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Dynamic models (DMs)
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1st order DLM

The local level model (West and Harrison, 1997) has

Observation equation:

yt+1|xt+1, θ ∼ N(xt+1, σ
2)

System equation:
xt+1|xt , θ ∼ N(xt , τ

2)

where
x0 ∼ N(m0,C0)

and
θ = (σ2, τ2)

fixed (for now).
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n-variate normal

It is worth noticing that the model can be rewritten as

y |x , θ ∼ N(x , σ2In)

x |x0, θ ∼ N(x01n, τ
2Ω)

x0 ∼ N(m0,C0)

where

Ω =



1 1 1 1 . . . 1 1 1
1 2 2 2 . . . 2 2 2
1 2 3 3 . . . 3 3 3
1 2 3 4 . . . 4 4 4
...

...
...

...
. . .

...
...

...
1 2 3 4 . . . n − 2 n − 2 n − 2
1 2 3 4 . . . n − 1 n − 1 n − 1
1 2 3 4 . . . n − 2 n − 1 n


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Therefore, the prior of x given θ is

x |θ ∼ N(m01n; C01n1′n + τ2Ω),

while its full conditional posterior distribution is

x |y , θ ∼ N(m1,C1)

where
C−1

1 = (C01n1′n + τ2Ω)−1 + σ−2In

and
C−1

1 m1 = (C01n1′n + τ2Ω)−1m01n + σ−2y
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The Kalman filter

Let y t = (y1, . . . , yt). The previous joint posterior posterior for x
given y (omitting θ for now) can be constructed as

p(x |yn) = p(x1|yn, x2)
n∏

t=1

p(xt |yn, xt+1),

which is obtained from
p(xn|yn)

and noticing that given y t and xt+1,

I xt and xt+h are independent, and

I xt and yt are independent,

for all integer h > 1.
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Therefore, we first need to derive the above joint and this is done
forward via the well-known Kalman filter recursions.

p(xt |y t) =⇒ p(xt+1|y t) =⇒ p(yt+1|xt) =⇒ p(xt+1|y t+1)

I Posterior at t: (xt |y t) ∼ N(mt ,Ct)

I Prior at t + 1: (xt+1|y t) ∼ N(mt ,Rt+1)

Rt+1 = Ct + τ2

I Marginal likelihood: (yt+1|y t) ∼ N(mt ,Qt+1)

Qt+1 = Rt+1 + σ2

I Posterior at t + 1: (xt+1|y t+1) ∼ N(mt+1,Ct+1)

mt+1 = (1− At+1)mt + At+1yt+1

Ct+1 = At+1σ
2

where At+1 = Rt+1/Qt+1.
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The Kalman smoother

For t = n, xn|yn ∼ N(mn
n,C

n
n ), where mn

n = mn and Cn
n = Cn.

For t < n,

xt |yn ∼ N(mn
t ,C

n
t )

xt |xt+1, y
n ∼ N(an

t ,R
n
t )

where

mn
t = (1− Bt)mt + Btmn

t+1

Cn
t = (1− Bt)Ct + B2

t Cn
t+1

an
t = (1− Bt)mt + Btxt+1

Rn
t = Btτ

2

and
Bt = Ct/(Ct + τ2).
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Example
n = 100, σ2 = 1.0
τ2 = 0.5 and x0 = 0.
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p(xt |y t) via Kalman filter
m0 = 0.0 and C0 = 10.0
given τ2 and σ2
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p(xt |y n) via Kalman smoother
m0 = 0.0 and C0 = 10.0
given τ2 and σ2
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Integrating out states xn

We showed earlier that

(yt |y t−1) ∼ N(mt−1,Qt)

where both mt−1 and Qt were presented before and are functions
of θ = (σ2, τ2), y t−1, m0 and C0.

