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Model and prior setting

Let @1, ..., x, be a random sample from a (multivariate) mixture of normals,
i.e.
K
p(wlu’aﬂ-vs) = Zﬂde<.’13’,ll;k,S) (1)
k=1

where dN (x|p, S) denotes the probability density function of a (multivariate)
normal with mean (vector) p and variance(-covariance matrix) S, evaluated
at x, with = (pq, ..., pg) and @ = (71, ..., k).

Traditionally, latent indicator variables z; are included in the model for
clarity in such a way that

Pr(z =j)=m; (2)

foralli=1,...,nand j =1,..., K. Therefore, the likelihood in (1) can be

rewritten as,
K

p(|z, 1, ) =[] [] dN(ziln;. S) (3)
j=licl;
where € = (x1,...,2,), 2 = (21,...,2,), I = {i 1 z, = j,i = 1,...,n}

and n; = card(l;). Consequently, when combining the likelihood in (3) with
prior distributions for z and p,

zlm ~ M(K,m) and py ~ N(tyo, Vo)

respectively, the joint posterior for g and z is,

K

j=liel;

p(p, zlx, 7, S) x

1:[ dN(:u’j“'l’jOv VjO)] (4)

Obviously, analytically tratable posterior inference is impossible. Next,
we present the full conditional distributions z, u, 7w and S, to be used in the
Gibbs sampler algorithm.



Full conditionals

Full conditionals for  and z are given below. Notice that the full conditional
for the elements of z are not conditional on . We believe that this strategy
improves the Markov chain mixing since it eliminates, at least partially, high
dependence of p and z, usually observed in practical applications.

Full conditionals 1

If the prior distribution of 7w = (7, ..., 7k) is a Dirichlet with parameter n,,
ie. ™~ Dir(n,), then

7T|Z,£L',/J,, S ~ DZT(TIO + T’)

where = (m1,...,n) and n; = X0, 1(% = j).

Full conditionals of ® = S~!

If the prior distribution of @ is a Wishart with parameters v and v, ' ®,, ie.
& ~ W (1, vy ' @), then

(I)|Z7malia7" ~ W(Vlayl_lq)l)

where

K
m=1y+n and v @ =15 o+ ) (x;— ) (e — )

j=liel,

Full conditionals of u

Sampling p given z and x is straightforward. It is easily shown that

p(pl|z, ) 1_[1{{1_[ dN (xi|p;, S)

iEIJ'

dN(Njom VjO)} (5)

which has the kernel of a multivariate normal distribution with mean vector
and covariance matrix given by

=V (mS7'%;+ Vilng) and V= (nS7 + Va‘_oly1

respectively, for n;&; = 3 icr, @



Full conditionals of z: case I

Sampling z; given 2 = (21, ..., 2i—1, Zit1s - - - Zn), o and @ is also relatively
simple:
p(zi = jlza), pox) < Pr(z; = j)dN(zi|p;, S) = q(=:)
such that
_ mdN(zi|p;, S)
YR mdN (@], S)
The main drawback of previous sampling scheme is that 2y, 2o, ..., 2, are

highly correlated and that can significantly affect the performance of the
MCMC algorithm.

P(Zz'|z(i), W, )

Full conditionals of z: case II

An alternative is to sample z; given z(;) and x, ie. by integrating out p.
Initially,

Pr(zi = jlzu,®) oo Pr(z = jlze, Te)p(®ilzi = j, 26), Tw)
o< Pr(z = j)p(xilzi = j, 24), ()

where ;) = (1, ..., %1, Tiy1, ..., x,) and Pr(z; = j) = m;. Also,
p(xilzi = J}Z(z‘)’w(z‘)) = /P($i|zi =J Z(i)aw(i)7l'l’)p(/'l”z(iﬁw(i))dy’
= /dN(wi‘/l'jaS)p</"'j|z(i)aw(i)>d“j

H/p(ullz(i),w(i))dul

I#]

X

where the last product of integrals is equal to one, following the conditional
independence of pu’s given & and z shown above. It is easy to show that

p(“j|z(i)> w(i)) = dN(Njol,m Vi)

. -1 ~1\ ! “1x ~1
with le,i = (nj,l-S + VjO) s lJ’jl,i = le,i (nj,iS ZBJ”Z‘ + VjO [_Lj0>, ]j,i =
{l:z=y51=1,...,n and | # i}, n;; = card(I;;), and n;;&;; = ey, , Ti-
Therefore,

p(@ilzi = j, z@), Twy) /dN(CL'i\Hj,S)dN(NjWﬂ,mVﬂ,i)duj
X dN(wz'lltﬂ,m Viii+S)
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and
Pr(z = j|z(i)a x) o Wde(mz‘le,m Viii+S)

which is easy to sample from.



