BAYESIAN PANEL DATA

Hedibert Freitas Lopes Graduate School of Business University of Chicago

I took the following three examples from the WinBugs list of examples. Both WinBugs and the examples can be found at the <u>The BUGS Project - Bayesian</u> inference Using Gibbs Sampling site: http://www.mrcbsu.cam.ac.uk/bugs/welcome.shtml

Example 1: Orange Trees, Non-linear growth curve

This dataset was originally presented by Draper and Smith (1981) and reanalysed by Lindstrom and Bates (1990). The data Yij consist of trunk circumference measurements recorded at time xj, j=1,...,7 for each of i = 1,..., 5 orange trees.

Example 2: London schools

Goldstein et al. (1993) present an analysis of examination results from inner London schools. They use hierarchical or multilevel models to study the between-school variation, and calculate school-level residuals in an attempt to differentiate between `good' and `bad' schools.

Example 3: Repeated measures on Poisson counts

Breslow and Clayton (1993) analyse data initially provided by Thall and Vail (1990) concerning seizure counts in a randomised trial of anti-convulsant threrapy in epilepsy. The table below shows the successive seizure counts for 59 patients. Covariates are treatment (0,1), 8-week baseline seizure counts, and age in years.

Example 1: Non-linear growth curve

This dataset was originally presented by Draper and Smith (1981) and reanalysed by Lindstrom and Bates (1990). The data Yij consist of trunk circumference measurements recorded at time xj, j=1,...,7 for each of i = 1,..., 5 orange trees. We consider a logistic growth curve as follows:

j	xj	y1j	y2j	уЗј	y4j	y5j
1	118	30	33	30	32	30
2	484	58	69	51	62	49
3	664	87	111	75	112	81
4	1004	115	156	108	167	125
5	1231	120	172	115	179	142
6	1372	142	203	139	209	174
7	1582	145	203	140	214	177

Time x trunk circumference

Model and prior distribution

$$y_{ij} \sim N\left(\frac{\phi_{i1}}{1+\phi_{i2}e^{\phi_{i3}x_j}}, \tau_C^{-1}\right)$$

where

$$\theta_{i1} = \log(\phi_{i1}), \theta_{i2} = \log(\phi_{i2} + 1), \text{ and } \theta_{i3} = \log(-\phi_{i3})$$

$$\begin{pmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \end{pmatrix} \sim N \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{bmatrix}, \begin{pmatrix} \tau_1^{-1} & 0 & 0 \\ 0 & \tau_2^{-1} & 0 \\ 0 & 0 & \tau_3^{-1} \end{bmatrix}$$

$$\begin{split} \mu_i &\sim N(0, 1000) \\ \tau_i &\sim G(0.001, 0.001) \\ \tau_c &\sim G(0.001, 0.001) \end{split}$$

BUGS code

```
model {
 for (i in 1:K) {
    for (i in 1:n) {
      Y[i, j] ~ dnorm(eta[i, j], tauC)
      eta[i, j] <- phi[i, 1] / (1 + phi[i, 2] * exp(phi[i, 3] * x[j]))
    }
    phi[i, 1] \le exp(theta[i, 1])
    phi[i, 2] <- exp(theta[i, 2]) - 1
    phi[i, 3] < -exp(theta[i, 3])
   for (k in 1:3) {
    theta[i, k] ~ dnorm(mu[k], tau[k])
 tauC \sim dgamma(1.0E-3, 1.0E-3)
 sigmaC <- 1 / sqrt(tauC)
 varC < -1 / tauC
 for (k in 1:3) {
  mu[k] \sim dnorm(0, 1.0E-4)
  tau[k] ~ dgamma(1.0E-3, 1.0E-3)
  sigma[k] < -1 / sqrt(tau[k])
}
```

Data and initial values

list(n=7,K=5,x=c(118.00,484.00,664.00,1004.00,1231.00,1372.00,1582.00), Y=structure(.Data=c(30.00,58.00,87.00,115.00,120.00,142.0,145.00,33. 00,69.00,111.00,156.00,172.00,203.00,203.00,30.00,51.00,75.00,108.0 0,115.00,139.00,140.00,32.00,62.00,112.00,167.00,179.00,209.00,214. 00,30.00,49.00, 81.00,125.00,142.00,174.00,177.00),.Dim=c(5, 7)))

list(theta=structure(.Data=c(5,2,-6,5,2,-6,5,2,-6,5, 2, -6,5,2,-6),.Dim=c(5, 3)),mu=c(5,2,-6),tau=c(20,20,20), tauC=20)

File Tools Edit Attributes Info Model Inference Options Doodle Map Text Window Help

