Likelihood functions Full conditiona distributions Linear tobit model

Probit/ordered probit models

Full conditional distributions

Multinomial probit models SUR Prior and full conditionals

Limited dependent variable models

Hedibert Freitas Lopes

The University of Chicago Booth School of Business 5807 South Woodlawn Avenue, Chicago, IL 60637 http://faculty.chicagobooth.edu/hedibert.lopes

hlopes@ChicagoBooth.edu

Outline

<ロト<問ト<臣ト<臣ト 2/16

Tobit model

Likelihood functions Full conditional distributions Linear tobit model

Tobit model

Probit/ordered probit models

Full conditional distributions

Multinomial probit models SUR Prior and full conditionals Likelihood functions Full conditional distributions Linear tobit model

Probit/ordered probit models Full conditional distributions

3 Multinomial probit models SUR Prior and full conditionals

Likelihood functions Full conditiona distributions Linear tobit model

Probit/ordered probit models

Full conditional distributions

Multinomial probit models SUR Prior and full conditionals

Limited dependent variable models

Tobit model Linear Tobit model Probit/ordered probit models Multinomial probit model

Likelihood functions Full conditional distributions Linear tobit model

Probit/ordered probit models

Full conditional distributions

Multinomial probit models SUR Prior and full conditionals When the dependent variable is censored, values in a certain range are all transformed to a single value (Greene, pp.761)

- Household purchases of durable goods (Tobin, 1958)
- The number of extramarital affairs
- The number of hours worked by a woman in the labor force

<ロ > < 団 > < 置 > < 置 > 差) 差 2000 4/16

- The number of arrests after release from prison
- · Household expenditure on various commodity groups
- Vacation expenditures

Tobit model

Likelihood functions Full conditional distributions Linear tobit model

Probit/ordered probit models

Full conditional distributions

Multinomial probit models SUR Prior and full conditionals Tobin (1958) Estimation of relationships for limited dependent variables, *Econometrica*, 26, 24-36.

Only y_i is observed.

Censoring rule (truncation):

$$y_i = \left\{ egin{array}{cc} y_i^* & y_i^* > 0 \ 0 & y_i^* \leq 0 \end{array}
ight.$$

Model structure:

 $y_i^* \sim F(y_i^*|x_i, \theta)$ with p.d.f. $f(y_i^*|x_i, \theta)$

Likelihood functions

Tobit model

Likelihood functions Full conditiona distributions Linear tobit model

Probit/ordered probit models

Full conditional distributions

Multinomial probit models SUR Prior and full conditionals The likelihood function of θ is

$$L(\theta; y, x) = \left\{ \prod_{i:y_i>0} f(y_i|x_i, \theta) \right\} \left\{ F(0|x_i, \theta) \right\}^k$$

where k is the number of observations where $y_i = 0$.

The complete likelihood is

$$p(y_i|x_i,\theta) = \int p(y_i, y_i^*|x_i,\theta) dy_i^*$$

=
$$\int p(y_i|x_i,\theta, y_i^*) f(y_i^*|x_i,\theta) dy_i^*$$

=
$$p(y_i|x_i,\theta, y_i^* > 0)(1 - F(0|x_i,\theta))$$

+
$$p(y_i|x_i,\theta, y_i^* \le 0) F(0|x_i,\theta)$$

Likelihood functions Full conditional distributions

model

Probit/ordered probit models

Full conditional distributions

Multinomial probit models SUR Prior and full conditionals

Full conditional distributions

Given y^* , sampling θ is, in general, straightforward:

$$\pi(\theta|y^*,x) \propto \pi(\theta) \prod_{i=1}^n f(y_i^*|x_i,\theta)$$

The data augmentation argument leads to:

$$(y_i^*|x_i, y_i, \theta) \sim y_i \mathbf{1}(y_i > 0) + \left[\frac{f(y_i^*|x_i, \theta)}{F(0|x_i, \theta)}\mathbf{1}(y_i^* \le 0)\right]\mathbf{1}(y_i = 0)$$

In other words, $y_i^* = y_i$ if $y_i > 0$ and

$$(y_i^*|x_i, y_i, heta) \sim rac{f(y_i^*|x_i, heta)}{F(0|x_i, heta)} \qquad y_i^* \leq 0$$

< <>>
< <>>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

if $y_i = 0$.