Therefore, by Bayes’ rule,

p(θ|yn) ∝ p(θ)p(yn|θ)

= p(θ)
n∏

t=1

fN(yt ; mt−1,Qt).
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Example: p(y |σ2, τ 2)p(σ2)p(τ 2)

σ2 ∼ IG (ν0/2, ν0σ
2
0/2), where ν0 = 5 and σ2

0 = 1.
τ2 ∼ IG (n0/2, n0τ

2
0 /2), where n0 = 5 and τ2

0 = 0.5

σ2

τ2

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

●
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MCMC scheme

I Sample θ from p(θ|yn, xn)

p(θ|yn, xn) ∝ p(θ)
n∏

t=1

p(yt |xt , θ)p(xt |xt−1, θ).

I Sample xn from p(xn|yn, θ)

p(xn|yn, θ) =
n∏

t=1

fN(xt |an
t ,R

n
t )

15 / 59



Example: p(xt |y n)
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Example: Comparison

p(xt |yn) versus p(xt |yn, σ̃2 = 0.87, τ̃2 = 0.63).
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Lessons from the 1st order DLM

Sequential learning in non-normal and nonlinear dynamic models
p(yt+1|xt+1) and p(xt+1|xt) in general rather difficult since

p(xt+1|y t) =

∫
p(xt+1|xt)p(xt |y t)dxt

p(xt+1|y t+1) ∝ p(yt+1|xt+1)p(xt+1|y t)

are usually unavailable in closed form.

Over the last 20 years:

I FFBS for conditionally Gaussian DLMs;

I Gamerman (1998) for generalized DLMs;

I Carlin, Polson and Stoffer (2002) for more general DMs.
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Dynamic linear models (DLMs)

Large class of models with time-varying parameters.

Dynamic linear models are defined by a pair of equations, the
observation equation and the evolution/system equation:

yt = F ′tβt + εt , εt ∼ N(0,V )

βt = Gtβt−1 + ωt , ωt ∼ N(0,W )

I yt : sequence of observations;

I Ft : vector of explanatory variables;

I βt : d-dimensional state vector;

I Gt : d × d evolution matrix;

I β1 ∼ N(a,R).
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Linear growth model

The linear growth model is slightly more elaborate by incorporation
of an extra time-varying parameter β2 representing the growth of
the level of the series:

yt = β1,t + εt εt ∼ N(0,V )

β1,t = β1,t−1 + β2,t + ω1,t

β2,t = β2,t−1 + ω2,t

where ωt = (ω1,t , ω2,t)′ ∼ N(0,W ) and

Ft = (1, 0)′

Gt =

(
1 1
0 1

)
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Prior, updated and smoothed distributions

Prior distributions
p(βt |y t−k) k > 0

Updated/online distributions

p(βt |y t)

Smoothed distributions

p(βt |y t+k) k > 0
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Sequential inference

Let y t = {y1, . . . , yt}.

Posterior at time t − 1:

βt−1|y t−1 ∼ N(mt−1,Ct−1)

Prior at time t:

βt |y t−1 ∼ N(at ,Rt)

with at = Gtmt−1 and Rt = GtCt−1G ′t + W .

predictive at time t:

yt |y t−1 ∼ N(ft ,Qt)

with ft = F ′tat and Qt = F ′tRtFt + V .
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Posterior at time t

p(βt |y t) = p(βt |yt , y
t−1) ∝ p(yt |βt) p(βt |y t−1)

The resulting posterior distribution is

βt |y t ∼ N(mt ,Ct)

with

mt = at + Atet

Ct = Rt − AtA′tQt

At = RtFt/Qt

et = yt − ft

By induction, these distributions are valid for all times.
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Smoothing

In dynamic models, the smoothed distribution π(β|yn) is more
commonly used:

π(β|yn) = p(βn|yn)
n−1∏
t=1

p(βt |βt+1, . . . , βn, y
n)

= p(βn|yn)
n−1∏
t=1

p(βt |βt+1, y
t)

