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MC in the 40s and 50s

A bit of

history
Stan Ulam soon realized that computers could be used in this
fashion to answer questions of neutron diffusion and
mathematical physics;

He contacted John Von Neumann and they developed many
Monte Carlo algorithms (importance sampling, rejection
sampling, etc);

In the 1940s Nick Metropolis and Klari Von Neumann designed
new controls for the state-of-the-art computer (ENIAC);

Metropolis and Ulam (1949) The Monte Carlo method. Journal of the American Statistical Association.
Metropolis et al. (1953) Equations of state calculations by fast computing machines. Journal of Chemical
Physics.
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Monte Carlo methods

A bit of
history

We introduce several Monte Carlo (MC) methods for
integrating and/or sampling from nontrivial densities.

e MC integration

e Simple MC integration
e MC integration via importance sampling (IS)

e MC sampling

e Rejection method

e Sampling importance resampling (SIR)
e |terative MC sampling

e Metropolis-Hastings algorithms
e Simulated annealing
e Gibbs sampler

Based on the book by Gamerman and Lopes (1996).
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A few references

MC integration (Geweke, 1989)

Rejection methods (Gilks and Wild, 1992)

SIR (Smith and Gelfand, 1992)
Metropolis-Hastings algorithm (Hastings, 1970)
Simulated annealing (Metropolis et al., 1953)
Gibbs sampler (Gelfand and Smith, 1990)



Two main tasks

A bit of
history

@ Compute high dimensional integrals:

E.[h(0)] = / h(0)r(6)do

® Obtain
a sample {01, ...,0,} from w(0)
when only
a sample {01, ...,0,} from q(0)
is available.

q(0) is known as the proposal/auxiliary density.
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Bayes via MC

MC methods appear frequently, but not exclusively, in modern
Bayesian statistics.

A bit of
history

Posterior and predictive densities are hard to sample from:

Posterior : 7(0) = f(XJC?))f;(Q)

Predictive f(x):/f(x|0)p(0)d9

Other important integrals and/or functionals of the posterior
and predictive densities are:

e Posterior modes: maxy 7(6);

e Posterior moments: E;[g(0)];

Density estimation: 7(g(0));
Bayes factors: f(x|Mo)/f(x|M1);
Decision: maxy [ U(d, 0)7(0)d6.
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MC
integration

MC integration

The objective here is to compute moments

E.[h(0)] = / h(0)7(0)d0

If 61,...,0, is a random sample from () then
_ 1
hme ==Y h(6;) — Ex[h(0)]  as n — oo

n<
i=1

If, additionally, E;[h?(6)] < oo, then

Vellime] = / (h(0) — EA[H(0)]}27(0)do

and

1< . .
Vime = — > (h(67) = hnc)® = Valhme]  as n— oc.

i=1
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Example i. MC integration

The objective here is to compute!

MC
integration

1
p— / [cos(500) + sin(206)]%d6
0
by noticing that the above integral can be rewritten as
E.[h(0)] = / h(0)7(0)d0

where h(6) = [cos(500) + sin(200)]? and 7(#) = 1 is the
density of a U(0,1). Therefore

where 01,...,60, are i.i.d. from U(0,1).
True value is 0.965.
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MC

integration

1.0

08

06

04

02

0.0

ae

>
-
o
le -
&
P
*
.
4
4
.
— e — L
——
Pl
i e
R
JE A,
N I
\
N
RN R G

80 4 00

sample size (log10)

10



MC via IS

MCvia 15 The objective is still the same, ie to compute

EL[h(0)] = / h(0)=(0)d0
by noticing that

etno = [ Om D q)a0

where g(-) is an importance function.

11
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If 61,...,0, is a random sample from g(-) then

MC via IS n

oL Ly~ hO(0)
= Fe= >0 MO £ o

as n — oo.
Ideally, g(-) should be

e As close as possible to h(-)x(-), and

e Easy to sample from.
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Example ii. Cauchy tail

The objective here is to estimate
MC via IS

oo
1
= Pr(0 >2) = ——————df = 0.1475836
p=Pr(0>2) /2 (1 +67)
where 0 is a standard Cauchy random variable.

