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1st order DLM

The local level model (West and Harrison, 1997) has

Observation equation:
Yer1lxes1,0 ~ N(xez1,0%)
System equation:
Xer1|xt, 0 ~ N(x¢,72)

where
xo ~ N(mg, Co)

and

fixed (for now).
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It is worth noticing that the model can be rewritten as

y|x,0 ~ N(x,02l,)
x|x0,0 ~ N(xoln,7°Q)
xo ~ N(mg, G)

where

e
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Therefore, the prior of x given 0 is
x|0 ~ N(molp,; Col,1, 4+ 7°Q),
while its full conditional posterior distribution is
x|y,0 ~ N(my, Cy)

where
Cl_1 = (Gol,1, + 7'29)71 +07%,

and
C1_1m1 = (Co].nl;, + T2Q)71m01n + 0'72)/

A /7T
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The Kalman filter

Let y* = (y1,...,¥:t). The previous joint posterior posterior for
x given y (omitting 6 for now) can be constructed as

n
p(x|y") = p(xily”, x2) H p(xely”, xe+1),
t=1

which is obtained from
p(x"[y")
and noticing that given y* and x;1,

e x; and x;1p are independent, and

e x; and y; are independent,

for all integer h > 1.
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Therefore, we first need to derive the above joint and this is
done forward via the well-known Kalman filter recursions.

p(xely?) = p(xes1ly’) = p(yesilxe) = p(xesaly™)

Posterior at t: (x¢|y*) ~ N(my, Ct)
Prior at t + 1: (xgr1]y") ~ N(me, Rey1)

Rt+]_ = Ct + 7'2

Marginal likelihood: (yts1|y®) ~ N(m¢, Qr+1)

Qe41 = Rey1 + 02

e Posterior at t + 1: (xey1]yt) ~ N(mey1, Cey1)
M1 = (1= Aep)me + Acp1yen
Ct+1 = At+102

where A1 = Rig1/ Q1.
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For t = n, x,|y" ~ N(m], C), where m; = m, and C}! = C,.

The Kalman smoother

For t < n,
xily” ~ N(mf,Cl)
xelxer1, " ~  N(af, RY)
where
mg = (1 — Bt)mt + Btmf+1
G = (1-B)G+ B,
a? = (1 — Bt)mt —+ BtXt+1

Rl = B’

and

Bt = Ct/(Ct +T2).
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p(x¢|y?) via Kalman filter
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Integrating out states x”

We showed earlier that

(yely™™) ~ N(me_1, Q)

where both m;_; and Q; were presented before and are
functions of 0 = (02,72), yt=1, mg and Gp.

Therefore, by Bayes’ rule,
p(0ly") o p(6)p(y"10)

= p(O) [] fu(ye me-1, Qo).

t=1

13T /771
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Example: p(y|o?, 7%)p(0?)p(7?)
02 ~ I1G(vo/2, 11902 /2), where vy =5 and 02 = 1.
72 ~ 1G(no/2, no73/2), where ng =5 and 78 = 0.5
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MCMC scheme

Sample 6 from p(8|y", x")

pOly",x") o< p(8) | [ p(velxt, 6)p(xelxe—1,6).

t=1

Sample x" from p(x"|y", 0)

p(x"ly",0) = [ fu(xela?, RY)
t=1

15 /771
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Lessons from the 1st order DLM

Sequential learning in non-normal and nonlinear dynamic
models p(y:+1|xe+1) and p(xe+1|x¢) in general rather difficult
since
plrely’) = [ ploesalx oy )b
P(Xt+1|yt+1) o p(yes1lxer1)p(xer1ly©)
are usually unavailable in closed form.
Over the last 20 years:

e FFBS for conditionally Gaussian DLMs;
e Gamerman (1998) for generalized DLMs;
e Carlin, Polson and Stoffer (2002) for more general DMs.

19 /71
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Dynamic linear models (DLMs)

Large class of models with time-varying parameters.

Dynamic linear models are defined by a pair of equations, the
observation equation and the evolution/system equation:

ve = FiBe+er, et ~ N(0, V)
Br = Gefe—1+we, wr~ N(O,W)

yt: sequence of observations;

F:: vector of explanatory variables;
B¢: d-dimensional state vector;

Gs: d x d evolution matrix;

B1 ~ N(a, R).