Integrating with respect to (β1, . . . , βt−1):

π(βt , . . . , βn|yn) = p(βn|yn)
n−1∏
k=t

p(βk |βk+1, y
t)

π(βt , βt+1|yn) = p(βt+1|yn)p(βt |βt+1, y
t)

for t = 1, . . . , n − 1.
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Smoothing: p(βt |y n)

It can be shown that

βt |V ,W , yn ∼ N(mn
t ,C

n
t )

where

mn
t = mt + CtG ′t+1R−1

t+1(mn
t+1 − at+1)

C n
t = Ct − CtG ′t+1R−1

t+1(Rt+1 − C n
t+1)R−1

t+1Gt+1Ct
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Smoothing: p(β|y n)

It can be shown that

(βt |βt+1,V ,W , yn)

is normally distributed with mean

(G ′tW−1Gt + C−1
t )−1(G ′tW−1βt+1 + C−1

t mt)

and variance (G ′tW−1Gt + C−1
t )−1.
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Forward filtering, backward sampling (FFBS)

Sampling from π(β|yn) can be performed by

I Sampling βn from N(mn,Cn) and then

I Sampling βt from (βt |βt+1,V ,W , y t), for t = n − 1, . . . , 1.

The above scheme is known as the forward filtering, backward
sampling (FFBS) algorithm (Carter and Kohn, 1994 and
Frühwirth-Schnatter, 1994).
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Individual sampling from π(βt |β−t , y
n)

Let β−t = (β1, . . . , βt−1, βt+1, . . . , βn).

For t = 2, . . . , n − 1

π(βt |β−t , y
n) ∝ p(yt |βt) p(βt+1|βt) p(βt |βt−1)

∝ fN(yt ; F ′tβt ,V )fN(βt+1; Gt+1βt ,W )

× fN(βt ; Gtβt−1,W )

= fN(βt ; bt ,Bt)

where

bt = Bt(σ−2Ftyt + G ′t+1W−1βt+1 + W−1Gtβt−1)

Bt = (σ−2FtF ′t + G ′t+1W−1Gt+1 + W−1)−1

for t = 2, . . . , n − 1.
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For t = 1 and t = n,

π(β1|β−1, y
n) = fN(β1; b1,B1)

and
π(βn|β−n, y

n) = fN(βt ; bn,Bn)

where

b1 = B1(σ−2
1 F1y1 + G ′2W−1β2 + R−1a)

B1 = (σ−2
1 F1F ′1 + G ′2W−1G2 + R−1)−1

bn = Bn(σ−2
n Fnyn + W−1Gnβn−1)

Bn = (σ−2
n FnF ′n + W−1)−1
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Sampling from π(V ,W |y n, β)
Assume that

φ = V−1 ∼ Gamma(nσ/2, nσSσ/2)

Φ = W−1 ∼ Wishart(nW /2, nW SW /2)

Full conditionals

π(φ|β,Φ) ∝
n∏

t=1

fN(yt ; F ′tβt , φ
−1) fG (φ; nσ/2, nσSσ/2)

∝ fG (φ; n∗σ/2, n∗σS∗σ/2)

π(Φ|β, φ) ∝
n∏

t=2

fN(βt ; Gtβt−1,Φ
−1) fW (Φ; nW /2, nW SW /2)

∝ fW (Φ; n∗W /2, n∗W S∗W /2)

where n∗σ = nσ + n, n∗W = nW + n − 1,

n∗σS∗σ = nσSσ + σ(yt − F ′tβt)2

n∗W S∗W = nW SW + Σn
t=2(βt − Gtβt−1)(βt − Gtβt−1)′
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MCMC scheme to sample from p(β,V ,W |y n)

I Sample V−1 from its full conditional

fG (φ; n∗σ/2, n∗σS∗σ/2)

I Sample W−1 from its full conditional

fW (Φ; n∗W /2, n∗W S∗W /2)