A natural MC estimator of p is
By = lzn:/{e-e (2,00)}
pP1 = n — i )

where 01, ...,60, ~ Cauchy(0,1).

17/09



MC via IS A more elaborated estimator based on a change of variables

fromfOtou=1/0is

where vy, ..., up ~ U(0,1/2).
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MC via IS

The true value is p = 0.147584.

: I
100 0.100000 0.1467304 0.030000 0.001004
1000 0.137000 0.1475540 0.010873 0.000305
10000 0.148500 0.1477151 0.003556 0.000098
100000 | 0.149100 0.1475591 0.001126 0.000031
1000000 | 0.147711 0.1475870 0.000355 0.000010

With only n = 1000 draws, po has roughly the same precision

that p1, which is based on 1000n draws, ie. three orders of

magnitude.
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Rejection method
The objective is to draw from a target density

7(0) = ¢ #(6)
Rejection

et when only draws from an auxiliary density
a(8) = cqd(6)
is available, for normalizing constants ¢, and ¢,.

If there exist a constant A < oo such that

#(6)
0= A4(6)

<1 forall @

then g(0) becomes a blanketing density or an envelope and A
the envelope constant.
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Bad draw

pi (target)
g (proposal)

Aq

pi/Aq=0.41
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Good draw

pi (target)
g (proposal)

Aq

pi/Aq=0.89
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Algorithm

Drawing from 7(6).
@ Draw 6* from q(-);

Rejection

method 9 Draw u from U(O 1)
. A(07) .
© Accept 0% if u < AG(0+)

O Repeat 1, 2 and 3 until n draws are accepted.

Normalizing constants ¢, and ¢4 are not needed.
The theoretical acceptance rate is ACT".
us

The smaller the A, the larger the acceptance rate.



Example iii. Sampling N(0,1)

Enveloping the standard normal density

exp{—0.50%}

1
ejection 7T(9) =
Eejthod V 27T
by a Cauchy density qc(0) = 1/(w(1 + 62)), or a uniform
density qy(#) = 0.05 for 6 € (—10, 10).

Bad proposal: The maximum of 7(6)/qu(0) is roughly
Ay =7.98 for 6 € (—10,10). The theoretical acceptance rate
is 12.53%.

Good proposal: The max of m(0)/qc(0) is equal to

Ac = /27m/e = 1.53. The theoretical acceptance rate is
65.35%.
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UNIFORM PROPOSAL CAUCHY PROPOSAL

04
04

M M

Rejection 24 24
method

0.2

0.1
0.1

0.0
0.0

Empirical rates: 0.1265 (Uniform) and 0.6483 (Cauchy)
Theoretical rates: 0.1253 (Uniform) and 0.6535 (Cauchy)
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SIR method

No need to rely on the existance of Al

Algorithm
® Draw 07,...,6;, from q(-)
SIR method ® Compute (unnormalized) weights

wi =7m(07)/q(67) i=1,...,n
©® Sample 6 from {07,...,6}} such that

Pr(6 = 07) x wj i=1,...,n.
O Repeat m times step 3.

Rule of thumb: n/m = 20.
Ideally, w; =1/n and Var(w) = 0.

254/ Q9



Example iii. revisited

UNIFORM PROPOSAL CAUCHY PROPOSAL

-~ IER S|

04

04
=

0.2
0.2

0.0
0.0

Fraction of redraws: 0.391 (Uniform) and 0.1335 (Cauchy)
Variance of weights: 4.675 (Uniform) and 0.332 (Cauchy)
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Example iv. 3-component mixture

Assume that we are interested in sampling from

7(0) = capn(8; pe1, X1) + copn(0; pi2, X2) + azpn(0; 13, X3)

where py(-; i, X) is the density of a bivariate normal
distribution with mean vector . and covariance matrix . The
mean vectors are