10/ 771
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Linear growth model

The linear growth model is slightly more elaborate by
incorporation of an extra time-varying parameter (3,
representing the growth of the level of the series:

ye = Pre+e e~ N, V)
Bre = PBre—1+ Por+wiys
Bot = Poi-1+wot

where w; = (w1,¢,w2,t)" ~ N(0, W) and
Ft = (1, 0)/

11
5= (o1)

2°€%° /71
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Prior, updated and smoothed
distributions

Prior distributions

p(Bely™) k>0

Updated/online distributions

P(ﬁtb’t)

Smoothed distributions

p(Bely™) k>0

21
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Sequential inference

Let y* = {y1,..., ¥t}

Posterior at time t — 1:

ﬂt—l‘ytil ~ N(m¢—1, Ce—1)

Prior at time t:
Bely™™ ~ N(ar, Re)
with a; = Gymy—1 and Ry = G;C;—1 G + W.
predictive at time t:
yely® ™~ N(fe, Qr)
with f; = F{a; and Q; = F/R:F: + V.

29 /71
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Posterior at time t

p(Bely') = p(Belye, y* 1) o< p(yelBe) p(Bely™)

The resulting posterior distribution is

Bely® ~ N(m¢, Ct)
with

my = ar+ Acer

G = Ri—AAQ:
At = RtFt/Qt

ee = yr—f

By induction, these distributions are valid for all times.

27 /71



Smoothing

wwienoms In dynamic models, the smoothed distribution 7(3|y") is more

The Kalman

filte .

e commonly used:
he Kalman

smoother

Example

n—1
Integrating out

MCMC sheme w(Bly") = p(Baly™) [] p(BelBesss - Ba.y")

Lessons 1
n—1
Linear growth = P(ﬁn‘yn) H p(ﬂt‘ﬂt-{-h yt)
Sequential t=1
inference
Smoothing
The FFBS . .
inaiu Integrating with respect to (1, ..., B:t—1):
P n—1
7By Baly™) = p(Baly™) [ P(BelBrs1,¥")

k=t

(Bt Bev1ly™) = p(Bex1ly”)p(BtlBey1, yt)

fort=1,...,n—1.

250 /77
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Smoothing: p(B:]y™)

It can be shown that
ﬁt’vv W7yn ~ N(mf, C[,)

where

n _ / -1 n
m{ = me+ GGl R (M — ae)

G = G GGLR (R — Q)R Gen G

2959% /71
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Smoothing: p(3]y")

It can be shown that

(ﬁt|ﬁt+l7 V7 van)

is normally distributed with mean
(GIW ™G + C 1) H(GIW ™ Besr + G tme)

and variance (G!W~1G, + ¢, 1)~ L.

296 /71
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Forward filtering, backward
sampling (FFBS)

Sampling from 7(3|y") can be performed by
e Sampling 3, from N(m,, C,) and then

e Sampling §; from (B¢|Be41, V, W, y"), for
t=n—-1,...,1

The above scheme is known as the forward filtering, backward
sampling (FFBS) algorithm (Carter and Kohn, 1994 and
Friihwirth-Schnatter, 1994).
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Individual sampling from

W(ﬁtlﬁfh yn)

Let B¢ = (B1,- -, Be—1, Beg1s- -+, Bn)-

Fort=2,...

W(ﬁf|ﬁ—tayn)

,n—1

p(ye|Bt) P(Be+1|8t) p(Be|Be—1)
fN(Yt? Ft/ﬁta V)fN(ﬁFFl; Gt110t, W)
fN(ﬁt; Gtft-1, W)

fN(ﬂt; by, Bt)

X R K

Bt(O'ithyt + Gé+1 Wﬁl,@t—f—l + Wil Gtﬂt—l)
(0 2FeFl+ Gl W Gegr + W)

,n—1.

259 /71
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For t =1 and t = n,

7(B1]8-1,y") = fn(B1; b1, Br)

and
W(ﬁn|ﬁfmyn) = fN(ﬁt; bna Bn)

where

bi = Bi(oy*Fiy + GW ™5, + R71a)
Bi = (07?RAF +GW G +R 1)
by, = Bu(o,%Foyn+W™G,6, 1)

B, = (0,%F,F,+w™1)~1

20 /71
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Sampling from 7(V, W|y", )
Assume that
¢p=V1 ~ Gamma(n,/2,n,S,/2)
®=W""1 ~ Wishart(nw/2, nwSw/2)

