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1st order DLM

The local level model (West and Harrison, 1997) has

Observation equation:

yt+1|xt+1, θ ∼ N(xt+1, σ
2)

System equation:

xt+1|xt , θ ∼ N(xt , τ
2)

where
x0 ∼ N(m0,C0)

and
θ = (σ2, τ2)

fixed (for now).
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n-variate normal

It is worth noticing that the model can be rewritten as

y |x , θ ∼ N(x , σ2In)

x |x0, θ ∼ N(x01n, τ
2Ω)

x0 ∼ N(m0,C0)

where

Ω =



1 1 1 1 . . . 1 1 1
1 2 2 2 . . . 2 2 2
1 2 3 3 . . . 3 3 3
1 2 3 4 . . . 4 4 4
...

...
...

...
. . .

...
...

...
1 2 3 4 . . . n − 2 n − 2 n − 2
1 2 3 4 . . . n − 1 n − 1 n − 1
1 2 3 4 . . . n − 2 n − 1 n
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Therefore, the prior of x given θ is

x |θ ∼ N(m01n; C01n1′n + τ2Ω),

while its full conditional posterior distribution is

x |y , θ ∼ N(m1,C1)

where
C−1

1 = (C01n1′n + τ2Ω)−1 + σ−2In

and
C−1

1 m1 = (C01n1′n + τ2Ω)−1m01n + σ−2y
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The Kalman filter

Let y t = (y1, . . . , yt). The previous joint posterior posterior for
x given y (omitting θ for now) can be constructed as

p(x |yn) = p(x1|yn, x2)
n∏

t=1

p(xt |yn, xt+1),

which is obtained from

p(xn|yn)

and noticing that given y t and xt+1,

• xt and xt+h are independent, and

• xt and yt are independent,

for all integer h > 1.
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Therefore, we first need to derive the above joint and this is
done forward via the well-known Kalman filter recursions.

p(xt |y t) =⇒ p(xt+1|y t) =⇒ p(yt+1|xt) =⇒ p(xt+1|y t+1)

• Posterior at t: (xt |y t) ∼ N(mt ,Ct)

• Prior at t + 1: (xt+1|y t) ∼ N(mt ,Rt+1)

Rt+1 = Ct + τ2

• Marginal likelihood: (yt+1|y t) ∼ N(mt ,Qt+1)

Qt+1 = Rt+1 + σ2

• Posterior at t + 1: (xt+1|y t+1) ∼ N(mt+1,Ct+1)

mt+1 = (1− At+1)mt + At+1yt+1

Ct+1 = At+1σ
2

where At+1 = Rt+1/Qt+1.
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The Kalman smoother

For t = n, xn|yn ∼ N(mn
n,C

n
n ), where mn

n = mn and Cn
n = Cn.

For t < n,

xt |yn ∼ N(mn
t ,C

n
t )

xt |xt+1, y
n ∼ N(an

t ,R
n
t )

where

mn
t = (1− Bt)mt + Btmn

t+1

Cn
t = (1− Bt)Ct + B2

t Cn
t+1

an
t = (1− Bt)mt + Btxt+1

Rn
t = Btτ

2

and
Bt = Ct/(Ct + τ2).
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Example
n = 100, σ2 = 1.0
τ2 = 0.5 and x0 = 0.
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p(xt |y t) via Kalman filter
m0 = 0.0 and C0 = 10.0
given τ2 and σ2
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p(xt |y n) via Kalman smoother
m0 = 0.0 and C0 = 10.0
given τ2 and σ2
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Integrating out states xn

We showed earlier that

(yt |y t−1) ∼ N(mt−1,Qt)

where both mt−1 and Qt were presented before and are
functions of θ = (σ2, τ2), y t−1, m0 and C0.