SIR method

H1 = (1a4)/ H2 = (47 2), Hu3 = (65,2)3

the covariance matrices are

1.0 -0.9 1.0 -05
1= < 09 1.0 ) and 2p=123= < 05 1.0 )
and weights a3 = ap = a3 = 1/3.
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SIR method

Target 7(0)




SIR method

Target 7(0)

g
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Proposal g(6)

SIR method

q(0) ~ N(p,X) where

> = (4.2) and Z:9< 1.0 —0.25>

—-0.25 1.0

20 /499



Rejection method

SIR method

Acceptance rate: 9.91% of n = 10,000 draws.
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SIR method

SIR method

Fraction

of redraws: 29.45% of (n = 10,000, m = 2,000).

21



Rejection & SIR
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SIR method

Example v. 2-component mixture

Let us now assume that
7(0) = arpn(0; p1, 1) + aspn(6; p3, L3)
where mean vectors are
pm=(1,4) ps=(65,2),
the covariance matrices are
2= loe 00 ) ™ ==( s 1o ).

and weights oy = 1/3 and a3 = 2/3.

27 /Q9



SIR method

Target 7(0)




Target 7(0)

SIR method
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Proposal g(6)

SIR method

=

=




Rejection method

SIR method

Acceptance rate: 10.1% of n = 10,000 draws.
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SIR method

SIR method

Fraction of redraws: 37.15% of (n = 10,000, m = 2,000).

29 /99
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MCMC history

Dongarra and Sullivan (2000) list the top algorithms with the
greatest influence on the development and practice of science
and engineering in the 20th century (in chronological order):

SIR method e Metropolis Algorithm for Monte Carlo

Simplex Method for Linear Programming

Krylov Subspace Iteration Methods

The Decompositional Approach to Matrix Computations

The Fortran Optimizing Compiler

QR Algorithm for Computing Eigenvalues
e Quicksort Algorithm for Sorting

e Fast Fourier Transform

A0 / Q9



SIR method

70s and 80s

Metropolis-Hastings:

Hastings (1970) and his student Peskun (1973) showed that
Metropolis and the more general Metropolis-Hastings algorithm
are particular instances of a larger family of algorithms.

Gibbs sampler:

Besag (1974) Spatial Interaction and the Statistical Analysis of Lattice Systems.

Geman and Geman (1984) Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images.
Pearl (1987) Evidential reasoning using stochastic simulation.

Tanner and Wong (1987). The calculation of posterior distributions by data augmentation.

Gelfand and Smith (1990) Sampling-based approaches to calculating marginal densities.

a1



MH algorithms

A sequence {#(®,0() 9(2) 1 is drawn from a Markov chain
whose limiting equilibrium distribution is the posterior
distribution, ().

Algorithm
" ©® Initial value: 6(©
algorithms 9 Proposed move: 9* ~ q(e*‘e(lil))

© Acceptance scheme:

0 _ |0 com prob. «
0 .
6U-1)  com prob. 1—a

where

o m(6) q(6' V6%
o= mn {1’ (00D g(6+[0—D)

A7 / Q9



Special cases

@ Symmetric chains: g(0]0*) = q(6*|0)

" a:mm{ w?}

algorithms

“‘mm{ ()}

where w(0*) = w(0*)/q(0*).

® Independence chains: g(0|0*) =

AT/ Q9



MH
algorithms

Random walk Metropolis

The most famous symmetric chain is the random walk
Metropolis:

q(016") = q(|6 — 671)

Hill climbing: when

o= min {1’ 7:(9;))}

a value 0* with higher density m(0*) greater than 7(0) is
automatically accepted.

A4 /09



Example iv. RW Metropolis

MH
algorithms

q(9|0;) ~ N(9,-, 0.2522).

AR /OD
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Example v. RW Metropolis

MH
algorithms w -
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Example v. Autocorrelations

| Hllumum WWW

MH
algorithms

.

\\\\\\\\\\\\\\\\\ W W

[ WWW



Example vi. tuning selection

Tthe target distribution is a two-component mixture of
bivariate normal densities, ie:

w(0) = 0.7fn(0; p1, X1) + 0.3fn(0; 2, X2).

