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Summary. We propose a class of longitudinal data models with random effects that generalizes cur-
rently used models in two important ways. First, the random-effects model is a flexible mixture of
multivariate normals, accommodating population heterogeneity, outliers, and nonlinearity in the regres-
sion on subject-specific covariates. Second, the model includes a hierarchical extension to allow for
meta-analysis over related studies. The random-effects distributions are decomposed into one part that
is common across all related studies (common measure), and one part that is specific to each study
and that captures the variability intrinsic between patients within the same study. Both the com-
mon measure and the study-specific measures are parameterized as mixture-of-normals models. We
carry out inference using reversible jump posterior simulation to allow a random number of terms
in the mixtures. The sampler takes advantage of the small number of entertained models. The mo-
tivating application is the analysis of two studies carried out by the Cancer and Leukemia Group B
(CALGB). In both studies, we record for each patient white blood cell counts (WBC) over time to charac-
terize the toxic effects of treatment. The WBCs are modeled through a nonlinear hierarchical model that
gathers the information from both studies.

Key words: Markov chain Monte Carlo; Mixture model; Model averaging; Model selection; Pharmaco-
dynamic models; Reversible jump.

1. Introduction

We analyze longitudinal data from population pharmacody-
namic studies. The data come from two related studies. Two
important features of the data are heterogeneous populations,
and relatively small sample sizes in each study. Both are
typical features that arise in anticancer drug development.
Quite often, multiple studies at different institutions exam-
ine the same or similar drugs or drug combinations in small,
early-phase clinical studies that enroll cancer patients who
differ greatly in disease and personal characteristics. It would
strengthen inference if one could combine information across
studies in a way that allowed for the high degree of hetero-
geneity within and between the studies.

We introduce a class of flexible random-effects models to
accommodate this heterogeneity and propose a hierarchical
extension to allow for borrowing strength across the two stud-
ies. From a data analysis point of view, the proposed approach
provides two important advantages over separate, indepen-
dent modeling for each study. First, we can make inference
in the more recent study more precise by including data from
the earlier study. Second, we can make predictions for a fu-
ture third study by incorporating between-study and within-

study heterogeneity in the overarching model. This is critical
for study design and planning.

Models for Bayesian inference in longitudinal data models
with random effects are reviewed, for example, in Wakefield,
Aarons, and Racine-Poon (1998), with a focus on popula-
tion pharmacokinetic and pharmacodynamic (PK/PD) stud-
ies similar to the application in this paper. Let yij denote the
jth measurement on the ith patient, let θi denote a random-
effects vector for patient i, and let xi denote patient-specific
covariates, including treatment dose. The usual structure of
population PK/PD models is

p(yij |θi), p(θi |xi,φ), p(φ). (1)

Here p(yij |θi) is typically a parameteric nonlinear regression
for expected response over time. For example, θi could be
the parameters in a compartmental model for drug concen-
trations. The second level of the model specifies the prior dis-
tribution for the random-effects vectors θi, possibly including
a regression on patient-specific covariates xi, with φ denot-
ing the hyperparameters. Bayesian models similar to (1) have
been considered in Zeger and Karim (1991) for generalized lin-
ear mixed models, in Wakefield et al. (1994) for the general
population model assuming a multivariate normal population
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distribution, in Dellaportas and Smith (1993), and in
Wakefield (1996) with multivariate t prior distributions.

Heterogeneity in the patient population, outliers, and over-
dispersion make a strict parametric model for the population
distribution p(θi |xi, φ) unreasonable in our application. In-
stead, we consider an essentially nonparametric extension. In
maximum likelihood–based inference, popular nonparamet-
ric extensions to the population model (1) are the Nonpara-
metric Maximum Likelihood (NPML) method (Mallet, 1986),
with no restrictions on the distribution of the random-effects
in the model and yielding a discrete estimate of this distribu-
tion; and the Semi Nonparametric (SNP) approach (Davidian
and Gallant, 1993), a method that assumes a smooth density
for the random-effects distribution. Bayesian approaches to
nonparametric extensions are described in Rosner and Müller
(1997), Müller and Rosner (1997), Kleinman and Ibrahim
(1998), and Walker and Wakefield (1998). Walker and
Wakefield (1998) use Dirichlet process priors, the other ref-
erences use Dirichlet process mixtures. In this article, we
propose an alternative approach based on finite mixture-of-
normals models. A similar idea is proposed by Magder and
Zeger (1996), where the mixing distributions in linear mixed-
effects models are estimated as mixtures of Gaussians. Un-
related with the application in population models, Green
and Richardson (2001) argue for the use of finite mixture-of-
normals models in place of Dirichlet process mixtures, citing
issues of computational efficiency, flexibility of prior specifi-
cations, and interpretability.