Full conditionals

m(918,9) o< [ fulyei FiBe,¢™") fo(di ne /2,00 S,/2)
t=1

x  fe(¢ins/2,n%Sr/2)

o~ o

(P68, 4) HfN(ﬂt;Gtﬂt—la¢7l) fw (®; nw /2, nw Sw /2)
t—2

o fw(®;nyy /2, 0y, Siy/2)
where n} = n, +n, njy, = nw +n—1,
n:S* = nySy+ oy — FlB:)?
mwSw = nwSw +Z{ (8 — GefBe-1)(Be — Gefe-1)

200/ 71
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MCMC scheme to sample from
p(B, V, Wly")

e Sample V! from its full conditional
f6(9; ny/2,n555/2)
e Sample W~ from its full conditional
fw (®; ny /2, iy Sy /2)
e Sample G from its full conditional
m(Bly", vV, W)

by the FFBS algorithm.

21 /71
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Likelihood for (V, W)

It is easy to see that

p(y"IV, W) = ] fwllf, Q)
t=1

which is the integrated likelihood of (V, W).

27 /71
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Jointly sampling (3, V, W)

(B, V, W) can be sampled jointly by
e Sampling (V, W) from its marginal posterior

w(V, W|y") o< I(V, W|y")m(V, W)

by a rejection or Metropolis-Hastings step;

e Sampling 3 from its full conditional
m(Bly", V, W)
by the FFBS algorithm.
Jointly sampling (3, V, W) avoids MCMC convergence

problems associated with the posterior correlation between
model parameters (Gamerman and Moreira, 2002).

T/ 771
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Example: Comparing schemes!

First order DLM with V =1

Yo = Betee, e ~ N(0,1)

Bt = Br1t+wr, we~ N, W),
with (n, W) € {(100,.01), (100, .5), (1000, .01), (1000, .5)}.
400 runs: 100 replications per combination.

Priors: 31 ~ N(0,10) and V and W have inverse Gammas with
means set at true values and coefficients of variation set at 10.

Posterior inference: based on 20,000 MCMC draws.

!Gamerman, Reis and Salazar (2006) Comparison of sampling schemes

for dynamic linear models. International Statistical Review, 74, 203_214'24 ¢



Effective sample size
For a given 6, let t(" = t(H(”)), VK = Covﬁ(t(”), t(n+k)), the

n-variate normal

The (eler variance of (" as g2 = ~0, the autocorrelation of lag k as
et Pk = Yk/0? and 72/n = Var,(t,). It can be shown that, as
Example
Imegr:u”g out n— oo,
states x
MCMC scheme n—1 o]
Lessons n—k
=02 (1+2) pi| =% (142D pi
n

k=1 k=1
Linear growth . ..
model inefficiency factor
Schucntm\
e The inefficiency factor measures how far t("s are from being a
mpling. random sample and how much Var;(%,) increases because of
Joint sampling
Exari\ple ! that

The effective sample size is defined as
n

Teff T T 23 k=1 Px

or the size of a random sample with the same variance.

2K /771



Schemes
Scheme I: Sampling (1, ..., 8, V, W from their conditionals.
Scheme II: Sampling 8, V and W from their conditionals.
Scheme IlI: Jointly sampling (3, V, W).

Scheme n=100 n=1000
1 1.7 1.9
[l 1.9 7.2

Computing times relative to scheme |.

in
Smoott

ENE Scheme

In W n | M M
0.01 1000 | 242 8938 2983
0.01 100 | 3283 13685 12263
0.50 1000 | 409 3043 963
050 100 | 1694 3404 923

Sample averages (based on the 100 replications) of nu¢r based
on V.

2R /71
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Nonlinear DM

Let y;, for t =1,...,n, be generated by

2

_ X +
e = 5T«
Xt—1
Xt ax 1+61+Xt271 + ycos(1.2( ) + ue

where xo ~ N(mg, Cp) and 6 = («, 3,7)’.