Therefore, by Bayes’ rule,

p(θ|yn) ∝ p(θ)p(yn|θ)

= p(θ)
n∏

t=1

fN(yt ; mt−1,Qt).
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Example: p(y |σ2, τ 2)p(σ2)p(τ 2)

σ2 ∼ IG (ν0/2, ν0σ
2
0/2), where ν0 = 5 and σ2

0 = 1.
τ2 ∼ IG (n0/2, n0τ

2
0 /2), where n0 = 5 and τ2

0 = 0.5

σ2

τ2

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

●
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MCMC scheme

• Sample θ from p(θ|yn, xn)

p(θ|yn, xn) ∝ p(θ)
n∏

t=1

p(yt |xt , θ)p(xt |xt−1, θ).

• Sample xn from p(xn|yn, θ)

p(xn|yn, θ) =
n∏

t=1

fN(xt |an
t ,R

n
t )
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Example: p(xt |y n)
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Example: Comparison

p(xt |yn) versus p(xt |yn, σ̃2 = 0.87, τ̃2 = 0.63).
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Lessons from the 1st order DLM

Sequential learning in non-normal and nonlinear dynamic
models p(yt+1|xt+1) and p(xt+1|xt) in general rather difficult
since

p(xt+1|y t) =

∫
p(xt+1|xt)p(xt |y t)dxt

p(xt+1|y t+1) ∝ p(yt+1|xt+1)p(xt+1|y t)

are usually unavailable in closed form.

Over the last 20 years:

• FFBS for conditionally Gaussian DLMs;

• Gamerman (1998) for generalized DLMs;

• Carlin, Polson and Stoffer (2002) for more general DMs.
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Dynamic linear models (DLMs)

Large class of models with time-varying parameters.

Dynamic linear models are defined by a pair of equations, the
observation equation and the evolution/system equation:

yt = F ′tβt + εt , εt ∼ N(0,V )

βt = Gtβt−1 + ωt , ωt ∼ N(0,W )

• yt : sequence of observations;

• Ft : vector of explanatory variables;

• βt : d-dimensional state vector;

• Gt : d × d evolution matrix;

• β1 ∼ N(a,R).
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Linear growth model

The linear growth model is slightly more elaborate by
incorporation of an extra time-varying parameter β2

representing the growth of the level of the series:

yt = β1,t + εt εt ∼ N(0,V )

β1,t = β1,t−1 + β2,t + ω1,t

β2,t = β2,t−1 + ω2,t

where ωt = (ω1,t , ω2,t)′ ∼ N(0,W ) and

Ft = (1, 0)′

Gt =

(
1 1
0 1

)
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Prior, updated and smoothed
distributions

Prior distributions

p(βt |y t−k) k > 0

Updated/online distributions

p(βt |y t)

Smoothed distributions

p(βt |y t+k) k > 0
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Sequential inference

Let y t = {y1, . . . , yt}.

Posterior at time t − 1:

βt−1|y t−1 ∼ N(mt−1,Ct−1)

Prior at time t:

βt |y t−1 ∼ N(at ,Rt)

with at = Gtmt−1 and Rt = GtCt−1G ′t + W .

predictive at time t:

yt |y t−1 ∼ N(ft ,Qt)

with ft = F ′tat and Qt = F ′tRtFt + V .
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Posterior at time t

p(βt |y t) = p(βt |yt , y
t−1) ∝ p(yt |βt) p(βt |y t−1)

The resulting posterior distribution is

βt |y t ∼ N(mt ,Ct)

with

mt = at + Atet

Ct = Rt − AtA′tQt

At = RtFt/Qt

et = yt − ft

By induction, these distributions are valid for all times.
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Smoothing

In dynamic models, the smoothed distribution π(β|yn) is more
commonly used:

π(β|yn) = p(βn|yn)
n−1∏
t=1

p(βt |βt+1, . . . , βn, y
n)

= p(βn|yn)
n−1∏
t=1

p(βt |βt+1, y
t)

Integrating with respect to (β1, . . . , βt−1):

π(βt , . . . , βn|yn) = p(βn|yn)
n−1∏
k=t

p(βk |βk+1, y
t)