Another important extension of the basic model (1) is to
allow joint analysis of several related studies. Such meta-
analysis is a popular theme in statistical inference, often mod-
eled with a hierarchy as in (1). But there is little work on
hierarchical models relating nonparametric models. One ap-
proach is discussed by Müller, Quintana, and Rosner (1999),
who extend Dirichlet process mixtures to allow for hierarchi-
cal extensions suitable for meta-analysis with nonparamet-
ric submodels. In contrast, in this article we propose finite
mixtures of normals with an emphasis on interpretation and
parsimony.

The article is organized as follows. In Section 2, we intro-
duce the motivating application. The random-effects model
based on finite mixtures of multivariate normals is presented
and discussed in Section 3. We propose a hierarchical model
across related studies to allow for meta-analysis. In Sec-
tion 3.4, we extend the model to include uncertainty about
the number of terms in the finite mixtures. Section 4 presents
results, and Section 5 concludes with a discussion.

2. Data
We analyze two studies carried out by the Cancer and
Leukemia Group B, CALGB (Lichtman et al., 1993). CALGB
8881 was a Phase I study that sought the highest dose of
the anticancer agent cyclophosphamide one could give can-
cer patients every two weeks. Patients also received the drug
GM-CSF to help reduce the ill effects of cyclophosphamide
on the patients’ marrow. The other study, CALGB 9160, was
built upon the experience gained in 8881, and included an
additional treatment, amifostine. The drug amifostine had
been shown in some studies to reduce some of the toxic
side effects of anticancer therapies, such as cyclophosphamide

and radiation therapy (Spencer and Goa, 1995). A common
toxicity of cancer therapy is myelosuppression, in which the
immune system is suppressed by killing cells involved in im-
mune functions. The objective of CALGB 9160 was to deter-
mine if adding amifostine would reduce the myelosuppressive
side effects of aggressive chemotherapy with cyclophos-
phamide and GM-CSF. CALGB 9160 randomized patients
to receive or not receive amifostine, along with cyclophospha-
mide (3 grams per square meter of body surface area) and
GM-CSF (5 micrograms per kilogram of body weight).
CALGB 9160 studied mainly the effect of amifostine
on various measures of hematologic toxicity such as nadir
(i.e., minimum) blood cell counts, or days of life-threatening
myelosuppression (see Rosner and Müller (1997) for more de-
tails about the design of this experiment). Since only 46 pa-
tients entered the randomized trial, we wished to use data
already gathered in the earlier study to help make inference
in CALGB 9160 more precise.

In particular, the investigators were interested in gaining
a better understanding of how clinically relevant character-
istics of the time course of the blood counts change in re-
sponse to the treatment. Rather than relying solely on the
observed blood counts that were sampled only two—or some-
times three—times a week for patients in CALGB 9160, we
can make inference more precise by incorporating informa-
tion learned from the previous study. We therefore set about
combining the data from CALGB 9160 with data available
from CALGB 8881—to model the entire time course of myelo-
suppression (reduced blood counts). The enrolled patient
population in each study was diverse in terms of baseline
characteristics, and the analysis of the combined data has to
accommodate this heterogeneity—both within and between
the two studies.

An important aspect of the desired analysis is inferring
about patients in the population at large, i.e., those who
might be in a future third study. The hierarchical meta-
analysis of the related two studies is critical for deriving such
an inference. Without the hierarchical model, there could
be no learning about which features of the data are study-
specific and which features are common to the population at
large.

Let K =2 be the number of studies under consideration,
and nk be the number of patients in study k. In study 8881,
we have data on n1 = 52 patients. The second study, CALGB
9160, includes data on n2 = 46 patients. In both studies, the
main outcome measure was the white blood cell count (WBC)
for each patient over time. We will use ykij to denote the
jth blood count measurement on the ith patient in study k
on day tkij , recorded on a log scale of thousands, i.e., ykij =
log(WBC/1000). In CALGB 8881 and 9160, we had a to-
tal of 674 and 706 observations, respectively. The number of
observations for one patient varies between 2 and 19. Some
patients’ measurements are shown in Figure 1. Rosner and
Müller (1997) used a nonlinear regression model to fit the
data:

ykij ∼ N
{
f(θki, tkij), σ

2
}
. (2)

The vector θ = (z1, z2, z3, τ 1, τ 2, β0, β1) parameterizes a mean
function f(θ, t) that is defined piecewise as (i) a horizontal
line for 0 ≤ t < τ 1; (ii) a straight line connecting parts (i) and
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Figure 1. Observed white blood cell count (log(WBC/
1000)) for some typical patients from studies CALGB 8881
and CALGB 9160. The solid line represents the posterior
means for f(θki, t) for t = 1, 2, . . . , 20 under the “best model”
(see Table 1 from Section 4).

