0.035)	(0.026)

<□ → < />

Carvalho and Lopes $(2007)^3$

We extend the SV-AR(1) to accommodate a Markovian regime $shift^2$, i.e.

$$h_t \sim N(\mu_{s_t} + \phi h_{t-1}, \sigma^2)$$

and

$$Pr(s_t = j | s_{t-1} = i) = p_{ij}$$
 for $i, j = 1, ..., k.x$

for

$$\alpha_{s_t} = \gamma_1 + \sum_{j=1}^k \gamma_j I_{jt}$$

where $I_{jt} = 1$ if $s_t \ge j$ and zero otherwise, $\gamma_1 \in \Re$ and $\gamma_i > 0$ for i > 1.

²So, Lam and Li (1998) A stochastic volatility model with Markov switching. *JBES*, 16, 244-253.

³Simulation-based sequential analysis of Markov switching stochastic volatility models, *Computational Statistics and Data Analysis*, 51, 4526-4542.

Modeling IBOVESPA returns

We analyzed IBOVESPA returns from 01/02/1997 to 01/16/2001 (1000 observations) based on a 2-regime model.

07/02/1997	Thailand devalues the baht by as much as 20%.
08/11/1997	IMF and Thailand set a rescue agreement.
10/23/1997	Hong Kong's stock index falls 10.4%. South Korea Won starts to weaken.
12/02/1997	IMF and South Korea set a bailout agreement.
06/01/1998	Russia's stock market crashes.
06/20/1998	IMF gives final approval to a loan package to Russia.
08/19/1998	Russia officially falls into default.
10/09/1998	IMF and World Bank joint meeting to discuss the global economic crisis.
	The Fed cuts interest rates.
01/15/1999	The Brazilian government allows its currency, the real,
	to float freely by lifting exchange controls.
02/02/1999	Arminio Fraga is named president of Brazil's Central Bank.

Model	95% credible interval	$E(\phi D_T)$
SV	(0.9325;0.9873)	0.9525
MSSV	(0.8481;0.8903)	0.8707

Also, $E(p_{11}|D_T) = 0.993$ and $E(p_{11}|D_T) = 0.964$, $P_{11}|D_T = 0.964$, $P_{11}|D_T = 0.964$

<ロ > < 団 > < 置 > < 置 > 差 = 2000 41/48

Abanto, Migon and Lopes (2009)⁴

We use a modied mixture model with Markov switching volatility specfication to analyze the relationship between stock return volatility and trading volume, i.e.

$$\begin{aligned} y_t | h_t &\sim t_{\nu}(0, \exp\{h_t\}) \\ v_t | h_t &\sim Poisson(m_0 + m_1 \exp\{h_t\}) \\ h_t &\sim N(\mu + \gamma s_t + \phi h_{t-1}, \tau^2) \end{aligned}$$

with $s_t = 0$ or $s_t = 1$, $\mu \in R$ and $\gamma < 0$.

⁴Bayesian modeling of financial returns: a relationship between volatility and trading volume. *Applied Stochastic Models in Business and Industry*. Available online since June 8th 2009.

Lopes and Polson $(2010)^5$

The *stochastic volatility with correlated jumps* (SVCJ) model of Eraker, Johannes and Polson (2003) can be written as

$$y_{t+1} = y_t + \mu \Delta + \sqrt{v_t \Delta} \epsilon_{t+1}^y + J_{t+1}^y$$

$$v_{t+1} = v_t + \kappa (\theta - v_t) + \sigma_v \sqrt{v_t \Delta} \epsilon_{t+1}^v + J_{t+1}^v$$

where both ϵ_{t+1}^{y} and ϵ_{t+1}^{v} follow N(0,1) with $\operatorname{corr}(\epsilon_{t+1}^{y}, \epsilon_{t+1}^{v}) = \rho$; and jump components

$$J_{t+1}^{y} = \xi_{t+1}^{y} N_{t+1} \quad J_{t+1}^{v} = \xi_{t+1}^{v} N_{t+1}$$

$$\xi_{t+1}^{v} \sim Exp(\mu_{v})$$

$$\xi_{t+1}^{y} | \xi_{t+1}^{v} \sim N(\mu_{y} + \rho_{J} \xi_{t+1}^{v}, \sigma_{y}^{2})$$

$$Pr(N_{t+1} = 1) = \lambda \Delta$$

Usually, $\Delta = 1$.

⁵Extracting SP500 and NASDAQ volatility: The credit crisis of 2007-2008. Handbook of Applied Bayesian Analysis, (to appear). Credit crisis of 2007

SV model: $\mu = J_{t+1}^y = J_{t+1}^v = 0$ and $\sqrt{v_t \Delta} = 1$ in the evolution equation.

SP500	Mean	StDev	2.5%	97.5%
$\kappa\theta$	-0.0031	0.0029	-0.0092	0.0022
$1-\kappa$	0.9949	0.0036	0.9868	1.0011
σ_v^2	0.0076	0.0026	0.0041	0.0144

SVJ model: $\mu = J_{t+1}^v = \xi_{t+1}^v = 0$ and $\sqrt{v_t \Delta} = 1$ in the evolution equation.