Saving MCMC sequences

🗱 WinBUGS14									
File Tools Edit Attributes Info Model Inference Options Doodle Map Text Window Help									
lixo.txt	E CODA index		3						
lixo.txt 10001 5.277 10002 5.415 10003 5.354 10004 5.266 10005 5.341 10006 5.431 10007 5.264 10009 5.228 10010 5.47 10011 5.255 10012 5.334 10013 5.411 10014 5.291 10015 5.19 10016 5.297 10017 5.162 10018 5.284 10019 5.307 10020 5.201 10021 5.275 10022 5.372 10023 5.346 10024 5.279	<pre>mu[1] 1 10000 mu[2] 10001 20000 mu[3] 20001 30000 phi[1,1] 30001 40000 phi[1,2] 40001 50000 phi[2,1] 60001 70000 phi[2,2] 70001 80000 phi[2,3] 80001 90000 phi[3,1] 90001 100000 phi[3,2] 100001 110000 phi[3,3] 110001 120000 phi[4,1] 120001 130000 phi[4,2] 130001 140000 phi[4,3] 140001 150000 phi[5,1] 150001 160000 phi[5,2] 160001 170000 phi[5,3] 170001 180000</pre>		Specification Tool check model load data check model load data compile num of chains 1 load inits for chain 1 gen inits for chain 1 gen inits for chain 1 update 10000 update 10000 over relax adapting image: stats coda quantiles bg diag stats coda updiage bg diag stats coda						
Orange trees Exam	oles Volume II		✓						
🐉 start 🛛 🖉 🖉 🖸	📓 🔎 🏠 Local Disk (C:) 🙀 WinBUGS 14 🔮 🛙	ocument1 🖳 RGui 🚺 Microsoft Po	🔁 Untitled - N 🛛 🧷 😰 😰 🗿 🐼 🔊 🎭 🙆 🏷 😓 10:10 PM						

Posterior densities

independent prior

Posterior densities

multivariate prior

$$\begin{split} \theta &= (\theta_1, \theta_2, \theta_3)', \mu = (\mu_1, \mu_2, \mu_3) \\ \theta &\mid \mu, \Sigma \sim N(\mu, \Sigma) \\ \mu &\sim N(0_3, 100000I_3) \\ \Sigma^{-1} &\sim Wishart(3, 0.1I_3) \\ \tau_C &\sim G(0.001, 0.001) \end{split}$$

Posterior predictive Independent x multivariate priors

time

Example 2: Multivariate hierarchical model

- Goldstein et al. (1993) present an analysis of examination results from inner London schools. They use hierarchical or multilevel models to study the between-school variation, and calculate school-level residuals in an attempt to differentiate between `good' and `bad' schools.
- Standardized mean examination scores (Y) were available for 1978 pupils from 38 different schools. The median number of pupils per school was 48, with a range of 1--198.
- Pupil-level covariates included **gender** plus a standardized London Reading Test (**LRT**) score and a verbal reasoning (**VR**) test category (1, 2 or 3, where 1 represents the highest ability group) measured when each child was aged 11. Each school was classified by **gender intake** (all girls, all boys or mixed) and **denomination** (Church of England, Roman Catholic, State school or other); these were used as categorical school-level covariates.
- LTR:London Reading Test (LRT) ;VR: verbal reasoning (VR) test Girl: gender;G:Girls' school;B:Boys' school;CE:CE school; RC: RC school;OS:other school.

Model and prior distribution

y_{ii}:standardized mean examination scores, for pupil i and school j.

$$y_{ij} \sim N\left(x_{ij}^{T}\alpha_{j} + (z_{ij}^{T}, w_{j}^{T})\beta, \tau_{ij}^{-1}\right)$$
$$\log(\tau_{ij}^{-1}) = \theta + \phi LRT_{ij}$$
$$\alpha_{j} = (\alpha_{1j}, \alpha_{2j}, \alpha_{3j})', \beta = (\beta_{1}, \beta_{2}, \beta_{3}, \delta_{4}, \delta_{5}, \delta_{6}, \delta_{7}, \delta_{8})'$$
$$x_{ij}^{T} = (1, LTR_{ij}, VR1_{ij}); z_{ij}^{T} = (LTR_{ij}^{2}, VR2_{ij}, Girl_{ij}); w_{j}^{T} = (G_{j}, B_{j}, CE_{j}, RC_{j}, OS_{j})$$
$$\beta_{j} \sim N(0, 10000), \theta \sim N(0, 10000), \phi \sim N(0, 10000), \alpha_{j} \sim N(\gamma, \Omega),$$
$$\gamma \sim N(0_{3}, 1000I_{3}), \Omega^{-1} \sim W(3, \Omega_{0}^{-1})$$
$$\Omega_{0}^{-1} = \begin{pmatrix} 0.1 & 0.005 & 0.005 \\ 0.005 & 0.1 & 0.005 \\ 0.005 & 0.005 & 0.1 \end{pmatrix}$$