π(βt , βt+1|yn) = p(βt+1|yn)p(βt |βt+1, y
t)

for t = 1, . . . , n − 1.
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Smoothing: p(βt |y n)

It can be shown that

βt |V ,W , yn ∼ N(mn
t ,C

n
t )

where

mn
t = mt + CtG ′t+1R−1

t+1(mn
t+1 − at+1)

C n
t = Ct − CtG ′t+1R−1

t+1(Rt+1 − C n
t+1)R−1

t+1Gt+1Ct
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Smoothing: p(β|y n)

It can be shown that

(βt |βt+1,V ,W , yn)

is normally distributed with mean

(G ′tW−1Gt + C−1
t )−1(G ′tW−1βt+1 + C−1

t mt)

and variance (G ′tW−1Gt + C−1
t )−1.
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Forward filtering, backward
sampling (FFBS)

Sampling from π(β|yn) can be performed by

• Sampling βn from N(mn,Cn) and then

• Sampling βt from (βt |βt+1,V ,W , y t), for
t = n − 1, . . . , 1.

The above scheme is known as the forward filtering, backward
sampling (FFBS) algorithm (Carter and Kohn, 1994 and
Frühwirth-Schnatter, 1994).
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Individual sampling from
π(βt |β−t , y

n)

Let β−t = (β1, . . . , βt−1, βt+1, . . . , βn).

For t = 2, . . . , n − 1

π(βt |β−t , y
n) ∝ p(yt |βt) p(βt+1|βt) p(βt |βt−1)

∝ fN(yt ; F ′tβt ,V )fN(βt+1; Gt+1βt ,W )

× fN(βt ; Gtβt−1,W )

= fN(βt ; bt ,Bt)

where

bt = Bt(σ−2Ftyt + G ′t+1W−1βt+1 + W−1Gtβt−1)

Bt = (σ−2FtF ′t + G ′t+1W−1Gt+1 + W−1)−1

for t = 2, . . . , n − 1.
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For t = 1 and t = n,

π(β1|β−1, y
n) = fN(β1; b1,B1)

and
π(βn|β−n, y

n) = fN(βt ; bn,Bn)

where

b1 = B1(σ−2
1 F1y1 + G ′2W−1β2 + R−1a)

B1 = (σ−2
1 F1F ′1 + G ′2W−1G2 + R−1)−1

bn = Bn(σ−2
n Fnyn + W−1Gnβn−1)

Bn = (σ−2
n FnF ′n + W−1)−1
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Sampling from π(V ,W |y n, β)
Assume that

φ = V−1 ∼ Gamma(nσ/2, nσSσ/2)

Φ = W−1 ∼ Wishart(nW /2, nW SW /2)

Full conditionals

π(φ|β,Φ) ∝
n∏

t=1

fN(yt ; F ′tβt , φ
−1) fG (φ; nσ/2, nσSσ/2)

∝ fG (φ; n∗σ/2, n∗σS∗σ/2)

π(Φ|β, φ) ∝
n∏

t=2

fN(βt ; Gtβt−1,Φ
−1) fW (Φ; nW /2, nW SW /2)

∝ fW (Φ; n∗W /2, n∗W S∗W /2)

where n∗σ = nσ + n, n∗W = nW + n − 1,

n∗σS∗σ = nσSσ + σ(yt − F ′tβt)2

n∗W S∗W = nW SW + Σn
t=2(βt − Gtβt−1)(βt − Gtβt−1)′
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MCMC scheme to sample from
p(β,V ,W |y n)

• Sample V−1 from its full conditional

fG (φ; n∗σ/2, n∗σS∗σ/2)

• Sample W−1 from its full conditional

fW (Φ; n∗W /2, n∗W S∗W /2)

• Sample β from its full conditional

π(β|yn,V ,W )

by the FFBS algorithm.
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Likelihood for (V ,W )

It is easy to see that

p(yn|V ,W ) =
n∏

t=1

fN(yt |ft ,Qt)

which is the integrated likelihood of (V ,W ).
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Jointly sampling (β,V ,W )

(β,V ,W ) can be sampled jointly by

• Sampling (V ,W ) from its marginal posterior

π(V ,W |yn) ∝ l(V ,W |yn)π(V ,W )

by a rejection or Metropolis-Hastings step;

• Sampling β from its full conditional

π(β|yn,V ,W )

by the FFBS algorithm.