(iii) (τ 1 ≤ t < τ 2); and (iii) a shifted and scaled logistic curve
(t ≥ τ 2):

f(θ, t) =

{
z1 t < τ1
rz1 + (1 − r)g(θ, τ2) τ1 ≤ t < τ2
g(θ, t) t ≥ τ2,

(3)

where r = (τ 2 − t)/(τ 2 − τ 1) and g(θ, t) = z2 +
z3/[1 + exp{−β0 − β1(t − τ 2)}]. The horizontal line (i) rep-
resents the initial baseline count; the steep decline (ii) cor-
responds to the sudden drop of WBC during chemotherapy;
and (iii) models an S-shaped recovery.

In the next level of a probability model for the WBC data,
we need to assume some population distribution p(θi |xi, φ)
for patient-specific random effects. The model should include
a regression on patient-specific covariates xi. Here, φ generi-
cally denotes the hyperparameters of such a model. To explore
suitable modeling approaches for the population distribution,
we start with some exploratory data analysis. In Figure 2, we
plot maximum likelihood estimates (m.l.e.) θ̂ki for the ran-
dom effects θki for all 98 patients, arranged by CTX and GM.
The m.l.e.’s were computed for each patient separately using
(2) only, without any hierarchical modeling across patients.
A simple multivariate normal random-effects distribution
p(θi| xi, φ) is inappropriate, since there seem to be subgroups
of patients, within each study, with distinct patterns—as
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Figure 2. Scatterplot of the maximum likelihood estima-
tors of z2 and τ 2 for certain combinations of CTX, GM-CSF
and amifostine from both studies. See equation (3) for the
definition of the parameters. Some pairs are identical, which
causes some hidden points.

Figure 2 suggests. We propose a model with mixture-of-
normals random-effects distributions. To informally inves-
tigate how such mixture models might accommodate the
observed heterogeneity, we applied a cluster analysis to the
maximum likelihood estimates θ̂ki. The resulting clusters are
indicated by different plotting symbols in Figure 2.

3. The Random-Effects Model
3.1 A Mixture-of-Normals Model
We start by describing the random-effects model for just one
study, i.e., assumingK = 1. To simplify notation, we will drop
the k subindex until we discuss extension to K > 1. Also, we
shall first consider a prior distribution without a regression
on covariates xi.

First, we generalize a multivariate normal prior p(θi |φ) to
a mixture-of-normals model p(θi |φ) =

∑
L
k=1πlN(µ + dl, S).

The mixture is parameterized by φ = (πl, µ, dl l = 1, . . . ,L),
including an overall location parameter µ and offsets dl

for the individual terms, with the constraint d1 =0. Under
this parameterization, we can assume a noninformative prior
for µ. The same parameterization is used, for example, in
Mengersen and Robert (1995) and Roeder and Wasserman
(1997). As pointed out by Celeux, Hurn, and Robert (2000),
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the parameterization of mixture models can affect the conver-
gence of the MCMC algorithm.

With sufficiently large L, the mixture-of-normals model can
approximate any desired random-effects distribution (Dalal
and Hall, 1983; Diaconis and Ylvisaker, 1985). As in any non-
linear, nonnormal modeling context, the specific choice of L
is guided by two competing principles. Low L leads to parsi-
mony and easier estimation. In the extreme case of a single
normal distribution, L=1, it reduces to the single multivari-
ate normal prior. On the other hand, by choosing a large L, we
can increase flexibility when fitting the population distribu-
tion p(θi |φ)—at the expense of model parsimony and com-
putational simplicity. Later, in Section 3.4, we discuss formal
inference on L as a model-selection problem.

We follow an approach used, for example, in Mallet et al.
(1988) and Müller and Rosner (1998) to include the desired
regression on covariates xi. We augment the prior mixture-
of-normals model to a probability model in (θi, xi) jointly,
i.e.,

p(θi,xi |φ) =

L∑
l=1

πlN(µ + dl,S ). (4)

The implied conditional distribution p(θi |xi, φ) formalizes
the desired regression, and takes the form of a locally weighted
mixture of linear regressions.

We now extend the mixture-of-normals random-effects
model to a hierarchical model across related studies to al-
low the desired meta-analysis. The construction of this hier-
archical extension is driven by the following considerations.
First, the model should include, on the one hand, the ex-
treme cases of one common random-effects distribution across

Figure 3. Graphical representation of the hierarchical model across related studies in equation (5). The vector of random-
effects, θki, parameterizes the mean profile for the ith patient from the kth study; xki are the patient’s covariates; φk and φc

are study-specific and common hyperparameters (see equation 2).

all studies, and, on the other hand, random-effects distribu-
tions for each study that are conditionally independent across
studies (given the hyperparameters). Second, the hierarchical
extension should not unreasonably complicate posterior sim-
ulation. Third, the hierarchical model should allow interpre-
tation of the additional parameters required in the hierarchi-
cal extension. Based on these considerations, we propose a
model

p(θki,xki |φ) = εpc(θki,xki |φ0)

+ (1 − ε)pk(θki,xki |φk), (5)

where pc represents a commom measure shared among all
studies and pk , for k = 1, . . . ,K, is a study-specific measure.
The vector of hyperparameters φ is split into subvectors φ0

and φk, k = 1, . . . ,K. The additional mixing parameter ε de-
termines the amount of borrowing strength across the related
studies. We shall refer to pc as the common measure, and
pk as the idiosyncratic measure. Figure 3 illustrates this split
of the random-effects distributions for the K studies. By as-
suming a prior distribution p(ε), with support including point
masses at 0 and 1, one can include the special cases of one
common random-effects distribution and conditionally inde-
pendent random-effects distributions, respectively.