Linear tobit model

Tobit model

Likelihood functions Full conditional distributions Linear tobit

model

Probit/ordered probit models

Full conditiona distributions

Multinomial probit models SUR Prior and full conditionals

w

In this case,

$$y_i^* \sim N(x_i'\beta, \sigma^2)$$

Prior distribution:
$$\pi(eta, \sigma^2) = \pi(eta)\pi(\sigma^2)$$

 $eta \sim N(eta_0, V_0)$

$$\sigma^2 \sim IG(\nu_0/2, \nu_0 s_0^2/2)$$

Full conditional distributions:

$$\beta \sim N(V_{\beta}(V_{0}^{-1}\beta_{0} + X'y^{*}), V_{\beta})$$

$$\sigma^{2} \sim IG\left(\frac{\nu_{0} + n}{2}, \frac{\nu_{0}s_{0}^{2} + (y^{*} - X\beta)'(y^{*} - X\beta)}{2}\right)$$

$$y_{i}^{*} \sim y_{i}1(y_{i} > 0) + N_{[-\infty,0]}(x_{i}'\beta, \sigma^{2})1(y_{i} = 0)$$
here $V_{\beta}^{-1} = V_{0}^{-1} + \sigma^{-2}(X'X)^{-1}$.

Likelihood functions Full conditiona distributions Linear tobit

model

Probit/ordered probit models

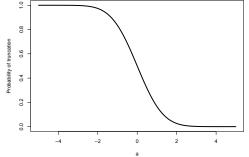
Full conditiona distributions

Multinomial probit models SUR Prior and full conditionals

Let $y_i^*|x_i \sim N(\beta x_i, \sigma^2)$ and $x_i \sim N(a, 1)$, such that $y_i^* \sim N(\beta a, \sigma^2 + \beta^2)$

and

$$Pr(y = 0|a, \beta = 2, \sigma^2 = 0.25) = \Phi(-2a/2.062)$$



<ロト < 回 ト < 直 ト < 直 ト < 直 ト 三 9/16

Example

$\pi(eta|y,x) ext{ and } \pi(\sigma^2|y,x)$ $u_0 = 0 ext{ and } V_0^{-1} = 0 ext{ (non-informative prior)}$

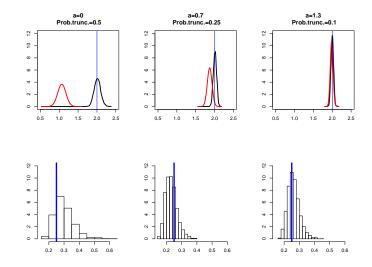
Likelihood functions Full conditiona distributions

Linear tobit model

Probit/ordered probit models

Full conditiona distributions

Multinomial probit models SUR Prior and full conditionals



≣ 12/36°

(without truncation) and (with truncation)

Probit/ordered probit models

<ロト < 回 > < 目 > < 目 > 目 2960 11/16

In the ordered probit models, $y_i \in \{1, 2, \dots, J\}$ and

$$y_i = \begin{cases} 1 & \gamma_0 < y_i^* \le \gamma_1 \\ \vdots & \vdots \\ J & \gamma_{J-1} < y_i^* \le \gamma_J \end{cases}$$

where $y_i^* \sim F(x_i, \theta)$ with p.d.f. $f(y_i^* | x_i, \theta)$.

Note: In probit models, $y_i \in \{1, 2\}$ and $\gamma_1 = 0$.

Tobit model

Likelihood functions Full conditional distributions Linear tobit model

Probit/ordered probit models

Full conditional distributions

Multinomial probit models SUR Prior and full conditionals

Full conditional distributions

Tobit model

Likelihood functions Full conditiona distributions Linear tobit model

Probit/ordered probit models

Full conditional distributions

Multinomial probit models SUR Prior and full conditionals

Assuming that
$$\pi(\theta)$$
 and $\pi(\gamma)$ are uniform in
 $-\infty = \gamma_0 \leq \cdots \leq \gamma_J = \infty$, then

$$\begin{aligned} \pi(\theta|y^*,X) &\propto & \pi(\theta) \prod_{i=1}^n f(y_i^*|x_i,\theta) \\ (y_i^*|x_i,y_i,\theta) &\sim & \sum_{j=1}^J \frac{f(y_i^*|x_i,\theta)\mathbf{1}(y_i=j)}{F(\gamma_j|x_i,\theta) - F(\gamma_{j-1}|x_i,\theta)} \\ (\gamma_j|\gamma_{(-j)},\theta,y^*) &\sim & U(\bar{\gamma}_{j-1},\bar{\gamma}_{j+1}) \end{aligned}$$

where

$$\begin{aligned} \gamma_{(-j)} &= (\gamma_1, \dots, \gamma_{j-1}, \gamma_{j+1}, \dots, \gamma_J) \\ \bar{\gamma}_{j-1} &= \max \{ \max \{ y_i^* : y_i = j \}, \gamma_{j-1} \} \\ \bar{\gamma}_{j+1} &= \min \{ \min \{ y_i^* : y_i = j+1 \}, \gamma_{j+1} \} \end{aligned}$$