Jointly sampling (β,V ,W ) avoids MCMC convergence
problems associated with the posterior correlation between
model parameters (Gamerman and Moreira, 2002).
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Example: Comparing schemes1

First order DLM with V = 1

yt = βt + εt , εt ∼ N(0, 1)

βt = βt−1 + ωt , ωt ∼ N(0,W ),

with (n,W ) ∈ {(100, .01), (100, .5), (1000, .01), (1000, .5)}.

400 runs: 100 replications per combination.

Priors: β1 ∼ N(0, 10) and V and W have inverse Gammas with
means set at true values and coefficients of variation set at 10.

Posterior inference: based on 20,000 MCMC draws.

1Gamerman, Reis and Salazar (2006) Comparison of sampling schemes
for dynamic linear models. International Statistical Review, 74, 203-214.
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Effective sample size
For a given θ, let t(n) = t(θ(n)), γk = Covπ(t(n), t(n+k)), the
variance of t(n) as σ2 = γ0, the autocorrelation of lag k as
ρk = γk/σ

2 and τ2
n/n = Varπ(t̄n). It can be shown that, as

n→∞,

τ2
n = σ2

(
1 + 2

n−1∑
k=1

n − k

n
ρk

)
→ σ2

(
1 + 2

∞∑
k=1

ρk

)
︸ ︷︷ ︸

inefficiency factor

.

The inefficiency factor measures how far t(n)s are from being a
random sample and how much Varπ(t̄n) increases because of
that.

The effective sample size is defined as

neff =
n

1 + 2
∑∞

k=1 ρk

or the size of a random sample with the same variance.
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Schemes
Scheme I: Sampling β1, . . . , βn, V , W from their conditionals.
Scheme II: Sampling β, V and W from their conditionals.
Scheme III: Jointly sampling (β,V ,W ).

Scheme n=100 n=1000

II 1.7 1.9
III 1.9 7.2

Computing times relative to scheme I.

Scheme
W n I II III

0.01 1000 242 8938 2983
0.01 100 3283 13685 12263
0.50 1000 409 3043 963
0.50 100 1694 3404 923

Sample averages (based on the 100 replications) of neff based
on V .
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Nonlinear DM

Let yt , for t = 1, . . . , n, be generated by

yt =
x2

t

20
+ εt εt ∼ N(0, σ2)

xt = αxt−1 + β
xt−1

1 + x2
t−1

+ γcos(1.2(t − 1)) + ut ut ∼ N(0, τ 2)

where x0 ∼ N(m0,C0) and θ = (α, β, γ)′.

Prior distribution

σ2 ∼ IG (n0/2, n0σ
2
0/2)

θ, τ2 ∼ N(θ0, τ
2V0)IG (ν0/2, ν0τ

2
0 /2)
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Sampling (σ2, θ, τ 2|x0, x
n, y n)

It follows that

(σ2|yn, xn) ∼ IG (n1/2, n1σ
2
1/2)

where n1 = n0 + n and

n1σ
2
1 = n0σ

2
0 +

n∑
t=1

(yt − x2
t /20)2.

Also
(θ, τ2|x0:n) ∼ N(θ1, τ

2V1)IG (ν1/2, ν1τ
2
1 /2)

where ν1 = ν0 + n,

V−1
1 = V−1

0 + Z ′Z

V−1
1 θ1 = V−1

0 θ0 + Z ′x1:n

ν1τ
2
1 = ν0τ

2
0 + (y − Zθ1)′(y − Zθ1) + (θ1 − θ0)′V−1

0 (θ1 − θ0)

Z = (Gx0 , . . . ,Gxn−1 )′

Gxt = (xt−1, xt−1/(1 + x2
t−1), cos(1.2(t − 1)))′.
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Sampling x1, . . . , xn

Let x−t = (x0, . . . , xt−1, xt+1, . . . , xn), for t = 1, . . . , n − 1,
x−0 = xn, x−n = x0:(n−1) and y0 = ∅.