For pk and pc we assume mixtures of multivariate normal
models, as in (6)

pc(θki,xki |φ0) =

L1∑
l=1

πlN(µ + dl,S ),

pk(θki,xki |φk) =

L2∑
l=1

πklN(µ + dkl,S ),

(6)
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with possibly different numbers (L1 and L2) of components
in the mixtures. For the moment, we assume fixed-size mix-
tures, i.e., L1 and L2 are fixed hyperparameters. Later, in Sec-
tion 3.4, we shall describe how to extend the model to random-
size mixtures. Also, µ represents the overall mean, while dl

and dkl are deviations from µ. As before, d1 is set to 0,
and the variance S is assumed equal across terms of the
mixtures. Alternatively, one could assume, without complica-
ting the analysis, covariance matrices Sl and Skl specific to
each term in the mixture. As in many mixture models, the
tradeoff is between a smaller number of terms in the mixture
versus simplicity.

3.2 Identification Issues
Using a mixture-of-normals model to represent the unknown
measures pc(·) and pk (·), we face identification problems com-
mon to any mixture model. To avoid lack of likelihood identi-
fiability due to arbitrary permutations of indices, we impose
an order constraint on the weights πl and πkl. But there are
at least two more sources of possible identifiability concerns.
One could move one term N(µ + dl, S) from pc into each
of the study-specific measures pk by defining dk,L2+1 = dl, in-
crementing L2 by one, removing the lth term from the mix-
ture for pc , and adjusting the weights accordingly to leave
p(· |φ) unchanged. The likelihood would remain invariant un-
der such reparameterization. The problem could be mitigated
by choosing an informative prior for L2 that favors smaller-
size idiosyncratic mixtures. Also, by replacing one term in
pc by K copies in each of the idiosyncratic measures pk , we
substantially increase the model complexity. Posterior infer-
ence intrinsically favors the more parsimonious alternative,
i.e., putting the common probability mass into pc , as desired.
This is known as Occam’s razor principle (Jefferys and Berger,
1992). Now consider the reverse, i.e., moving a term from pk
into the common measure pc , and adjusting the weights ac-
cordingly to keep p(θki, xki |φk) unchanged. However, mov-
ing terms in this way, from the idiosyncratic model for study k
into the common measure pc , would change the random-effects
distributions p(θri, xri |φr) for the other studies r 
= k , and
thus change the overall likelihood.

To investigate the impact of these identifiability issues on
inference under the proposed model, and to illustrate the gen-
eral discussion above, we have set up a simulation study. We
assume two studies, k=1, 2, with 50 patients each. Each pa-
tient was monitored daily for two weeks. In a first simulation,
θki were chosen such that the common and idiosyncratic com-
ponents were well separated. In a second simulation, the sub-
populations are less clearly separated. In both cases, we fixed
L1 =L2 =2.

We summarize some of the simulation results. In both
simulations, posterior inference in the proposed model iden-
tified the true structure. This remained true when we over-
parameterized with L1 = L2 = 3. The extra terms in the
mixture were fitted with negligible weight. In particular, we
did not find in the common measure any duplication of terms
of the idiosyncratic measure. We computed conditional pre-
dictive ordinates (CPO) (Pettit and Young, 1990) that were
favorable to the simpler structure.

Finally, when the focus is on predictive inference, as is the
case in this application, the relevance of identifiabilty concerns

is limited to practical issues related to efficiency of the MCMC
simulation, and general understanding of the model structure.
See, for example, Raftery, Madigan, and Hoeting (1997) and
Hoeting et al. (1999) for a related discussion.

3.3 Implementation
With mixture models such as the proposed random-effects
model, a common device in posterior simulation is the intro-
duction of indicator variables to break the mixture (Diebolt
and Robert, 1994). Consider indicators wki = (j, l) to break
the mixture in (5) and (6). In words, j indicates whether the
random effect is sampled from either the common (j = 0) or
the idiosyncratic part (j = 1) of the random-effects distribu-
tion, and l indicates the term of the respective mixtures of
normals. Therefore,

Pr{wki = (0, l)} = επl and Pr{wki = (1, l)} = (1 − ε)πkl.

Conditional on the indicators wki,

p(θki,xki |wki = (j, l)) =

{
N(µ + dl,S ) if j = 0,

N(µ + dkl,S ) if j = 1.