I Sample β from its full conditional

π(β|yn,V ,W )

by the FFBS algorithm.
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Likelihood for (V ,W )

It is easy to see that

p(yn|V ,W ) =
n∏

t=1

fN(yt |ft ,Qt)

which is the integrated likelihood of (V ,W ).
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Jointly sampling (β,V ,W )

(β,V ,W ) can be sampled jointly by

I Sampling (V ,W ) from its marginal posterior

π(V ,W |yn) ∝ l(V ,W |yn)π(V ,W )

by a rejection or Metropolis-Hastings step;

I Sampling β from its full conditional

π(β|yn,V ,W )

by the FFBS algorithm.

Jointly sampling (β,V ,W ) avoids MCMC convergence problems
associated with the posterior correlation between model parameters
(Gamerman and Moreira, 2002).
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Example: Comparing sampling schemes1

First order DLM with V = 1

yt = βt + εt , εt ∼ N(0, 1)

βt = βt−1 + ωt , ωt ∼ N(0,W ),

with (n,W ) ∈ {(100, .01), (100, .5), (1000, .01), (1000, .5)}.

400 runs: 100 replications per combination.

Priors: β1 ∼ N(0, 10) and V and W have inverse Gammas with
means set at true values and coefficients of variation set at 10.

Posterior inference: based on 20,000 MCMC draws.

1Gamerman, Reis and Salazar (2006) Comparison of sampling schemes for
dynamic linear models. International Statistical Review, 74, 203-214.
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Effective sample size
For a given θ, let t(n) = t(θ(n)), γk = Covπ(t(n), t(n+k)), the
variance of t(n) as σ2 = γ0, the autocorrelation of lag k as
ρk = γk/σ

2 and τ2
n/n = Varπ(t̄n). It can be shown that, as

n→∞,

τ2
n = σ2

(
1 + 2

n−1∑
k=1

n − k

n
ρk

)
→ σ2

(
1 + 2

∞∑
k=1

ρk

)
︸ ︷︷ ︸

inefficiency factor

.

The inefficiency factor measures how far t(n)s are from being a
random sample and how much Varπ(t̄n) increases because of that.

The effective sample size is defined as

neff =
n

1 + 2
∑∞

k=1 ρk

or the size of a random sample with the same variance.
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Schemes
Scheme I: Sampling β1, . . . , βn,V and W from their conditionals.
Scheme II: Sampling β, V and W from their conditionals.
Scheme III: Jointly sampling (β,V ,W ).

Scheme n=100 n=1000

II 1.7 1.9
III 1.9 7.2

Computing times relative to scheme I. For instance, when n = 100
it takes almost 2 times as much to run scheme III.

Scheme
W n I II III

0.01 1000 242 8938 2983
0.01 100 3283 13685 12263
0.50 1000 409 3043 963
0.50 100 1694 3404 923

Sample averages (based on the 100 replications) of effective sample
size neff based on V (see the explanation over the next few pages).
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Dynamic generalized linear model

Dynamic generalized models were introduced by West, Harrison
and Migon (1985).

The model is

f (yt |θt) = a(yt) exp{ytθt + b(θt)}
E (yt |θt) = µt

g(µt) = F ′tβt

βt = Gtβt+1 + wt

with wt ∼ N(0,Wt) and the link function g is again differentiable.

The model is completed with a prior β1 ∼ N(a,R).

It combines the prior specification of normal dynamic models with
the observational structure of generalized linear models.
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Dynamic binomial and Poisson regressions

Dynamic logistic regression with a series of binomial observations
yt with respective success probabilities πt dynamically related to
explanatory variables x = (x1, . . . , xd)′ through the logistic link
logit(πt) = x ′tβt .