SP500	Mean	StDev	2.5%	97.5%
$\kappa \theta$	-0.0117	0.0070	-0.0262	0.0014
$1-\kappa$	0.9730	0.0084	0.9551	0.9886
σ_v^2	0.0432	0.0082	0.0302	0.0613
λ	0.0025	0.0017	0.0003	0.0066
μ_y	-2.7254	0.1025	-2.9273	-2.5230
σ_y^2	0.3809	0.2211	0.1445	0.9381

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Lopes and Migon (2002) and Lopes and Carvalho $(2007)^7$

The FSV model of Pitt and Shephard (1999) and Aguilar and West $(2000)^6$ can be written as

$$\begin{aligned} y_t | f_t &\sim N(\beta f_t, \Sigma_t) \quad \Sigma_t = \text{diag}(\sigma_{1t}^2, \dots, \sigma_{pt}^2) \\ f_t &\sim N(0, H_t) \quad H_t = \text{diag}(\sigma_{p+1,t}^2, \dots, \sigma_{p+k,t}^2) \\ \log(\sigma_{it}^2) &= \eta_{it} &\sim N(\alpha_i + \gamma_i \eta_{i,t-1}, \xi_i^2) \quad i = 1, \dots, p \\ \log(\sigma_{jt}^2) &= \lambda_{jt} &\sim N(\mu_j + \phi_j \lambda_{j,t-1}, \tau_j^2) \quad j = 1, \dots, k \\ \beta_{ijt} &\sim N(\zeta_{ij} + \Theta_{ij} \beta_{ij,t-1}, \omega_{ij}^2) \end{aligned}$$

for i = 2, ..., p and $j = 1, ..., \min(i - 1, k)$.

⁶AW: Bayesian dynamic factor models and variance matrix discounting for portfolio allocation. *JBES*, 18, 338357. PS: Time varying covariances: a factor stochastic volatility approach (with discussion). *Bayesian Statistics, Volume 6*, 547-570.

⁷LM:Comovements and contagion in emergent markets: stock indexes volatilities. *Case Studies in Bayesian Statistics*, Volume VI, 285-300. LC: Factor stochastic volatility with time varying loadings and Markov switching regimes. *Journal of Statistical Planning and Inference*, 137, 3082-3091.

Daily exchange rate

Returns on weekday closing spot prices for six currencies relative to the US dollar.

The data span the period from 1/1/1992 to 10/31/1995 inclusive.

- German Mark(DEM)
- British Pound(GBP)
- Japanese Yen(JPY)
- French Franc(FRF)
- Canadian Dollar(CAD)
- Spanish Peseta(ESP)

A k = 3 factor stochastic volatility model with time-varying loadings was implemented with relatively vague priors for all model parameters.

More on covariance estimation via factor analysis

West (2003) Bayesian Factor Regression Models in the "Large *p*, Small *n*" Paradigm. *Bayesian Statistics* 7, 733-742.

Lopes and West (2004) Bayesian model assessment in factor analysis. *Statistica Sinica*, 14, 41-67.

Carvalho, Chang, Lucas, Wang, Nevins and West (2008) High-dimensional Sparse Factor Modelling: Applications in Gene Expression Genomics. *Journal of the American Statistical Association*, 103, 1438-56.

Lopes, Salazar and Gamerman (2008) Spatial dynamic factor models, *Bayesian Analysis*, 3, 759-92.

Frühwirth-Schnatter and Lopes (2009) Parsimonious BFA when the number of factors is unknown. Technical Report. The University of Chicago Booth School of Business.

4日 > 4日 > 4日 > 4 目 > 4 目 > 目 30 (C)
47/48
47/48

Dynamic covariance models

Chib, Nardari and Shephard (2006) Analysis of high dimensional multivariate stochastic volatility models. *Journal of Econometrics*, 134, 341371.

Han (2006) Asset Allocation with a High Dimensional Latent Factor Stochastic Volatility Model. *Review of Financial Studies*, 19, 237-271.

Nardari and Scruggs (2007) Bayesian Analysis of Linear Factor Models with Latent Factors, Multivariate Stochastic Volatility, and APT Pricing Restrictions. *Journal of Financial and Quantitative Analysis*, 42, 857-892.

Carvalho and West (2007) Dynamic Matrix-Variate Graphical Models. *Bayesian Analysis*, 2, 69-98.

Carvalho, Massam and West (2007) Simulation of Hyper Inverse-Wishart Distributions in Graphical Models. *Biometrika*, 94, 647-659.

Rajaratnam, Massam and Carvalho (2008) Flexible Covariance Estimation in Graphical Gaussian Models. *Annals of Statistics*, 36, 2818-2849.

Scott and Carvalho (2008) Feature-Inclusion Stochastic Search for Gaussian Graphical Models. *Journal of Computational and Graphical Statistics*, 17, 790-808.

Wang, Reeson and Carvalho, Carlos (2009) Dynamic Financial Index Models: Modeling Conditional Dependencies via Graphs. Technical Report, Department of Decision Sciences, Duke University.