For t = 0

p(x0|x−0, y0, ψ) ∝ fN(x0; m0,C0)fN(x1; G ′x0
θ, τ2)

For t = 1, . . . , n − 1

p(xt |x−t , yt , ψ) ∝ fN(yt ; x2
t /20, σ2)fN(xt ; G ′xt−1

θ, τ 2)

× fN(xt+1; G ′xt
θ, τ 2)

For t = n

p(xn|x−n, yn, ψ) ∝ fN(yn; x2
n/20, σ2)fN(xn; G ′xn−1

θ, τ2)
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Metropolis-Hastings algorithm

A simple random walk Metropolis algorithm with tuning
variance v 2

x would work as follows. For t = 0, . . . , n

1 Current state: x
(j)
t

2 Sample x∗t from N(x
(j)
t , v 2

x )

3 Compute the acceptance probability

α = min

{
1,

p(x∗t |x−t , yt , ψ)

p(x
(j)
t |x−t , yt , ψ)

}

4 New state:

x
(j+1)
t =

{
x∗t w. p. α

x
(j)
t w. p. 1− α
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Simulation set up
We simulated n = 100 observations based on θ = (0.5, 25, 8)′,
σ2 = 1, τ2 = 10 and x0 = 0.1.
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Prior hyperparameters

• x0 ∼ N(m0,C0)

m0 = 0.0 and C0 = 10

• θ|τ2 ∼ N(θ0, τ
2V0)

θ0 = (0.5, 25, 8)′ and V0 = diag(0.0025, 0.1, 0.04)

• τ2 ∼ IG (ν0/2, ν0τ
2
0 /2)

ν0 = 6 and τ2
0 = 20/3

such that E (τ2) =
√

V (τ2) = 10.

• σ2 ∼ IG (n0/2, n0σ
2
0)

n0 = 6 and σ2
0 = 2/3

such that E (σ2) =
√

V (σ2) = 1.
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MCMC setup

• Metropolis-Hastings tuning parameter

v 2
x = (0.1)2

• Burn-in period, step and MCMC sample size

M0 = 1, 000 L = 20 M = 950 ⇒ 20, 000 draws

• Initial values
• θ = (0.5, 25, 8)′

• τ 2 = 10
• σ2 = 1
• x0:n = xtrue

0:n
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Stochastic volatility model

The canonical stochastic volatility model (SVM), is

yt = eht/2εt

ht = µ+ φht−1 + τηt

where εt and ηt are N(0, 1) shocks with E (εtηt+h) = 0 for all
h and E (εtεt+l) = E (ηtηt+l) = 0 for all l 6= 0.

τ2: volatility of the log-volatility.

|φ| < 1 then ht is a stationary process.

Let yn = (y1, . . . , yn)′, hn = (h1, . . . , hn)′ and
ha:b = (ha, . . . , hb)′.
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Simulated data
n = 500, h0 = 0.0 and (µ, φ, τ2) = (−0.00645, 0.99, 0.0225)
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Prior information

Uncertainty about the initial log volatility is h0 ∼ N (m0,C0).