Poisson counts with means λt dynamically related through
multiplicative perturbations λt = λt−1w∗t . After a logarithmic
transformation, one obtains log λt = log λt−1 + wt with
wt = log w∗t .
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Posterior inference via MCMC

Assuming that the variances of the system disturbances are
constant, the model parameters are given by the state parameters
β = (β1, . . . , βn)′ and the system variance W = Φ−1.

The model is specified with the observation and system equations
and completed with the independent prior distributions
β1 ∼ N(a,R) and Φ ∼W (nW /2, nW SW /2).

The posterior distribution is given by

π(β,Φ) ∝
n∏

t=1

f (yt |βt)
n∏

i=2

p(βt |βt−1,Φ) p(β1)p(Φ) .
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Full conditional for Φ

πΦ(Φ) ∝
n∏

t=2

p(βt |βt−1,Φ) p(Φ)

∝
n∏

t=2

|Φ|1/2 exp

{
−1

2
tr[(βt − Gtβt−1)(βt − Gtβt−1)′Φ]

}
× |Φ|[nW−(p+1)]/2 exp

{
−1

2
tr(nW SW Φ)

}
∝ |Φ|[n∗W−(d+1)]/2 exp

{
−1

2
tr [(n∗W S∗W ) Φ]

}
.

that is the density of the W (n∗W /2, n∗W S∗W /2) distribution with

n∗W = nW + n − 1

n∗W S∗W = nW SW +
n∑

t=2

(βt − Gtβt−1)(βt − Gtβt−1)′
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Full conditionals for β

For block β

πβ(β) ∝
n∏

t=1

f (yt |βt)
n∏

t=2

p(βt |βt−1,Φ) p(β1)

∝ exp

{
n∑

t=1

[ytθt + b(θt)]− 1

2

n∑
t=1

(βt − Gtβt−1)′Φ(βt − Gtβt−1)

}
.

For block βt , t = 2, . . . , n − 1

πt(βt) ∝ f (yt |βt) p(βt |βt−1,Φ)p(βt+1|βt ,Φ)

∝ exp {ytθt + b(θt)} exp

{
−1

2
[(βt − Gtβt−1)′Φ(βt − Gtβt−1)

+ (βt+1 − Gt+1βt)′Φ(βt+1 − Gt+1βt) ]} .

Similar results follow for blocks β1 and βn.
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Sampling schemes

Knorr-Held (1997) suggested the use of independence chains with
prior proposals.

Shephard and Pitt (1997) used independence chains with proposals
based on both prior and a normal approximation to the likelihood.

Ravines (2005) used independence normal proposals for the block
β with moments given by the approximation of West, Harrison and
Migon (1985).

Singh and Roberts (1982) and Fahrmeir and Wagenpfeil (1997)
extended to the dynamic setting the method of mode evaluation
for static regression.

An alternative previously discussed is the reparametrization in
terms of the system disturbances wt (Gamerman, 1998)
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Example: Advertising awareness

Samples of nt = 66 people were selected at random every week for
an opinion poll and asked whether they remembered having seen a
given advertising campaign on TV. A weekly cumulative measure
of campaign expenditure was constructed.

Following Migon and Harrison (1985), the model used for this
problem was a dynamic logistic regression

yt ∼ bin(nt , πt)

µt = ntπt

logit(πt) = β1t + β2txt

βt |βt−1 ∼ N(βt−1,W )
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Advertising awareness: Data
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Advertising awareness: Comparing MCMC schemes
Average trajectory of β2t in 500 parallel chains with number of
iterations for sampling from: (a) system disturbances; (b) state
parameters.
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Advertising awareness: Expenditure coefficient β2t
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Example: Nonlinear, normal dynamic model

Let yt , for t = 1, . . . , n, be generated by the following nonlinear
dynamic model

(yt |xt , ψ) ∼ N(x2
t /20, σ2)

(xt |xt−1, ψ) ∼ N(G ′xt−1
θ, τ2)

x0 ∼ N(m0,C0)

where G ′xt
=
(
xt , xt/(1 + x2

t ), cos(1.2t)
)
, θ = (α, β, γ)′ and

ψ = (ξ′, σ2, τ2).