We complete the model with prior distributions on σ2, ε, π,
πk, S, µ, dl, dkl. For σ2, we assume a conditionally conjugate
inverse gamma distribution: σ2 ∼ IG(α0/2, β0/2), with fixed
hyperparameters α0 and β0. The prior on S−1 is a Wishart
distribution, with hyperparameters ν0 and S−1

0 , i.e., S−1 ∼
W (ν0, ν

−1
0 S−1

0 ). For ε, we use a beta prior, ε ∼ Beta(a0, b0).
Alternatively, we can include prior point mass at 0 and 1,
without significantly complicating posterior simulations. For
µ and d we choose conjugate multivariate normal priors,
dkl ∼ N(d̃, Ṽ ), dl ∼ N(d̃, Ṽ ), and µ ∼ N(µ̃, Ṽ).

Typically, the hypermean d̃ will be zero. Finally, the prior
distributions for π are Dirichlet: (πk1, . . . ,πkL2) ∼ Dir(αk), for
k = 1, . . . ,K, and (π1, . . . ,πL1) ∼ Dir(α), with fixed hyper-
parameters αk = (αk1, . . . ,αkL2) and α = (α1, . . . , αL1). Lopes
(2000) describes in full detail the Markov chain Monte Carlo
algorithm designed for simulating from the full posterior and
predictive distributions.

3.4 Model Selection for L1 and L2

We now allow for uncertainty about L1 and L2. There are
two main aspects to model uncertainty. The first is related
to model selection. In many situations, even if no particular
model is thought to be the true one, it is convenient to se-
lect one for scientific reporting. On the other hand, in many
applications there are quantities of interest—such as predic-
tive inference for future patients—that do not depend on a
particular model and that might be averaged across models.
General issues of model averaging and model selection are dis-
cussed in a recent overview and tutorial on Bayesian model
averaging by Hoeting et al. (1999).

Let M = {1, 2, . . . ,M} denote the set of indices represent-
ing all models under consideration. In our context M is the
set of all combinations of L1 and L2. Assume that ∆ is an out-
come of interest, such as the future profile of a new patient
from the population, or the time at which the white blood cell
count of a new patient drops below a critical threshold. Let
θm denote the parameter vector under model m. The posterior
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distribution for ∆ is p(∆ |D) =
∑

I
m=1p(∆ |m, D)Pr(m |D),

where D denotes the data,

Pr(m |D) = p(D |m)Pr(m)

{
M∑

m̃=1

p(D | m̃) Pr(m̃)

}−1

is the posterior probability of model m, p(D |m) =∫
p(D |θm, m)p(θm |m) dθm is the marginal likelihood con-

ditional on model m, and Pr(m) is the prior probability of
model m. For the finite mixture-of-normals models used here,
we assume a uniform prior Pr(m) = 1/M .

In the proposed population model, neither p(θm |m,D) nor
p(∆ |m, D) are analytically tractable. Additionally, p(D |m)
involves the solution of a possibly high-dimensional inte-
gral. Several alternative approaches for computing marginals
p(D |m) have been proposed in the literature. We refer to
Lopes (2000) for references and further discussions.

In this article, we will use reversible-jump Markov chain
Monte Carlo (RJMCMC) simulation to compute Pr(m |D).
RJMCMC is a Markov chain simulation that jumps between
models of different dimensions (Green, 1995). Dellaportas,
Forster, and Ntzoufras (2002) and Godsill (1998) have shown
the relationship between alternative methods of model se-
lection. The frequency with which the algorithm visits each
particular model approximates Pr(m |D). Green (1995) and
Richardson and Green (1997) propose RJMCMC algorithms
for general mixture-of-normals models. However, these gen-
eral algorithms are difficult to apply in the high-dimensional
context of our application. Instead, we suggest an RJMCMC
scheme that exploits the fact that we have only a few com-
peting models to consider. Before starting the RJMCMC, we
run a posterior MCMC simulation separately, for each model
m ∈ M, and save the simulated posterior draws. Denote with
Θm the set of Monte Carlo simulations from the posterior
under model m. At each iteration of our RJMCMC scheme,
we then draw from the posterior distributions of the cur-
rent model m and the proposed model m̃, using the saved
Monte Carlo samples Θm and Θm̃, and calculate the usual
Metropolis-Hastings acceptance probability. The imputed pa-
rameter vectors for all other models are kept unchanged. See
the Appendix for a detailed description of the algorithm.

The proposed RJMCMC avoids computing predictive dis-
tributions, which, in our case, are analytically intractable.
There are many alternative ways to propose the jumps be-
tween the models. The main motivation for using this partic-
ular algorithm is the easy access to posterior draws from each
competing model, and the difficulty of generating proposals
θ̃m̃ in high-dimensional mixture models like (5). Further ref-
erences and details can be found in Lopes (2000).

