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BAYESIAN PANEL DATA 
Hedibert Freitas Lopes

Graduate School of Business
University of Chicago

I took the following three examples from the WinBugs list of examples.  Both WinBugs
and the examples can be found at the The BUGS Project - Bayesian 
inference Using Gibbs Sampling site: http://www.mrcbsu.cam.ac.uk/bugs/welcome.shtml

Example 1: Orange Trees, Non-linear growth curve
This dataset was originally presented by Draper and Smith (1981) and reanalysed by Lindstrom and 

Bates (1990). The data Yij consist of trunk circumference measurements recorded at time xj, 
j=1,...,7 for each of i = 1,..., 5 orange trees.

Example 2: London schools
Goldstein et al. (1993) present an analysis of examination results from inner London schools. They 

use hierarchical or multilevel models to study the between-school variation, and calculate school-
level residuals in an attempt to differentiate between `good' and `bad' schools. 

Example 3: Repeated measures on Poisson counts
Breslow and Clayton (1993) analyse data initially provided by Thall and Vail (1990) concerning seizure 

counts in a randomised trial of anti-convulsant threrapy in epilepsy. The table below shows the 
successive seizure counts for 59 patients. Covariates are treatment (0,1), 8-week baseline seizure 
counts, and age in years. 

http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml
http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml
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Example 1: Non-linear growth curve
This dataset was originally presented by Draper and Smith (1981) and 

reanalysed by Lindstrom and Bates (1990). The data Yij consist of 
trunk circumference measurements recorded at time xj, j=1,...,7 for 
each of i = 1,..., 5 orange trees. We consider a logistic growth curve 
as follows:

-------------------------------------------
j        xj y1j  y2j   y3j    y4j    y5j
-------------------------------------------
1    118    30   33    30    32    30
2    484    58   69    51    62    49
3    664    87 111   75   112    81
4  1004 115  156 108   167  125
5  1231 120  172 115   179  142
6  1372 142  203 139   209  174
7  1582 145  203 140   214  177
-------------------------------------------
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Time x trunk circumference



Model and prior distribution
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BUGS code
model {

for (i in 1:K) {
for (j in 1:n) {

Y[i, j] ~ dnorm(eta[i, j], tauC)
eta[i, j] <- phi[i, 1] / (1 + phi[i, 2] * exp(phi[i, 3] * x[j]))

}
phi[i, 1] <- exp(theta[i, 1])
phi[i, 2] <- exp(theta[i, 2]) - 1
phi[i, 3] <- -exp(theta[i, 3]) 
for (k in 1:3) {

theta[i, k] ~ dnorm(mu[k], tau[k])
}

}
tauC ~ dgamma(1.0E-3, 1.0E-3)
sigmaC <- 1 / sqrt(tauC)
varC <- 1 / tauC
for (k in 1:3) {

mu[k] ~ dnorm(0, 1.0E-4)
tau[k] ~ dgamma(1.0E-3, 1.0E-3)
sigma[k] <- 1 / sqrt(tau[k])

}
}
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Data and initial values
list(n=7,K=5,x=c(118.00,484.00,664.00,1004.00,1231.00,1372.00,1582.00),

Y=structure(.Data=c(30.00,58.00,87.00,115.00,120.00,142.0,145.00,33.
00,69.00,111.00,156.00,172.00,203.00,203.00,30.00,51.00,75.00,108.0
0,115.00,139.00,140.00,32.00,62.00,112.00,167.00,179.00,209.00,214.
00,30.00,49.00, 81.00,125.00,142.00,174.00,177.00),.Dim=c(5, 7)))

list(theta=structure(.Data=c(5,2,-6,5,2,-6,5,2,-6,5, 2, -6,5,2,-6),.Dim=c(5, 
3)),mu=c(5,2,-6),tau=c(20,20,20), tauC=20)
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Saving MCMC sequences
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Posterior densities 
independent prior



Posterior densities 
multivariate prior
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Posterior predictive 
Independent x multivariate priors
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Example 2: Multivariate hierarchical model
Goldstein et al. (1993) present an analysis of examination results from inner 

London schools. They use hierarchical or multilevel models to study the 
between-school variation, and calculate school-level residuals in an 
attempt to differentiate between `good' and `bad' schools. 

Standardized mean examination scores (Y) were available for 1978 pupils 
from 38 different schools.  The median number of pupils per school was 48, 
with a range of 1--198. 

Pupil-level covariates included gender plus a standardized London Reading 
Test (LRT) score and a verbal reasoning (VR) test category (1, 2 or 3, 
where 1 represents the highest ability group) measured when each child 
was aged 11. Each school was classified by gender intake (all girls, all 
boys or mixed) and denomination (Church of England, Roman Catholic, 
State school or other); these were used as categorical school-level 
covariates.

LTR:London Reading Test (LRT) ;VR: verbal reasoning (VR) test
Girl: gender;G:Girls' school;B:Boys' school;CE:CE school;
RC: RC school;OS:other school.
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Model and prior distribution 
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Prior - WinBugs code
#Priors for fixed effects:
for (k in 1 : 8) {

beta[k] ~ dnorm(0.0, 0.0001)
}
theta ~ dnorm(0.0, 0.0001)
phi ~ dnorm(0.0, 0.0001)

# Priors for random coefficients:
for (j in 1 : M) {

alpha[j,1:3] ~ dmnorm(gamma[1:3 ], T[1:3 ,1:3 ]); 
alpha1[j] <- alpha[j,1]

}
# Hyper-priors:
gamma[1:3] ~ dmnorm(mn[1:3 ], prec[1:3 ,1:3 ]);
T[1:3 ,1:3 ] ~ dwish(R[1:3 ,1:3 ], 3)

mn = c(0, 0, 0)
prec = structure(.Data = c(0.0001, 0, 0, 0, 0.0001, 0, 0,0, 0.0001), .Dim = c(3, 3))
R = structure(.Data = c(0.1, 0.005, 0.005, 0.005, 0.1, 0.005, 0.005, 0.005, 0.1), .Dim = c(3, 3))
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A 1000 update burn in followed by a further 
10000 updates gave the parameter 
estimates 
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Example 3: Poisson hierarchical model

Breslow and Clayton (1993) analyse data initially provided by Thall and Vail 
(1990) concerning seizure counts in a randomised trial of anti-convulsant
threrapy in epilepsy. The table below shows the successive seizure 
counts for 59 patients. Covariates are:

• treatment (0,1)
• 8-week baseline seizure counts, 
• age in years. The structure of this data is shown below

Patient y1 y2 y3 y4 Trt Base Age
1 5 3 3 3 0 11 31
2 3 5 3 3 0 11 30
3 2 4 0 5 0 6 25
4 4 4 1 4 0 8 36
....
8 40 20 21 12 0 52 42
9 5 6 6 5 0 12 37
....
59 1 4 3 2 1 12 37
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A burn in of 5000 updates followed by a 
further 10000 updates gave the following 
parameter estimates
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