◆□ → < □ → < Ξ → < Ξ → Ξ 2/16 12/16

Multinomial probit models

Tobit model

Likelihood functions Full conditional distributions Linear tobit model

Probit/ordered probit models

Full conditional distributions

Multinomial probit models SUR Prior and full conditionals In multinomial probit models¹, U_{ij} is the utility of individual *i* when she chooses alternative *j*, and

$$y_{ij}^* = U_{ij} - U_{i0} = x_{ij}' eta_j + arepsilon_{ij}$$

while the econometrician only observes y_i such that

$$y_i = \left\{ egin{array}{ll} 0 & \max(y_i^*) < 0 \ 1 & y_{i1}^* = \max(y_i^*) \geq 0 \ dots & dots \ J - 1 & y_{i,J-1}^* = \max(y_i^*) \geq 0 \ J & y_{i,J}^* = \max(y_i^*) \geq 0 \end{array}
ight.$$

where $y_i \in \{0, 1, \dots, J\}$ and $y_i^* = (y_{i1}^*, \dots, y_{iJ}^*)$.

¹See all reference in the end.

<ロト < 副 ト < 差 ト < 差 ト 差 2000 13/16

SUR

Tobit model

Likelihood functions Full conditional distributions Linear tobit model

Probit/ordered probit models

Full conditional distributions

Multinomial probit model

SUR

Prior and full conditionals

Stacking up the equations

$$\begin{pmatrix} y_{i1}^* \\ y_{i2}^* \\ \vdots \\ y_{iJ}^* \end{pmatrix} = \begin{pmatrix} x_{i1}' & 0 & \cdots & 0 \\ 0 & x_{i2}' & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x_{iJ}' \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_J \end{pmatrix} + \begin{pmatrix} \varepsilon_{i1} \\ \varepsilon_{i2} \\ \vdots \\ \varepsilon_{iJ} \end{pmatrix}$$

or,

$$y_i^* = X_i\beta + \varepsilon_i$$

with $\varepsilon_i \sim N(0, \Omega)$.

Also,

$$y^* = X\beta + \varepsilon$$

where $y^* = (y_1^*, \dots, y_N^*)$, $X = (X'_1, \dots, X'_N)$ and $\varepsilon = (\varepsilon_1, \dots, \varepsilon_N)$.

Prior and full conditionals

Tobit model

Likelihood functions Full conditional distributions Linear tobit model

Probit/ordered probit models

Full conditional distributions

Multinomial probit models SUR Prior and full conditionals

Prior distribution

 $\pi(eta,\Omega) = \pi(eta)\pi(\Omega) \ eta \sim ext{Normal}$

 $\Omega~\sim~$ Inverse Wishart

Full conditional distributions

- $\beta~\sim~{
 m Normal}$
- $\Omega ~\sim~ \text{Inverse Wishart}$

$$egin{array}{rcl} y_i^* &\sim & \left\{ egin{array}{ll} N(X_ieta,\Omega)1(\max(y_i^*)<0) & y_i=0 \ N(X_ieta,\Omega)1(\max(y_i^*)=y_{ij}^*\geq 0) & y_i=j \end{array}
ight.$$

References

Tobit model

Likelihood functions Full conditional distributions Linear tobit model

Probit/ordered probit models

Full conditional distributions

Multinomial probit models SUR Prior and full conditionals Chib (1992) Bayes Inference in the Tobit Censored Regression Model, Journal of Econometrics, 51, 79-99.

Keane (1992) A note on identification in the multinomial probit model Journal of Business and Economic Statistics, 10, 193-200.

Albert and Chib (1993) Bayesian analysis of binary and polychotomous response data, *Journal of the American Statistical Association*, 88, 669-679.

McCulloch and Rossi (1994) An Exact Likelihood Analysis of the Multinomial Probit model, *Journal of Econometrics*, 64, 207-240.

Geweke, Keane and Runkle (1994) Alternative computational approaches to inference in the multinomial probit model, *The Review of Economics and Statistics*, 76, 609-632.

Chintagunta, P. and Honore, B. (1996) Investigating the effects of marketing variables and unobserved heterogeneity in a multinomial probit model, *International Journal of Research in Marketing*, 13, 1-15.

Chib and Greenberg (1998) Analysis of multivariate probit models, Biometrika, 85, 347-361.

McCulloch, Polson and Rossi (2000) Bayesian Analysis of the Multinomial Probit Model with Fully Identified Parameters, *Journal of Econometrics*, 99, 173-193. Nobile A (2000) Comment: Bayesian Multinomial Probit Models with Normalization Constraint, *Journal of Econometrics*, 99, 335-345. McCulloch and Rossi (2000) Reply to Nobile, *Journal of Econometrics*, 99, 347348.

Imai and van Dyk (2005) A Bayesian Analysis of the Multinomial Probit Model Using Marginal Augmentation, Journal of Econometrics, 124, 311-334.
Imai and van Dyk (2005). MNP: R Package for Fitting the Multinomial Probit Models. Journal of Statistical Software, 14, Issue 5.