Prior distribution

o2~ 1G(no/2, noo/2)
6,72 ~ N(8o,7Vo)IG(vo/2,v075 /2)

et ~ N(0,0°)

ur ~ N(0,7%)

27 /71
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Sampllng (027 97 7_2|X07 Xn7 .yn)
It follows that

(02|y”,X") ~ 1G(n1/2, n10%/2)
where n; = ng + n and

n
mo3 = ngop + Z(Yt — x¢/20)>.
t=1

Also
(9,7’2\X0;,,) ~ N(91,7'2 V1)IG(v1/2, 1/17'12/2)
where 11 = g + n,

Vit o= v+ zz
v;lel = V0719o + Z'x1:n
ntd = wig+(y— 2601 (y — Z61) + (61 — 60)’ Vy (61 — 6o)
Z = (Gxgy---rGrpy)
Gy = (xe—1,x—1/(1+x21),cos(1.2(t —1))).
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Sampling xq, ..., X,

Let x_t = (X0, .+ -y Xt—1, Xt41,..-,Xn), for t =1,...,n—1,
x_0 = X", X_pn = Xp:(n—1) and yo = 0.

Fort =0
p(x0|x—0, Yo, ¥) o fu(x0; mo, Co)fn(x1; G 0, 7°)

Fort=1,...,n—1

pxex_e, ¥, ¥) o fu(ye; x2/20,0%) fy(xe; GL,_ 0, 7°)

X fN(XtJrl; G)/Q97T2)

Fort =n

p(Xn|Xfmym¢) X fN(Yn;X3/2OaU2)fN(Xn; G)’(n_10,7-2)

20/ 71



Metropolis-Hastings algorithm

n-variate norma

The Kalman A simple random walk Metropolis algorithm with tuning
e variance v2 would work as follows. For t =0,...,n
Example B

gy ot ® Current state: xU)

MCMC scheme (J)

e ® Sample x; from N(x;’, v2)

©® Compute the acceptance probability

Linear growth

model *
g " . P(Xt ‘X—tath)
i a=ming 1l ———"2" "7

Smoothing p(Xt{J) |X—t7 Yt, d))

The FFBS

Individual
sampling

Joint sampling

Example 0 New state:

Nonlinear DM
*
G+1) Xt' wW. p. «
Xy’ w.p. 1—a

A0 /7T
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The Kalman
smoother

Example
Integrating out
states x

MCMC scheme
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Linear growth
model

Sequential
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Smoothing
The FFBS
Individual
sampling
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Example

Nonlinear DM

g

2

Yt

=1,72=10and xg = 0.1.

20
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15 20

10

Y
0 20 60 80 100
time
a0,
B . ofl”
e o
A o 038 ¢
& ooad
% o ©0 0% o
] " g
T T T T
-10 0 10 20
%

Simulation set up
We simulated n = 100 observations based on 6 = (0.5, 25, 8)’,

X

20
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-10

%
20 40 60 80 100
time
RS P
° 00 ° & ° °©
e, c e ..
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T > T T T
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Xi-1

AT

Al



Prior hyperparameters

e xp ~ N(mg, Go)

mp=0.0 and (=10

o 0|72 ~ N(6p, 7> Vp)
6o = (0.5,25,8) and Vo = diag(0.0025,0.1,0.04)
o 72~ /G(Vo/2,V073/2)
vo=6 and 7% =20/3
such that E(72) = /V/(72) = 10.

o 02~ IG(no/2, ngo3)

Nonlinear DM

np=6 and o} =2/3

such that E(0?) = /V(0?) = 1.

AT /7T



n-variate normal

The Kalman
filter

The Kalman
smoother

Example

Integrating out
states x"

MCMC scheme
Lessons

Linear growth
model

Sequential
inference

Smoothing
The FFBS

Individual
sampling

Joint sampling
Example

Nonlinear DM

MCMC setup

e Metropolis-Hastings tuning parameter
v2 = (0.1)?
e Burn-in period, step and MCMC sample size
My =1,000 L=20 M =950 = 20,000 draws
e Initial values

e 6= (0.5,25,8)
e 72 =10
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Parameters

n-variate normal
The Kalman

filter

apa beta gamma 2 sg2
The Kalman R
smoother N . .
Example N . *
CMC scheme M ‘ . N
Lessons 2 }
Linear growth H H E E ]
model . . . . .
e s *s *s 2 2
IS : : it : HMHHHHHHHHHHW :
Individual 3 < o fHHn o T AT <
sampling
P P P P

Joint sampling - - - -
Example
Nonlinear DM & & & -
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1st order DLM
n-variate normal

The Kalman
filter

The Kalman
smoother

Example

Integrating out
states x"

MCMC scheme
Lessons

Dynamic
linear models
(DLMs)
Linear growth
model

Sequential
inference

Smoothing
The FFBS
Individual
sampling
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Example

Nonlinear DM

SV model
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time
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n-variate normal
The Kalman

filter

The Kalman
smoother

Linear growth
model
Sequential
inference

Smoothing
The FFBS
Individual
sampling

Joint sampling

Example

Nonlinear DM

Parameters

My = 100,000 L =50 M =1000 = 150,000 draws

H g N g
s s
- = - -
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Stochastic volatility model

n-variate normal

The Kaman The canonical stochastic volatility model (SVM), is
The Kalman

Bample yve = eM/?g,

Integrating out

- he = p+ohe1+ 70

where ¢; and n; are N(0,1) shocks with E(g¢n:1p) = 0 for all
h and E(e¢ery) = E(meneyy) = 0 for all [ #£ 0.