MH where

algorithms
py = (4.0,5.0)
uy = (0.7,3.5)

1.0 07
X1 = (0.7 1.0)

1.0 -07
Z2 = <—0.7 1.0)'

RT /Q9
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MH
algorithms

q(0,¢) = fn(¢; 0,vhk) and v =tuning.

tuning=0.01
Initial value=(4,5)
rate=93.8%

RW Metropolis

tuning=1
Initial value=(4,5)

tuning=100
Initial value=(4,5)

Ac rate=2.4%

Acceptance rate=48.5%

tuning=0.01
Initial value=(0,7)
Acceptance rate=93.3%

) 2 4 2 0 2 4 6
tuning=1 tuning=100
Initial value=(0,7) Initial value=(0,7)
Ac rate=2.4%

rate=49.3%

£
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Tuning=0.01
Initial value=(4,5)

Autocorrelations

Tuning=1
Initial value=(4,5)

Tuning=100
Initial value=(4,5)

algorithms T T T T T
lag

Tuning=0.01
Initial value=(0,7)

Tuning=
Initial value=(0,7)

Tuning=100
Initial value=(0,7)




MH
algorithms

q(0, ¢) = fn(; s, vl) and pz = (3.01,4.55)".

tuning=0.5
Initial value=(4,5)
Acceptance rate=9.9%

Independent Metropolis

tuning=5
Initial value=(4,5)
Acceptance rate=30.9%

tuning=50
Initial value=(4,5)
Acceptance rate=5%

Acceptance rate=9.9%

Acceptance rate=30.9% -

Acceptance rate=5%

tuning=0.5
Initial value=(0,7)
Acceptance rate=29.4%

) 2 4 2 0 2 4
tuning=5 tuning=50
Initial value=(0,7) Initial value=(0,7)
rate=32.2% Ac rate=4.3%

Acceptance rate=29.4%

Acceptance rate=32.2%

Acceptance rate=4.3%

EE
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MH
algorithms

Autocorrelations

Tuning=0.5 Tuning=5 Tuning=50
Initial value=(4,5) Initial value=(4,5) Initial value=(4,5)

0 50 100 150 200 0 50 100 150 200 0 E 100 150 200
lag tag lag
Tuning=0.5 Tuning=" Tuning=
Initial value=(0,7) Initial value=(0,7) Initial value=(0,7)




Simulated
annealing

Simulated annealing

Simulated annealing? is an optimization technique designed to
find maxima of functions.

It can be seen as a M-H algorithm that tempers with the target
distribution:
q(6) o< w(6)" 7

where the constant T > 1 receives the physical interpretation
of system temperature, hence the nomenclature used
(Jennison, 1993).

The heated distribution g is flattened with respect to 7 and its
density gets closer to the uniform distribution, which is
particularly relevant for the case of a distribution with distant
modes.

By flattening the modes, the moves required to cover
adequately the parameter space become more likely.

Kirkpatrick, Gelatt and Vecchi (1983)

R7 / Q9



Example vii: Nonlinear surface

Assume that the goal is to find the mode/maximum of

ﬁ1+52xl) Yi
ﬂ17/82) X H 1 T eﬁ1+52xl)57

with x = (—0.863, —0.296, —0.053,0.727) and y = (0,1, 3,5).

Simulated The simulated annealing algorithm is implemented for four
annealing L.
initial values:

(5730) (_2740) (_47 _10) (670)
and two cooling schedules:
Ti=1/i and T;=1/[10log(1 + i)].

The proposal distribution is g(5]6()) = fy(8; 1), 0.05%1).