4. Results
We used the proposed model (2) with the hierarchical
mixture-of-normals priors (5) and (6) to analyze the data de-
scribed in Section 2.

As initial values for the MCMC simulation, we used m.l.e.
fits to the nonlinear regression (2) for each patient sepa-
rately. Hyperparameters were set at α0 =4.25, β0 =1.125
(E(σ2)= 0.5 and V (σ2)= 2), ν0 =12, φ0 =1, µ̃=(2,−1.5,
4.5, 5, 8,−2, 0.5,−0.9,−2,−0.5)′, d̃=(0,−0.5, 0, 0, 0, 0, 0,−1,
0, 0), and Ṽ = 5I. These prior hyperparameters were chosen

Table 1
Posterior model probabilities, Bayes factors, and pseudo-Bayes
factors relative to model M 0 (L1 = 0, L2 = 1). The posterior
model probabilities and the Bayes factors (BF i0 = p(D |Mi )/
p(D |M 0)) were computed based on the proposed RJMCMC
algorithm. The pseudo-Bayes factors were computed from

conditional predictive ordinates. M 0 is the default model using
a multivariate random-effects distribution for each study, with

conditional independence across studies. Posterior
probabilities are based on Pr(Mi) = 0.2, i = 0, 1, . . . , 4.

Model L1 L2 Pr(Mi |y) BF i0 PBF i0

M 1 1 1 0.125 1.000 90.1
M 2 1 2 0.141 1.128 292.3
M 3 2 1 0.172 1.367 338.8
M 4 2 2 0.437 3.496 333.8

to reflect fairly uninformative—but still proper—priors cen-
tered at reasonable parameter values. The Dirichlet parame-
ters αl and αkl were set to 1.0. We studied four combinations
of L1 and L2, and used a discrete uniform prior distribution
on the models (see Table 1).

All reported inferences are based on 10,000 MCMC
iterations—beyond a burn-in of 100,000 iterations, and sav-
ing only every 10th iteration. The credible intervals for poste-
rior predictive profiles are based on a subsample of size 500,
taken from the final 10,000 MCMC samples. Experimenting
with different choices, we found similar results over a wide
range of MCMC tuning parameters, including, for example,
an implementation with a burn-in of 10,000 iterations and not
discarding any draws.

We are entertaining four possible models with 1 ≤ L1,
L2 ≤ 2 (Table 1). In a preliminary analysis, we let L1 (and L2)
increase to 4, but the change in the predictive inference was
negligible. As starting values for the latent indicator variables,
wki, we applied techniques for model-based cluster analysis
(Fraley and Raftery, 1998) to the set of initial values for θki,
which, in turn, were obtained by maximum likelihood estima-
tion. We found virtually no difference in the final results when
we used other, simpler, choices of starting values. Neverthe-
less, we recommend the described initialization, to avoid the
possible danger of the MCMC simulation getting trapped in
local modes, and because the involved exploratory data anal-
ysis might lead to insights that are of value independent of
their use in the initialization.

Table 1 compares the four competing models. The sum-
maries were computed using the proposed RJMCMC and
are relative to a default model M 0, defined by a (sin-
gle) multivariate normal random-effects distribution and
conditional independence across studies. Although the
RJMCMC points to a particular model, L1 =L2 =2 with pos-
terior probability 0.44, it also reports significant posterior
probabilities for other models. Those probabilities will later be
used for model averaging. A trace plot of model indicators im-
puted in the RJMCMC simulation (not shown) suggests good
mixing over the model space, and indicates no problems with
practical convergence. Table 1 also presents pseudo-Bayes fac-
tors (PBF) (Gelfand, 1996), based on conditional predictive
ordinate (CPO) (Pettit and Young, 1990).
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We now consider inference in the a posteriori most likely
model, L1 =L2 =2. The posterior means for the weights {επ1,
επ2, (1− ε)π11,(1− ε)π12, (1− ε)π21,(1− ε)π22} were found to
be (0.42, 0.07, 0.43, 0.09, 0.48, 0.04). The random-effects dis-
tributions are split into approximately equal parts for the
common measure pc, and the study-specific measures pk . This
is consistent with what might be vaguely expected from in-
spection of Figure 2. Each measure, pc , along with the pk ,
is dominated by the first term, with a second term adding
a minor correction to allow for outliers and lack of normal-
ity. The following plots illustrate inference about the high-
dimensional random-effects distributions. For each simulated
draw from the posterior distribution, we consider the corre-
sponding curves f(θ=µ+dl, t) and f(θ=µ + dkl, t) as
functions of time t. Figure 4 shows posterior means and per-
centiles for f(θ, t) for each t. That is, we summarize the pos-
terior distributions on µ, dl, and dkl, by showing the implied
posterior quantiles on the corresponding curves. The lower the
weight allocated to a component, the wider are the credible
intervals—indicating that less information is present in such
components. The predictive profile for the second idiosyn-
cratic component (l = 2), from study k = 1, is considerably
different from the other components—indicating the presence
of some patients whose measurements are not in agreement
with the rest of the patients in both studies.