Linear growth
model

Sequential
inference

Smoothing

S 72 volatility of the log-volatility.

Individual
sampling

Joint sampling
Example

|¢| < 1 then h; is a stationary process.

SV model

Let y" = (y1,...,yn), h" = (h1,..., h,)" and
hyp = (ha,...,hb)/.

A0 /771



1st order DLM n—= 500'

n-variate normal
The Kalman
filter

The Kalman
smoother

Example

Integrating out
states x"

MCMC scheme
Lessons

Dynamic
linear models
(DLMs)
Linear growth
model

Sequential
inference

Smoothing
The FFBS
Individual
sampling
Joint sampling
Example

Nonlinear DM

SV model

Simulated data
ho = 0.0 and (, ¢, 72) = (—0.00645, 0.99, 0.0225)

o 100 200 200 00 500

time:

0 100 200 300 400 500

time

(a1
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n-variate normal

The Kalman
filter

The Kalman
smoother

Example

Integrating out
states x"

MCMC scheme

Lessons

Linear growth
model

Sequential
inference

Smoothing
The FFBS

Individual
sampling

Joint sampling
Example

SV model

Prior information

Uncertainty about the initial log volatility is hg ~ N (mg, Cp).

Let 6 = (u, ®)’, then the prior distribution of (6,72) is
normal-inverse gamma, i.e. (0,72) ~ NIG(0o, Vo, v0,53):
017> ~ N(b,7*Vo)
%~ 1G(10/2, 1055 /2)

For example, if vg = 10 and sg = 0.018 then
Vosg/2
v/2 -1
(v083/2)

(v0/2 = 1)%(v0/2 - 2)

E(7?) =0.0225

Var(1?) = = (0.013)?

Hyperparameters: mg, Cp, 09, Vo, 1o and sg.
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n-variate normal

The Kalman
filter

The Kalman
smoother

Example

Integrating out
states x"

MCMC scheme
Lessons

Linear growth
model

Sequential
inference

Smoothing
The FFBS

Individual
sampling

Joint sampling
Example

SV model

Simulated data

Simulation setup
e hg=0.0
e 1= —0.00645
e ¢»=0.99
o 72=10.0225

Prior distribution
e hy ~ N(0,100)
e 1~ N(0,100)
e ¢~ N(0,100)
e 72~ 1G(5,0.14) (Mode=0.0234; 95% c.i.=(0.014;0.086))

R /7T



n-variate normal

The Kalman
filter

The Kalman
smoother

Example

Integrating out
states x"

MCMC scheme
Lessons

Linear growth
model

Sequential
inference

Smoothing
The FFBS

Individual
sampling

Joint sampling
Example

SV model

Posterior inference

The SVM is a dynamic model and posterior inference via
MCMC for the the latent log-volatility states h; can be
performed in at least two ways.

Let h—t = (ho.(¢-1) A(t+1):n), for t =1,...,n—1 and
h_n= hl:(nfl)-

e Individual moves for h;
® (9772|h"7)/")
o (ht|h—fa9a7—2’yn)y fOf t:].,...7n

e Block move for h"
o (6,72|h", y")
o (h"6,72,y")

RT /7T



n-variate normal

The Kalman
filter

The Kalman
smoother

Example

Integrating out
states x"

MCMC scheme
Lessons

Linear growth
model

Sequential
inference

Smoothing
The FFBS

Individual
sampling

Joint sampling
Example

SV model

Sampling (6, 72|h", y™)

Conditional on hy.,, the posterior distribution of (6, 72) is also
normal-inverse gamma:

(0, 7|y", hg.n) ~ NIG(61, V1, v1,57)
where X = (1p, hg.(p—1)), V1 = 1o+ n

Vit = vyt x'X
Vi to Vy 00 + X hy.p
nst = s+ (v — X01)'(y — X61)
+ (61 — 6o)' V5 (61 — o)

