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Model and prior setting

Let x1, . . . , xn be a random sample from a (multivariate) mixture of normals,
i.e.

p(x|µ,π,S) =
K∑

k=1

πkdN(x|µk,S) (1)

where dN(x|µ,S) denotes the probability density function of a (multivariate)
normal with mean (vector) µ and variance(-covariance matrix) S, evaluated
at x, with µ = (µ1, . . . , µK) and π = (π1, . . . , πK).

Traditionally, latent indicator variables zi are included in the model for
clarity in such a way that

Pr(zi = j) = πj (2)

for all i = 1, . . . , n and j = 1, . . . , K. Therefore, the likelihood in (1) can be
rewritten as,

p(x|z,µ,S) =
K∏

j=1

∏

i∈Ij

dN(xi|µj,S) (3)

where x = (x1, . . . , xn), z = (z1, . . . , zn), Ij = {i : zi = j, i = 1, . . . , n}
and nj = card(Ij). Consequently, when combining the likelihood in (3) with
prior distributions for z and µk,

z|π ∼ M(K, π) and µk ∼ N(µk0, V k0)

respectively, the joint posterior for µ and z is,

p(µ,z|x, π,S) ∝



K∏

j=1

∏

i∈Ij

dN(xi|µj,S)







K∏

j=1

dN(µj|µj0,V j0)


 (4)

Obviously, analytically tratable posterior inference is impossible. Next,
we present the full conditional distributions z, µ, π and S, to be used in the
Gibbs sampler algorithm.
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Full conditionals

Full conditionals for µ and z are given below. Notice that the full conditional
for the elements of z are not conditional on µ. We believe that this strategy
improves the Markov chain mixing since it eliminates, at least partially, high
dependence of µ and z, usually observed in practical applications.

Full conditionals η

If the prior distribution of π = (π1, . . . , πK) is a Dirichlet with parameter η0,
ie. π ∼ Dir(η0), then

π|z, x, µ,S ∼ Dir(η0 + η)

where η = (η1, . . . , ηk) and ηj =
∑n

i=1 1(zi = j).

Full conditionals of Φ = S−1

If the prior distribution of Φ is a Wishart with parameters ν0 and ν−1
0 Φ0, ie.

Φ ∼ W (ν0, ν
−1
0 Φ0), then

Φ|z, x, µ,π ∼ W (ν1, ν
−1
1 Φ1)

where

ν1 = ν0 + n and ν−1
1 Φ1 = ν−1

0 Φ0 +
K∑

j=1

∑

i∈Ij

(xi − µj)(xi − µj)
′

Full conditionals of µ

Sampling µ given z and x is straightforward. It is easily shown that

p(µ|z,x) ∝
K∏

j=1






 ∏

i∈Ij

dN(xi|µj, S)


 dN(µj|µj0,V j0)



 (5)

which has the kernel of a multivariate normal distribution with mean vector
and covariance matrix given by

µj = V j1

(
njS

−1x̃j + V −1
j0 µj0

)
and V j1 =

(
njS

−1 + V −1
j0

)−1

respectively, for njx̃j =
∑

i∈Ij
xi.
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Full conditionals of z: case I

Sampling zi given z(i) = (z1, . . . , zi−1, zi+1, . . . , zn), µ and x is also relatively
simple:

p(zi = j|z(i),µ,x) ∝ Pr(zi = j)dN(xi|µj,S) ≡ q(zi)

such that

p(zi|z(i),µ,x) =
πjdN(xi|µj,S)

∑K
l=1 πldN(xi|µl,S)

The main drawback of previous sampling scheme is that z1, z2, . . . , zn are
highly correlated and that can significantly affect the performance of the
MCMC algorithm.

Full conditionals of z: case II

An alternative is to sample zi given z(i) and x, ie. by integrating out µ.
Initially,

Pr(zi = j|z(i),x) ∝ Pr(zi = j|z(i),x(i))p(xi|zi = j, z(i), x(i))

∝ Pr(zi = j)p(xi|zi = j, z(i),x(i))

where x(i) = (x1, . . . , xi−1,xi+1, . . . , xn) and Pr(zi = j) = πj. Also,

p(xi|zi = j, z(i),x(i)) =
∫

p(xi|zi = j, z(i),x(i),µ)p(µ|z(i),x(i))dµ

=
∫

dN(xi|µj,S)p(µj|z(i),x(i))dµj

× ∏

l 6=j

∫
p(µl|z(i),x(i))dµl

where the last product of integrals is equal to one, following the conditional
independence of µ’s given x and z shown above. It is easy to show that

p(µj|z(i),x(i)) = dN(µj|µj1,i,V j1,i)

with V j1,i =
(
nj,iS

−1 + V −1
j0

)−1
, µj1,i = V j1,i

(
nj,iS

−1x̃j,i + V −1
j0 µj0

)
, Ij,i =

{l : zl = j, l = 1, . . . , n and l 6= i}, nj,i = card(Ij,i), and nj,ix̃j,i =
∑

l∈Ij,i
xl.

Therefore,

p(xi|zi = j, z(i),x(i)) ∝
∫

dN(xi|µj, S)dN(µj|µj1,i,V j1,i)dµj

∝ dN(xi|µj1,i,V j1,i + S)
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and
Pr(zi = j|z(i),x) ∝ πjdN(xi|µj1,i, V j1,i + S) (6)

which is easy to sample from.
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