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Model, Prior and Data Augmentation

The observations yi depend on the p-dimensional vector of regressors xi as follows:

p(y|µ, σ2, w) =
n∏

i=1

k∑

j=1

wjpN (yi|µj + x′iβ, σ2
j )

where µ = (µ1, . . . , µk)′, σ2 = (σ2
1 , . . . , σ2

k)′, w = (w1, . . . , wk)′, xi a p-dimensional vector of regressors with
regression coefficients β, and pN (a|b, c) is the density of the univariate normal distribution with mean b and
variance c evaluated at a. Throughout this note we keep X = (x1, . . . , xn)′ fixed and known and, therefore,
omitted from the notation hereafter. For the parameters in θ = (µ, σ2, w,m, τ), we used the following prior
specification

π(θ) = π(β)π(τ)π(m)π(w)
k∏

j=1

π(µj |m, τ, σ2
j )π(σ2

j |a, b)

with β ∼ N(β0, Vβ), µj ∼ N(m, τσ2
j ) and σ2

j ∼ IG(a/2, b/2), for j = 1, . . . , k, w ∼ D(α),m ∼ N(m0, τm),
and τ ∼ IG(c/2, d/2). The hyperparameters a, b, c, d, m0, τm, and α = (α1, . . . , αk)′, are known. Therefore,
by Bayes theorem, the posterior distribution of θ is

π(θ|y) ∝ π(θ)
n∏

i=1

k∑

j=1

wjdN(yi|µj + x′iβ, σ2
j )

which is clearly analytically intractable. However, conditioning on latent variables z = (z1, . . . , zn), with
zi ∈ {1, . . . , k}, and Ij = {i : zi = j}, for j = 1, . . . , k and i = 1, . . . , n, the joint posterior distribution of
(θ, z) can be written as

π(θ, z|y) ∝ π(θ)π(z|θ)p(y|θ, z)

with both

π(θ|y, z) ∝ π(β)π(τ)π(m)π(w)π(z|w)
k∏

j=1


∏

i∈Ij

π(µj)p(σ2
j )pN (yi|µj + x′iβ, σ2

j )




and

π(z|θ, y) =
n∏

i=1

π(zj |w)pN (yi|µj + x′iβ, σ2
j )

much more straightforward to sample from. Therefore, θ and z can be easily and iteratively sampled within
a Gibbs sampler, as described next.
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Full conditionals of µ, σ2, τ, w, m and β

Conditionally on z = (z1, . . . , zn)′, let εi = yi − µzi − x′iβ, y∗i = yi − µzi , y∗ = (y∗1 , . . . , y∗n)′, and Ω =
diag(σ2

z1
, . . . , σ2

zn
), For i = 1, . . . , n. Additionally, let nj = card(Ij), nj ε̄j =

∑
i∈Ij

εi, and njs
2
j =

∑
i∈Ij

(εi−
ε̄j)2, for j = 1, . . . , k. Finally, if n = (n1, . . . , nk), then the full conditional distributions for µ, σ2, τ, w, m
and β are as follows.

• For j = 1, . . . , k,

[µj |σ2,m, τ, z, y] ∼ N

(
τnj ε̄j + m

τnj + 1
,

τσ2
j

τnj + 1

)

• For j = 1, . . . , k,

[σ2
j |µ, β, z, y] ∼ IG(0.5(a + nj), 0.5(b + njs

2
j + nj(µj − ε̄j)2 + τ−1(µj −m)2))

• [τ |σ2, µ, m, y] ∼ IG(0.5(c + k), 0.5(d +
∑k

j=1(µj −m)2/σ2
j ))

• [w|µ, σ2, z, y] ∼ D(α + n)

• [m|σ2, τ, µ] ∼ N((τ−1
m + τ−1

∑k
j=1 σ−2

j )−1(τ−1
m m0 + τ−2

∑k
j=1 σ−2

j µj), (τ−1
m + τ−1

∑k
j=1 σ−2

j )−1)

• [β|µ, σ2, z, y] ∼ N((V −1
β + X ′Ω−1X)−1(V −1

β β0 + X ′Ω−1y∗), (V −1
β + X ′Ω−1X)−1)

Full conditionals of z1, . . . , zn

Conditionally on µ, σ2, τ, w and β,

p(z|µ, σ2, τ, w, β) =
n∏

i=1

p(zi|µ, σ2, w, yi, β)

so zi is sampled from {1, . . . , k} with probabilities ωi1, . . . , ωik, where

wij ≡ Pr(zi = j|µ, σ2, w, yi, β) =
wjpN (yi|µj + x′iβ, σ2

j )
∑k

l=1 wlpN (yi|µl + +x′iβ, σ2
l )

for i = 1, . . . , n and j = 1, . . . , k.

Mixture of normal distributions

It is worth noting that the case particular case where β0 = 0p and Vβ = 0p×p corresponds to the traditional
mixture of normal distributions.
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