RA /71



n-variate normal
The Kalman
filter

The Kalman
smoother
Example
Integrating out
states x"
MCMC scheme
Lessons

Linear growth
model

Sequential
inference

Smoothing
The FFBS
Individual
sampling
Joint sampling
Example

SV model

Sampling (ho|0, 72, hy)

Combining
ho ~ N(mo, Co)

and
hi|ho ~ N(p+ ¢ho, 72)

leads to (by Bayes' theorem)
holhy ~ N(my, C1)
where

Cl_lml = Co_lmo + ¢T_2(h1 — u)
Cl—l — C0_1+¢27—_2

Ry /771



Conditional prior distribution of h;
Given hy_1, 0 and 72, it can be shown that

n-variate normal
The Kalman

[II"}:?Ka\man < h; ) ~ N {( B+ ¢ht71 > 7_2 < 1 ¢ >}
Eranple het1 1+ @)+ ¢*her )’ ¢ (1+¢7)

Integrating out
states x"

MCMC scheme
Lessons

E(ht|ht_1, ht+1, 07 T2) and V(ht|ht_1, ht+1, 0, T2) are
Linear growth 1—
e He = ( ¢ ) w+ < ¢ > (ht—1 + hey1)

\Snfcrcn’cc 1+ ¢2 1+ ¢2
moothing
he 2 2 2\—1
it veo= m(1+9¢%)
sampling

Joint sampling
Example

Therefore,
SV model

(helhe—1, hey1,60,7%) ~ N(pe,v?) t=1,...,n—1
(hnlbn-1,0,7%) ~ N(un,7°)

where p, = p+ ¢hp_1.

BA /7T



n-variate normal
The Kalman
filter

The Kalman
smoother

Example

Integrating out
states x"

MCMC scheme
Lessons

Linear growth
model

Sequential
inference

Smoothing
The FFBS

Individual
sampling

Joint sampling
Example

SV model

Sampling h; via RWM
Let v2 =v? fort =1,...,n— 1 and v2 = 72, then
P(ht‘h—tyynygﬂ'z) = fN(ht;Mthz)fN(Yt; 0, eht)
fort=1,...,n
RWM with tuning v2 (t =1,...,n):
® Current state: h(j)
® Sample h; from N(hg ), v?)
©® Compute the acceptance probability
* . 2 . hy
a= mm{l fu (ht"ut’yt)f (20 e U)) }
fN( t thth)fN()/t?Oyeh‘ )

O New state:

h(’j+1) _ h}k' W. p. &
! th) w. p. 1-«a

R7 /71



Simulated data

MCMC setup
e My =1,000
e M =1,000

Autocorrelation of h;s

1.0
I

0.9
I

0.8

0.7
I

0.6
I

05
I

0.4
I

0.3
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n-variate normal

The Kalman

filter

The Kalman
smoother

Example

Integrating ou
states x

MCMC scheme

Lessons

Linear growth
model

Sequential
inference

Smoothing
The FFBS

Individual
sampling

Joint sampling
Example

SV model

Sampling h; via IMH

The full conditional distribution of h; is given by

p(hilh_e,y",0,72) = p(helhe_1, hey1,0,72)p(yel he)

= fN(ht; Kt V2)fN(Yt; 0, eht)-

Kim, Shephard and Chib (1998) explored the fact that

log P(}’t|ht)

and that a Taylor expansion of exp(—h;) around y; leads to

log p(y:|h:) =~

g(h:) =

1 2
= const — Eht - }%t exp(—he)

v?

1
const — §ht — 2L (e — (he — pe)e )

2
1
exp {—2ht(1 - yge—“t)}
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n-variate normal

The Kalman
filter

The Kalman
smoother

Example

Integrating out
states x"

MCMC scheme
Lessons

Linear growth
model

Sequential
inference

Smoothing
The FFBS

Individual
sampling

Joint sampling
Example

SV model

Proposal distribution

Let v2=1v?fort=1,...,n—1and v2 =72,

Then, by combining fn(he; jit,v2) and g(ht), for t =1,... . n,

leads to the following proposal distribution:
q(ht’h—tayna 07 7_2) =N (ht; ﬁt: Vt%)

where ji; = p + 0.502(y2e Mt — 1).
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n-variate normal

The Kalman
filter

The Kalman
smoother

Example

Integrating out
states x"

