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When the dependent variable is censored, values in a certain
range are all transformed to a single value (Greene, pp.761)

• Household purchases of durable goods (Tobin, 1958)

• The number of extramarital affairs

• The number of hours worked by a woman in the labor force

• The number of arrests after release from prison

• Household expenditure on various commodity groups

• Vacation expenditures
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Tobit model

Tobin (1958) Estimation of relationships for limited dependent
variables, Econometrica, 26, 24-36.

Only yi is observed.

Censoring rule (truncation):

yi =

{
y∗i y∗i > 0
0 y∗i ≤ 0

Model structure:

y∗i ∼ F (y∗i |xi , θ) with p.d.f. f (y∗i |xi , θ)
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Likelihood functions

The likelihood function of θ is

L(θ; y , x) =

 ∏
i :yi>0

f (yi |xi , θ)

 {F (0|xi , θ)}k

where k is the number of observations where yi = 0.

The complete likelihood is

p(yi |xi , θ) =

∫
p(yi , y

∗
i |xi , θ)dy∗i

=

∫
p(yi |xi , θ, y

∗
i )f (y∗i |xi , θ)dy∗i

= p(yi |xi , θ, y
∗
i > 0)(1− F (0|xi , θ))

+ p(yi |xi , θ, y
∗
i ≤ 0)F (0|xi , θ)
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Full conditional distributions

Given y∗, sampling θ is, in general, straightforward:

π(θ|y∗, x) ∝ π(θ)
n∏

i=1

f (y∗i |xi , θ)

The data augmentation argument leads to:

(y∗i |xi , yi , θ) ∼ yi1(yi > 0) +

[
f (y∗i |xi , θ)

F (0|xi , θ)
1(y∗i ≤ 0)

]
1(yi = 0)

In other words, y∗i = yi if yi > 0 and

(y∗i |xi , yi , θ) ∼
f (y∗i |xi , θ)

F (0|xi , θ)
y∗i ≤ 0

if yi = 0.
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Linear tobit model

In this case,
y∗i ∼ N(x ′iβ, σ

2)

Prior distribution: π(β, σ2) = π(β)π(σ2)

β ∼ N(β0,V0)

σ2 ∼ IG (ν0/2, ν0s
2
0/2)

Full conditional distributions:

β ∼ N(Vβ(V−1
0 β0 + X ′y∗),Vβ)

σ2 ∼ IG

(
ν0 + n

2
,
ν0s

2
0 + (y∗ − Xβ)′(y∗ − Xβ)

2

)
y∗i ∼ yi1(yi > 0) + N[−∞,0](x

′
iβ, σ

2)1(yi = 0)

where V−1
β = V−1

0 + σ−2(X ′X )−1.
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Example
Let y∗i |xi ∼ N(βxi , σ

2) and xi ∼ N(a, 1), such that

y∗i ∼ N(βa, σ2 + β2)

and

Pr(y = 0|a, β = 2, σ2 = 0.25) = Φ(−2a/2.062)
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π(β|y , x) and π(σ2|y , x)
ν0 = 0 and V−1

0 = 0 (non-informative prior)
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Probit/ordered probit models

In the ordered probit models, yi ∈ {1, 2, . . . , J} and

yi =


1 γ0 < y∗i ≤ γ1
...

...
J γJ−1 < y∗i ≤ γJ

where y∗i ∼ F (xi , θ) with p.d.f. f (y∗i |xi , θ).

Note: In probit models, yi ∈ {1, 2} and γ1 = 0.
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Full conditional distributions

Assuming that π(θ) and π(γ) are uniform in
−∞ = γ0 ≤ · · · ≤ γJ =∞, then

π(θ|y∗,X ) ∝ π(θ)
n∏

i=1

f (y∗i |xi , θ)

(y∗i |xi , yi , θ) ∼
J∑

j=1

f (y∗i |xi , θ)1(yi = j)

F (γj |xi , θ)− F (γj−1|xi , θ)

(γj |γ(−j), θ, y
∗) ∼ U(γ̄j−1, γ̄j+1)

where

γ(−j) = (γ1, . . . , γj−1, γj+1, . . . , γJ)

γ̄j−1 = max {max {y∗i : yi = j} , γj−1}
γ̄j+1 = min {min {y∗i : yi = j + 1} , γj+1}
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Multinomial probit models

In multinomial probit models1, Uij is the utility of individual i
when she chooses alternative j , and

y∗ij = Uij − Ui0 = x ′ijβj + εij

while the econometrician only observes yi such that

yi =



0 max(y∗i ) < 0
1 y∗i1 = max(y∗i ) ≥ 0
...

...
J − 1 y∗i ,J−1 = max(y∗i ) ≥ 0

J y∗i ,J = max(y∗i ) ≥ 0

where yi ∈ {0, 1, . . . , J} and y∗i = (y∗i1, . . . , y
∗
iJ).

1See all reference in the end.
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SUR

Stacking up the equations
y∗i1
y∗i2
...

y∗iJ

 =


x ′i1 0 · · · 0
0 x ′i2 · · · 0
...

...
. . .

...
0 0 · · · x ′iJ




β1

β2
...
βJ

+


εi1
εi2
...
εiJ


or,

y∗i = Xiβ + εi

with εi ∼ N(0,Ω).

Also,
y∗ = Xβ + ε

where y∗ = (y∗1 , . . . , y
∗
N), X = (X ′1, . . . ,X

′
N) and

ε = (ε1, . . . , εN).
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Prior and full conditionals

Prior distribution

π(β,Ω) = π(β)π(Ω)

β ∼ Normal

Ω ∼ Inverse Wishart

Full conditional distributions

β ∼ Normal

Ω ∼ Inverse Wishart

y∗i ∼
{

N(Xiβ,Ω)1(max(y∗i ) < 0) yi = 0
N(Xiβ,Ω)1(max(y∗i ) = y∗ij ≥ 0) yi = j
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