Prior distribution

σ2 ∼ IG (n0/2, n0σ
2
0/2)

θ|τ2 ∼ N(θ0, τ
2V0)

τ2 ∼ IG (ν0/2, ν0τ
2
0 /2)
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Sampling (ψ|x0:n, y
n)

Let yn = (y1, . . . , yn) and x0:n = (x0, . . . , xn)′.

It follows that

(θ, τ2|x0:n) ∼ N(θ1, τ
2V1)IG (ν1/2, ν1τ

2
1 /2)

(σ2|yn, xn) ∼ IG (n1/2, n1σ
2
1/2)

where ν1 = ν0 + n, n1 = n0 + n

Z = (Gx0 , . . . ,Gxn−1)′

V−1
1 = V−1

0 + Z ′Z

V−1
1 θ1 = V−1

0 θ0 + Z ′x1:n

ν1τ
2
1 = ν0τ

2
0 + (y − Zθ1)′(y − Zθ1) + (θ1 − θ0)′V−1

0 (θ1 − θ0)

n1σ
2
1 = n0σ

2
0 +

n∑
t=1

(yt − x2
t /20)2
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Sampling x1, . . . , xn

Let x−t = (x0, . . . , xt−1, xt+1, . . . , xn), for t = 1, . . . , n − 1,
x−0 = xn, x−n = x0:(n−1) and y0 = ∅.

For t = 0

p(x0|x−0, y0, ψ) ∝ fN(x0; m0,C0)fN(x1; G ′x0
θ, τ2)

For t = 1, . . . , n − 1

p(xt |x−t , yt , ψ) ∝ fN(yt ; x2
t /20, σ2)fN(xt ; G ′xt−1

θ, τ 2)fN(xt+1; G ′xt
θ, τ 2)

For t = n

p(xn|x−n, yn, ψ) ∝ fN(yn; x2
n/20, σ2)fN(xn; G ′xn−1

θ, τ2)
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Metropolis-Hastings algorithm

A simple random walk Metropolis algorithm with tuning variance
v 2
x would work as follows. For t = 0, . . . , n

1. Current state: x
(j)
t

2. Sample x∗t from N(x
(j)
t , v 2

x )

3. Compute the acceptance probability

α = min

{
1,

p(x∗t |x−t , yt , ψ)

p(x
(j)
t |x−t , yt , ψ)

}

4. New state:

x
(j+1)
t =

{
x∗t w. p. α

x
(j)
t w. p. 1− α
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Simulation set up
We simulated n = 100 observations based on θ = (0.5, 25, 8)′,
σ2 = 1, τ2 = 10 and x0 = 0.1.
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Prior hyperparameters

I x0 ∼ N(m0,C0)

m0 = 0.0 and C0 = 10

I θ|τ2 ∼ N(θ0, τ
2V0)

θ0 = (0.5, 25, 8)′ and V0 = diag(0.0025, 0.1, 0.04)

I τ2 ∼ IG (ν0/2, ν0τ
2
0 /2)

ν0 = 6 and τ2
0 = 20/3

such that E (τ2) =
√

V (τ2) = 10.

I σ2 ∼ IG (n0/2, n0σ
2
0)

n0 = 6 and σ2
0 = 2/3

such that E (σ2) =
√

V (σ2) = 1.
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MCMC setup

I Metropolis-Hastings tuning parameter

v 2
x = (0.1)2

I Burn-in period, step and MCMC sample size

M0 = 1, 000 L = 20 M = 950 ⇒ 20, 000 draws

I Initial values
I θ = (0.5, 25, 8)′

I τ 2 = 10
I σ2 = 1
I x0:n = xtrue

0:n
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Parameters
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States
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States
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Parameters

M0 = 100, 000 L = 50 M = 1000 ⇒ 150, 000 draws
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