RIS / Q9



H _—
5’
8 \
\
T T T T T T 1
4 2 3 2 4 3 000 000 .00 400 so00
[ Ierations.
Ti=1/[10l0g(i+1)] B2
Simulated N - \7‘;‘
annealing n = \\
< -,
e e
b T T T T T 1
4 2 3 2 4 6 1000 2000 300 400 5000

terations

Newton-Raphson mode: (0.87,7.91).
T; = 1/i: mode is (0.88,7.99) when (8{”, 3% = (5,30).
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Gibbs sampler
Technically, the Gibbs sampler is an MCMC scheme whose
transition kernel is the product of the full conditional
distributions.
Algorithm
® Start at 6 (90) 9 0 ..)
® Sample the components of 0U) iteratively:
09~ w(00Y Y, 007 )
09~ w(02009),097, .. )
Gibbs sampler 9:(5_[) 7T(93|9§-J), 0%[)’ - )

2

The Gibbs sampler opened up a new way of approaching
statistical modeling by combining simpler structures (the full
conditional models) to address the more general structure (the
full model).

AT /Q9



Gibbs sampler

Example viii: Bivariate normal

Assume that the target distribution is the bivariate normal with
mean vector and covariance matrix given by

2
M:<M1> and Zz( 71 0122>,
M2 012 03
respectively.

In this case, the two full conditionals are given by

‘7%2
61102 ~ N { 111 + 712 (92 — [12),01 — =5
2 )

and )
g

02(01 ~ N <M2 %(91 p1), 05 — 122>
01 01

A/ QD



=
=N
1l
Q9 =
NN N
[l

o

o12 = —0.95

6,
0
!

Gibbs sampler

-4

-4 -2 0 2 4
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6,
0
!

-2

Gibbs sampler

-4 -2 0 2 4
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Gibbs sampler

AcE

00 02 04 06 08 10

00 02 04 06 08 10

&
4 E 3
o Hrcamazzcar--o-oo -
s

0 25 @

LB —
o 5 10 15

T
0 25 3

Middle frame: Based on M = 21,000 consecutive draws.
Bottom frame: Based on M = 1000 draws, after initial
Mo = 1000 draws and saving every 20th draws.
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Gibbs sampler

Density

—
—

Density




Example: Seemingly Unrelated
Regressions

Investments
Grunfeld (1958), Boot and White (1960) and Zellner
(1962,1963) study

/mt = Bml + /6m2Fmt + ﬂm?:Cmt + Emt

e Should the parameters be the same across firms?
SUR model e Do the e, share unobserved common factors?

e Staking the observation for firm m:

Ym = XmBm +€m

AT/ QD



Capital asset pricing
For a given security, the CAPM specifies that

mt — re = Om + Bm(rme — &) + €me

for return on security m, rm, return on a risk-free security, rg,
and market return, rpy;.

e Are the disturbances correlated across securities?
e Are the a,s and/or (s related in any way?

SUR model e Staking the observation for security m:

Ym = Xmﬁm +Em

AO / Q9



Gross State Product
Greene (2008) examines (his examples 9.9 and 9.12) Munnell's
(1990) model for output by the 48 continental US states:

|Og GSPmt = ﬁml + ﬂmZ |Og pcapmt + /8m3 |Og hW)/mt
4+ Bmalog waterm: + Bms log utily,:

+  Bme log empms + Bmrunempm; + €me

Should the coefficient vector be the same across states?

Should the disturbances correlated across states?

SUR model Should the disturbances correlated across time?

Staking the observation for state m:

Ym = Xmﬁm +Em

70 / Q9



SUR model

SUR
Form=1,....Mandt=1,..., T

/o
Ymt = thﬂm + €mt,

with xm: a kpp-dimensional vector of regressors.

Let us stack all equations:

vi = (Vier---syme) (M x 1)
et = (€1t,...,€Mt)/ (MX 1)
B = (B 0m) (k x 1)

X = diag(X{tv'-'vx;Wt) (M x k)
where k = Zﬁ\n/’:l Km. Therefore,

ye = X8+ &t

71T / Q9



SUR model

We can now stack all observations t = 1,..., T together:

y = ()/17---7}/T)/
e = (5t> s 75T)/
X = (X,...,Xxb,

such that
y=X0+e.

NLRM: € are i.i.d. N(0,02) for all m and t.
SUR: g¢ are i.i.d. N(0,X) for all ¢t.