Bayesian model averaging is presented in Table 2.
CTX and GM doses were fixed at 3.0 mg/m2 and
5.0 µg/kg, respectively. The entries report posterior pre-
dictive white blood cell counts for a new patient taken
from study k=1 (CALGB 8881), from study k=2 (CALGB
9160), and from the population, respectively. We ob-
tain posterior predictive inference for a patient from the
population by considering a future third study, k=3,
with n3 = 0. The right-hand columns of Table 2 show poste-
rior inference after Bayesian model averaging, marginalizing
across all four entertained models. Wider credibility intervals
were obtained (not shown) by allowing for model uncertainty
in the number of mixture components.

Figure 5 compares posterior predictive profiles for a new
patient from study CALGB 9160, based on two compet-
ing models. The levels of CTX and GM-CSF were fixed at
3.0 mg/m2 and 5.0 µg/kg, respectively. One model is the
proposed mixture-of-normals hierarchical model. The alter-
native model assumes that the random-effects distributions
p(θki, xki |φ) are independent given the hyperparameters φ,
i.e., there is no borrowing strength across studies—beyond
learning about the common hyperparameters.

Up to five days into the treatment, both models give similar
results. The reason for the similarity is that patient responses
in both studies are similar over the first few days.

5. Conclusion
We proposed an approach to meta-analysis over random-
effects models that allows borrowing of strength across re-
lated studies. The mixture-of-normals random-effects mod-
els allow considerable flexibility, along with exploiting the
computational simplicity of conjugate models. The proposed
implementation includes Bayesian model averaging over
mixtures of different size. We discussed a variation of
RJMCMC that enables us to implement model averaging for
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Figure 4. Posterior means, 5th and 95th percentiles for
WBC profiles (as log WBC/1000) corresponding to the in-
dividual terms in pc and pk , k = 1, 2. The two panels in the
top row correspond to the two terms in pc . The panels show
profiles corresponding to a N(µ + dl, S) random-effects dis-
tribution, with L = 1 (left) and L = 2 (right). The second and
third row show profiles corresponding to an N(µ + dkl, S)
random-effects distribution with k = 1 (second row) and
k = 2 (third row), l = 1 (left) and l = 2 (right), respectively.

the high-dimensional parameter vectors of the mixture model
(5). Being able to combine information from related stud-
ies involving longitudinal monitoring of complex biomedical
phenomena strengthens inference and allows improved study
planning.

The proposed approach has some practical and method-
ological limitations. If the number L1 and L2 of terms in the
mixture is allowed to vary over more than a moderately small
number of possible models, the computational effort of up-
front MCMC simulation for each model becomes prohibitive.
This could be overcome by appropriate modifications, such as
only initiating the separate MCMC simulation when a model
is actually proposed, and dynamically increasing the Monte
Carlo samples as and when needed. From a modeling perspec-
tive, hierarchical structure—beyond exchangeable studies—is
ruled out. For example, the model does not accommodate a
scenario where some subset of K related studies share more
similarities than do the remaining studies. This could possi-
bly be achieved by considering variations with study-specific
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Table 2
Predictive median for a new patient’s white blood cell count

(log(WBC/1000)). For each study/model, τ 1 and τ 2 represent
the time at which the patient’s WBC starts to decline and
recover, respectively. Also, τ∗ = 15 days is two weeks after

start of chemotherapy. The left columns report the results for
the best model, M 4 = (L1 = 2, L2 = 2). The right columns

report results for Bayesian model averaging.

Best model Model averaging

Days Medians Days

CALGB 8881
τ 1 = 3.00 1.98 1.93 τ 1 = 3.75
τ 2 = 9.25 −0.59 −0.65 τ 2 = 8.75
τ∗ = 15.0 1.14 0.46 τ∗ = 15.0

CALGB 9160
τ 1 = 2.75 1.98 1.97 τ 1 = 3.25
τ 2 = 9.25 −0.59 −0.87 τ 2 = 9.00
τ∗ = 15.0 1.14 0.53 τ∗ = 15.0

Population
τ 1 = 3.75 1.96 2.04 τ 1 = 3.25
τ 2 = 8.75 −0.60 −0.88 τ 2 = 8.75
τ∗ = 15.0 1.15 0.97 τ∗ = 15.0

mixture weights εk. Another variation occurs when related
studies only share some features. For example, assume that
in our application a third trial is conducted with similar but
less toxic treatments. It would still be reasonable to link the
random-effects distributions for some parameters represent-
ing the shape of the profiles, but other parameters—for ex-
ample, parameters related to the level of toxicity—might not
be shared across studies.