Let θ = (µ, φ)′, then the prior distribution of (θ, τ2) is
normal-inverse gamma, i.e. (θ, τ2) ∼ NIG (θ0,V0, ν0, s

2
0 ):

θ|τ2 ∼ N(θ0, τ
2V0)

τ2 ∼ IG (ν0/2, ν0s2
0/2)

For example, if ν0 = 10 and s2
0 = 0.018 then

E (τ2) =
ν0s2

0/2

ν0/2− 1
= 0.0225

Var(τ2) =
(ν0s2

0/2)2

(ν0/2− 1)2(ν0/2− 2)
= (0.013)2

Hyperparameters: m0, C0, θ0, V0, ν0 and s2
0 .
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Simulated data

Simulation setup

• h0 = 0.0

• µ = −0.00645

• φ = 0.99

• τ2 = 0.0225

Prior distribution

• h0 ∼ N(0, 100)

• µ ∼ N(0, 100)

• φ ∼ N(0, 100)

• τ2 ∼ IG (5, 0.14) (Mode=0.0234; 95% c.i.=(0.014; 0.086))
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Posterior inference

The SVM is a dynamic model and posterior inference via
MCMC for the the latent log-volatility states ht can be
performed in at least two ways.

Let h−t = (h0:(t−1), h(t+1):n), for t = 1, . . . , n − 1 and
h−n = h1:(n−1).

• Individual moves for ht

• (θ, τ 2|hn, yn)
• (ht |h−t , θ, τ

2, yn), for t = 1, . . . , n

• Block move for hn

• (θ, τ 2|hn, yn)
• (hn|θ, τ 2, yn)
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Sampling (θ, τ 2|hn, y n)

Conditional on h0:n, the posterior distribution of (θ, τ2) is also
normal-inverse gamma:

(θ, τ2|yn, h0:n) ∼ NIG (θ1,V1, ν1, s
2
1 )

where X = (1n, h0:(n−1)), ν1 = ν0 + n

V−1
1 = V−1

0 + X ′X

V−1
1 θ1 = V−1

0 θ0 + X ′h1:n

ν1s2
1 = ν0s2

0 + (y − Xθ1)′(y − Xθ1)

+ (θ1 − θ0)′V−1
0 (θ1 − θ0)
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Sampling (h0|θ, τ 2, h1)

Combining
h0 ∼ N(m0,C0)

and
h1|h0 ∼ N(µ+ φh0, τ

2)

leads to (by Bayes’ theorem)

h0|h1 ∼ N(m1,C1)

where

C−1
1 m1 = C−1

0 m0 + φτ−2(h1 − µ)

C−1
1 = C−1

0 + φ2τ−2
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Conditional prior distribution of ht
Given ht−1, θ and τ2, it can be shown that(

ht

ht+1

)
∼ N

{(
µ+ φht−1

(1 + φ)µ+ φ2ht−1

)
, τ 2

(
1 φ
φ (1 + φ2)

)}
.

E (ht |ht−1, ht+1, θ, τ
2) and V (ht |ht−1, ht+1, θ, τ

2) are

µt =

(
1− φ
1 + φ2

)
µ+

(
φ

1 + φ2

)
(ht−1 + ht+1)

ν2 = τ2(1 + φ2)−1.

Therefore,

(ht |ht−1, ht+1, θ, τ
2) ∼ N(µt , ν

2) t = 1, . . . , n − 1

(hn|hn−1, θ, τ
2) ∼ N(µn, τ

2)

where µn = µ+ φhn−1.
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Sampling ht via RWM
Let ν2

t = ν2 for t = 1, . . . , n − 1 and ν2
n = τ2, then

p(ht |h−t , y
n, θ, τ2) = fN(ht ;µt , ν

2
t )fN(yt ; 0, eht )

for t = 1, . . . , n.

RWM with tuning v 2
h (t = 1, . . . , n):

1 Current state: h
(j)
t

2 Sample h∗t from N(h
(j)
t , v 2

h )
3 Compute the acceptance probability

α = min

{
1,

fN(h∗t ;µt , ν
2
t )fN(yt ; 0, eh∗t )

fN(h
(j)
t ;µt , ν2

t )fN(yt ; 0, eh
(j)
t )

}

4 New state:

h
(j+1)
t =

{
h∗t w. p. α

h
(j)
t w. p. 1− α
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Simulated data
MCMC setup

• M0 = 1, 000
• M = 1, 000

Autocorrelation of hts
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Sampling ht via IMH

The full conditional distribution of ht is given by

p(ht |h−t , y
n, θ, τ2) = p(ht |ht−1, ht+1, θ, τ

2)p(yt |ht)

= fN(ht ;µt , ν
2)fN(yt ; 0, eht ).