This leads to € ~ N(0, ), where
Q=diag(x,....Y)=Ir®%

is an MT x MT block-diagonal covariance matrix.

77 / Q9



Prior distribution

Conditionally conjugate prior for 3 and ® = ¥~

p(B, ®) = p(B)p(®),

where
B~ N(fo, Vo)
and

$ ~ Wishart(uo, q)o)

SUR model

See Dreze and Richard (1983) and Richard and Steel (1988) for
further discussion regarding alternative prior specifications.

77 /Q9



Full conditionals

The full conditional distributions are

Bly, X, X ~ N(p1, V1)
Sly, X, ~ Wishart(vi, ®1)

where 1 =15+ T,
;
Vit o= V) XX
t=1

Vl_lﬂl = Vo_lﬂO + Z X Py

t=1

SUR model

-
(Dl_l = cl)0_1 + Z(Yt = XeB)(ye — Xtﬂ)/

t=1

74 / Q9



SUR model

Grunfeld's (1958) data
M=10 U.S. firms over T=20 years, 1935-1954 3

Variables:

FN = Firm Number; YR = Year;

| = Annual real gross investment;

F = Real value of the firm (shares outstanding); and
C = Real value of the capital stock.

Firms:

General Electric, Westinghouse,
U.S. Steel, Diamond Match,
Atlantic Refining, Union Qil,
Goodyear, General Motors,
Chrysler and IBM

3Zellner (1971), pages 240-246.
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Regression coefficients




Standard deviations




SUR model
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SUR model
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Example: Bivariate BVAR(1)

Let yr = (ye1, yr2)' contain 2 time series observed at time t.

The (basic) VAR(1) can be written as

()’t|}’t—17 Ba z) ~ N(Byt—17 Z)

where

BVAR B:<511 512) and Z:(U% 012)
f21 B2 o1 03

Q
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VAR(1) as a SUR model

The above VAR(1) model can be rewritten as a SUR model as

()/t‘zn s, Z) ~ N(Zt@ Z)

where
5 ( Yi-11 Yi—-12 0 0 >
‘ 0 0 Yeo11 Ye-12
and
P11
| P2
b= B21
BVAR /322
Therefore,

(I8, X) ~ N(Z8, %)
where y = (y1,...,y%) and Z = (z,...,2%)".
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Prior of (5,X)

We assume that 3 and X are independent a priori.

Prior of (:
B ~ N(bg, By).

Prior of X:
Y ~ IW(vo, Vo).

BVAR

This conditionally conjugate prior DOES NOT lead to closed
form posterior inference, but the implementation of the Gibbs
sampler is straightforward.
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Full conditional of 3

It is easy to see that

p(BIZ,y) o exp{—0.5[8'By*B—28'By" 5]}

x exp{—05[3Z'c'Z3-20Z's"y]}.

Therefore,
ﬁ|za77y ~ N(ﬁla Vl)

where
BVAR

B1=Bi(By o+ 227 ty) and B'=By'+Z72¥7'z
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Full conditional of ¥
It is easy to see that

gtvp+1
p(Z|B,y) o< |X| 2 exp{—O.Str(Z_lvo)}

-
x x| o exp {—0.5 Z(yt — ztﬁ)/):_l(yt — ztﬁ)} .

t=1

Therefore,
|8,y ~ IW(vi, V1)

BVAR where vi = v + T and

.
S=V+ Z(Yt — zt3)(yr — z:0)".

t=1
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Simulated data

We simulated n = 360 observations (30 years of monthly data)
from the above bivariate VAR(1) with

g _ 0.85 0.10
~ \ 0.00 0.95
and

1.0 0.2
BVAR r= ( 0.2 1.0 )
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BVAR

Posterior inference

The prior hyperparameters are
bo == 04 and Bo == 1000/4

and
Vo = 5 and Vo = 0.001

We started the Gibbs sampler with B(®) = B (true value).

We runt he Gibbs sampler for M = 10,000 iterations.
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p(B|data)
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