The discussion was in the context of meta-analysis of lon-
gitudinal data models, with the hierarchy over the random-
effects distributions. The proposed methods are more gener-
ally applicable, though. The approach is relevant whenever
hierarchical modeling over related random probability distri-
butions is required.
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Figure 5. Predictive profile for new patients from study
CALGB 9160. The solid lines represent posterior means, 5th
and 95th percentiles based on our meta-analysis model (L1 =
L2 = 2). The dashed lines represent the same percentiles for
the alternative model where Pr(ε = 0) = 1 (see the last para-
graph of Section 4 for further details). CTX=3.0 mg/m2 and
GM-CSF=5.0 µg/kg.
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Résumé

Nous proposons une classe de modèles pour données longitu-
dinales avec effets aléatoires qui étendent de deux façons es-
sentielles les modèles actuellement utilisés. D’abord le modèle
à effets aléatoires est un mélange adaptable de modèles
multinormaux, qui permet de traiter l’hétérogénéité des
populations, les données atypiques et la non linéarité des
régressions sur les variables spécifiques aux sujets. Ensuite
le modèle inclut une extension hiérarchique qui permet la
méta-analyse de plusieurs études connexes. Les distributions
des effets aléatoires se décomposent en une partie com-
mune aux différentes études (mesure commune) et une par-
tie spécifique à chaque étude décrivant la variabilité inter
sujets à l’intérieur d’une étude donnée. On paramétrise et
la mesure commune et la part spécifique à l’étude à l’aide
d’un mélange de modèles normaux. Les inférences sont con-
duites à l’aide de simulation a posteriori à saut réversible.
L’échantillonneur tire parti du petit nombre de modèles mis
en æuvre.

L’application à l’origine de ce travail est l’analyse de
deux études conduites par le Cancer and Leukemia Group B
(CALGB). Dans les deux études, on a enregistré pour chaque
patient les comptages de globules blancs (WBC) au cours du
temps pour caractériser les effets toxiques du traitement. Les
WBC sont modélisés par un modèle non linéaire hiérarchique
qui rassemble les informations des deux études.
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Appendix

We describe details of the RJMCMC used for posterior simu-
lation across models m ∈ {1, . . . ,M} in Section 3.3. For L1 ≤
2 and L2 ≤ 2, we have M = 4 competing models to consider.
Assume we have sets of Monte Carlo simulations Θ1, . . . , ΘM

available, with θ ∼ p(θm |y, m) for θ ∈ Θm. Since we only
consider a small number M of models, it is practically feasible
to generate such Monte Carlo samples once up front, before
starting the RJMCMC scheme. In step 2b, below, we will use
these Monte Carlo samples Θm to obtain posterior draws from
p(θm |y, m). The proposed algorithm proceeds as follows:

Step 1 Suppose that the current state of the Markov chain
is {m, θ1, . . . ,θM}, i.e., the current model is m and
θi is a draw from the posterior distribution, under
model i = 1, 2, . . . ,M .
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Step 2 Propose a move:

Step 2a Propose a new model, m̃, by generating from
q(m̃ |m). Here, q(· | ·) is an M ×M transition
matrix whose rows add up to one. For example,
q(m̃ |m) could propose m̃ = m+ 1 and m̃ = m−
1, with probabilities 1/2 each when m = 2, . . . ,
M − 1, and m̃ = m− 1 and m̃ = m+ 1 with
probability 1.0, for m = M and m = 1, respec-
tively.

Step 2b Generate proposals θ̃m ∼ p̂(θm |y,m) and θ̃m̃ ∼
p̂(θm̃ |y, m̃), where p̂(θm |y,m) is based on Θm

(Lopes, 2000). For all other models i, i 
= m, m̃,
leave θ̃i = θi unchanged. The proposed new state
of the Markov chain is {m̃, θ̃1, . . . , θ̃M}.

Step 2c The appropriate Hastings-Metropolis acceptance
probability for the proposed new state is

min

{
1,

P r(m̃)
Pr(m)

q(m | m̃)
q(m̃ |m)

p(y |θm̃, m̃)
p(y | θ̃m,m)

p̂(θm̃ |y, m̃) p̂(θm |y,m)
p̂(θ̃m̃ |y, m̃) p̂(θ̃ |y,m)

}

In the particular case of a uniform prior Pr(m̃) =
Pr(m) and a symmetric proposal q(m | m̃) =
q(m̃ |m), the new model m̃ is automatically ac-
cepted every time the current draw from the pro-
posed model has higher likelihood than does the
new draw from the current model.

Step 3 Cycle through steps 1 and 2 until convergence has
been achieved.

In Step 2, we proposed a new model m̃, and new pa-
rameters for both the current model m and the proposed
model m̃. Of course, we do not need to always keep pa-
rameter values for all competing models in memory. Only
when a value θi is required in step 2 must we read a value
from the appropriate file of posterior Monte Carlo simu-
lations. This procedure assumes that the samples Θi are
independent. This can be achieved, for example, by using
every nth generation of the MCMC simulations for larges
values of n.