Kim, Shephard and Chib (1998) explored the fact that

log p(yt |ht) = const− 1

2
ht −

y 2
t

2
exp(−ht)

and that a Taylor expansion of exp(−ht) around µt leads to

log p(yt |ht) ≈ const− 1

2
ht −

y 2
t

2

(
e−µt − (ht − µt)e−µt

)
g(ht) = exp

{
−1

2
ht(1− y 2

t e−µt )

}
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Proposal distribution

Let ν2
t = ν2 for t = 1, . . . , n − 1 and ν2

n = τ2.

Then, by combining fN(ht ;µt , ν
2
t ) and g(ht), for t = 1, . . . , n,

leads to the following proposal distribution:

q(ht |h−t , y
n, θ, τ2) ≡ N

(
ht ; µ̃t , ν

2
t

)
where µ̃t = µt + 0.5ν2

t (y 2
t e−µt − 1).
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IMH algorithm

For t = 1, . . . , n

1 Current state: h
(j)
t

2 Sample h∗t from N(µ̃t , ν
2
t )

3 Compute the acceptance probability

α = min

{
1,

fN(h∗t ;µt , ν
2
t )fN(yt ; 0, eh∗t )

fN(h
(j)
t ;µt , ν2

t )fN(yt ; 0, eh
(j)
t )
× fN(h

(j)
t ; µ̃t , ν

2
t )

fN(h∗t ; µ̃t , ν2
t )

}

4 New state:

h
(j+1)
t =

{
h∗t w. p. α

h
(j)
t w. p. 1− α
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ACF for both schemes
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Sampling hn - normal
approximation and FFBS

Let y∗t = log y 2
t and εt = log ε2

t .

The SV-AR(1) is a DLM with nonnormal observational errors,
i.e.

y∗t = ht + εt

ht = µ+ φht−1 + τηt

where ηt ∼ N(0, 1).

The distribution of εt is logχ2
1, where

E (εt) = −1.27

V (εt) =
π2

2
= 4.935
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Normal approximation

Let εt be approximated by N(α, σ2), zt = y∗t − α, α = −1.27
and σ2 = π2/2.

Then

zt = ht + σvt

ht = µ+ φht−1 + τηt

is a simple DLM where vt and ηt are N(0, 1).

Sampling from
p(hn|θ, τ2, σ2, zn)

can be performed by the FFBS algorithm.
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logχ2
1 and N(−1.27, π2/2)
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Sampling hn - mixtures of normals
and FFBS

The logχ2
1 distribution can be approximated by

7∑
i=1

πiN(µi , ω
2
i )

where

i πi µi ω2
i

1 0.00730 -11.40039 5.79596
2 0.10556 -5.24321 2.61369
3 0.00002 -9.83726 5.17950
4 0.04395 1.50746 0.16735
5 0.34001 -0.65098 0.64009
6 0.24566 0.52478 0.34023
7 0.25750 -2.35859 1.26261
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logχ2
1 and

∑7
i=1 πiN(µi , ω

2
i )
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Mixture of normals

Using an argument from the Bayesian analysis of mixture of
normal, let z1, . . . , zn be unobservable (latent) indicator
variables such that zt ∈ {1, . . . , 7} and Pr(zt = i) = πi , for
i = 1, . . . , 7.

Therefore, conditional on the z ’s, yt is transformed into log y 2
t ,

log y 2
t = ht + log ε2

t

ht = µ+ φht−1 + τηηt

which can be rewritten as a normal DLM:

log y 2
t = ht + vt vt ∼ N(µzt , ω

2
zt

)

ht = µ+ φht−1 + wt wt ∼ N(0, τ2
η )

where µzt and ω2
zt

are provided in the previous table.

Then hn is jointly sampled by using the the FFBS algorithm.
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Posterior means: volatilities
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