Prior - WinBugs code

```
#Priors for fixed effects:
for (k in 1 : 8) {
    beta[k] ~ dnorm(0.0, 0.0001)
}
theta ~ dnorm(0.0, 0.0001)
phi ~ dnorm(0.0, 0.0001)
# Priors for random coefficients:
for (j in 1 : M) {
    alpha[j,1:3] ~ dmnorm(gamma[1:3], T[1:3,1:3]);
    alpha1[j] <- alpha[j,1]
}
# Hyper-priors:
gamma[1:3] ~ dmnorm(mn[1:3], prec[1:3,1:3]);
T[1:3,1:3] ~ dwish(R[1:3,1:3], 3)
```

```
mn = c(0, 0, 0)
prec = structure(.Data = c(0.0001, 0, 0, 0.0001, 0, 0.0001), .Dim = c(3, 3))
R = structure(.Data = c(0.1, 0.005, 0.005, 0.005, 0.1, 0.005, 0.005, 0.005, 0.1), .Dim = c(3, 3))
```

A 1000 update burn in followed by a further 10000 updates gave the parameter estimates

node	mean	sd	MC error	2.5%	median	97.5%	start	sample
beta[1]	2.597E-4	9.65E-5	2.435E-6	7.334E-5	2.591E-4	4.497E-4	1001	10000
beta[2]	0.4099	0.06203	0.00341	0.2901	0.4093	0.53	1001	10000
beta[3]	0.17	0.04802	0.001491	0.07532	0.1698	0.2651	1001	10000
beta[4]	0.1147	0.1319	0.005749	-0.1406	0.112	0.3776	1001	10000
beta[5]	0.04825	0.1048	0.005128	-0.1645	0.04993	0.2435	1001	10000
beta[6]	-0.2871	0.1833	0.007287	-0.6438	-0.2852	0.07716	1001	10000
beta[7]	0.1477	0.1041	0.003529	-0.0575	0.1489	0.352	1001	10000
beta[8]	-0.1544	0.1885	0.007909	-0.5197	-0.1577	0.2302	1001	10000
gamma[1]	-0.6601	0.0982	0.006072	-0.8602	-0.6577	-0.4751	1001	10000
gamma[2]	0.03146	0.01012	1.33E-4	0.0113	0.03149	0.05154	1001	10000
gamma[3]	0.9447	0.08546	0.00466	0.7791	0.9433	1.111	1001	10000
phi	-0.002735	0.002834	3.034E-5	-0.0082	-0.002751	0.002699	1001	10000
theta	0.5804	0.03255	2.965E-4	0.5161	0.5807	0.6438	1001	10000

Example 3: Poisson hierarchical model

Breslow and Clayton (1993) analyse data initially provided by Thall and Vail (1990) concerning seizure counts in a randomised trial of anti-convulsant threrapy in epilepsy. The table below shows the successive **seizure counts for 59 patients**. Covariates are:

- treatment (0,1)
- 8-week baseline seizure counts,
- age in years. The structure of this data is shown below

Patient	y1	y2	уЗ	y4	Trt	Base	Age
1	5	3	3	3	0	11	31
2	3	5	3	3	0	11	30
3	2	4	0	5	0	6	25
4	4	4	1	4	0	8	36
8	40	20	21	12	0	52	42
9	5	6	6	5	0	12	37
59	1	4	3	2	1	12	37

$$\begin{split} y_{jk} &\sim \mathsf{Poisson}(\mu_{jk}) \\ &\log \mu_{jk} = \alpha_0 + \alpha_{\mathsf{Base}} \log(\mathsf{Base}_j/4) + \alpha_{\mathsf{Trt}} \mathsf{Trt}_j + \alpha_{\mathsf{BT}} \mathsf{Trt}_j \log(\mathsf{Base}_j/4) + \\ & \alpha_{\mathsf{Age}} \mathsf{Age}_j + \alpha_{\mathsf{V4}} \mathsf{V}_4 + \mathsf{b1}_j + \mathsf{b}_{jk} \end{split}$$

$$\begin{aligned} &\mathsf{b1}_j &\sim \mathsf{Normal}(0, \tau_{\mathsf{b1}}) \\ &\mathsf{b}_{jk} &\sim \mathsf{Normal}(0, \tau_{\mathsf{b}}) \end{split}$$

Coefficients and precisions are given independent "noninformative" priors.

The graphical model is below

A burn in of 5000 updates followed by a further 10000 updates gave the following parameter estimates

node	mean	sd	MC error	2.5%	median	97.5%	start	sample
alpha.Age	0.4921	0.3721	0.0162	-0.223	0.4843	1.263	5001	10000
alpha.BT	0.3394	0.2104	0.01922	-0.04543	0.3529	0.7535	5001	10000
alpha.Base	0.8806	0.1396	0.01068	0.5825	0.883	1.153	5001	10000
alpha.Trt	-0.9319	0.4157	0.03647	-1.757	-0.949	-0.1474	5001	10000
alpha.v4	-0.1032	0.08565	0.001771	-0.2692	-0.1028	0.0647	5001	10000
alpha0	-1.421	1.254	0.05049	-3.966	-1.399	1.031	5001	10000
sigma.b	0.3642	0.04391	0.001713	0.2843	0.3622	0.4548	5001	10000
sigma.b1	0.4976	0.07162	0.002429	0.3685	0.4929	0.6504		