MCMC scheme
Lessons

Linear growth
model

Sequential
inference

Smoothing
The FFBS

Individual
sampling

Joint sampling
Example

SV model

IMH algorithm

Fort=1,...,n
@ Current state: hgj)
@® Sample h} from N(jiz, v?)
©® Compute the acceptance probability

fu(his e, v fu(yei 0,€)  fu(hY fie, 1)
u(b; ue, VB (e 0, M)~ b fies )

a=min< 1,
O New state:

h(j+1) _ h;_f W. p. «
t hgj) w. p. 1-«

A1
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n-variate normal

The Kalman
filter

The Kalman
smoother

Example

Integrating out
states x"

MCMC scheme
Lessons

Linear growth
model

Sequential
inference

Smoothing
The FFBS
Individual
sampling
Joint sampling
Example

SV model

Sampling h" - normal
approximation and FFBS
Let y; = logy? and €; = log £2.
The SV-AR(1) is a DLM with nonnormal observational errors,
ie.
Y = hite
he = p+ ¢hi—1+ ™0
where n; ~ N(0,1).

The distribution of ¢, is log 2, where

E(er) = —1.27

2

V() = = =493

AT /71



Normal approximation

n-variate normal

rThe Kalman

ilter .

e Gl Let ¢; be approximated by N(«a,0?), z: = y; — a, a = —1.27

smoother

Example and 0-2 — 7-(-2/2_

Integrating out
states x"

MCMC scheme

Lessons Then

Zy = ht + oV
Linear growth
model
Schucntm\ ht = W + ¢ht—1 + Tt
Smoothing
[ e is a simple DLM where v; and 7n; are N(0,1).
sampling

Joint sampling
Example .
' Sampling from

(10,72, 0, 2")

SV model

can be performed by the FFBS algorithm.
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1st order DLM
n-variate normal

The Kalman
filter

The Kalman
smoother
Example
Integrating out
states x”’
MCMC scheme
Lessons

Dynamic
linear models
(DLMs)
Linear growth
model

Sequential
inference

Smoothing
The FFBS
Individual
sampling
Joint sampling
Example

Nonlinear DM

SV model

density

0.10 0.15 0.20 0.25

0.05

0.00

log x3 and N(—1.27,72/2)

— log chi*2_1

normal

10
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ACF for the three schemes
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Sampling h" - mixtures of normals
and FFBS

The log X% distribution can be approximated by

7
> miN(pui,w?)
i=1

where

T i w,-2
0.00730 -11.40039 5.79596
0.10556  -5.24321 2.61369
0.00002 -9.83726 5.17950
0.04395 1.50746 0.16735
0.34001 -0.65098 0.64009
0.24566 0.52478 0.34023

0.25750  -2.35859 1.26261

SV model

~NOoO O WD -~
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1st order DLM
n-variate normal

The Kalman
filter

The Kalman
smoother

Example

Integrating out
states x"

MCMC scheme
Lessons

Dynamic
linear models
(DLMs)
Linear growth
model

Sequential
inference

Smoothing
The FFBS
Individual
sampling
Joint sampling
Example

Nonlinear DM

SV model

density

0.25

0.20

0.15

0.10

0.05

0.00

log % and 27:1 miN(p;, w,z)

— log chi*2_1

= mixture of 7 normals

10
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Mixture of normals

raienoms Using an argument from the Bayesian analysis of mixture of

The Kalman

e normal, let zi, ..., z, be unobservable (latent) indicator
smoother . -
Example variables such that z; € {1,...,7} and Pr(z; = i) = m;, for
Integrating out .
i=1,....7.
P;CtM( scheme ’ ’
Lessons
Therefore, conditional on the z's, y; is transformed into Iogytz,
2 2
Linear growth IOg yt - ht + IOgEt
model
b he = p+4 dhe—1 + e
Smoothing
The rrrsé . .
Individua which can be rewritten as a normal DLM:
Joint sampling , ,
Example
‘ logyy = ht+ vt Vi ~ N()uztvwzt)
2
SV model hy = p+ oht 1+ w: Wi ~ N(O,Tn)

where iz, and wgt are provided in the previous table.

Then h" is jointly sampled by using the the FFBS algorithm.
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ACF for the four schemes
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Example

Nonlinear DM

SV model

Posterior means: volatilities

TRUE
RANDOM WALK
INDEPENDENT
NORMAL
MIXTURE

time
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