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Example i . Sequential learning

• John claims some discomfort and goes to the doctor.

• The doctor believes John may have the disease A.

• θ = 1: John has disease A; θ = 0: he does not.

• The doctor claims, based on his expertise (H), that

P(θ = 1|H) = 0.70

• Examination X is related to θ as follows{
P(X = 1|θ = 0) = 0.40, positive test given no disease
P(X = 1|θ = 1) = 0.95, positive test given disease
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Observe X = 1

Exam’s result: X = 1

P(θ = 1|X = 1) ∝ P(X = 1|θ = 1)P(θ = 1)

∝ (0.95)(0.70) = 0.665

P(θ = 0|X = 1) ∝ P(X = 1|θ = 0)P(θ = 0)

∝ (0.40)(0.30) = 0.120

Consequently

P(θ = 0|X = 1) = 0.120/0.785 = 0.1528662 and

P(θ = 1|X = 1) = 0.665/0.785 = 0.8471338

The information X = 1 increases, for the doctor, the
probability that John has the disease A from 70% to 84.71%.
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Posterior predictive

John undertakes the test Y , which relates to θ as follows1

P(Y = 1|θ = 1) = 0.99 and P(Y = 1|θ = 0) = 0.04

Then, the predictive of Y = 0 given X = 1 is given by

P(Y = 0|X = 1) = P(Y = 0|X = 1, θ = 0)P(θ = 0|X = 1)

+ P(Y = 0|X = 1, θ = 1)P(θ = 1|X = 1)

= P(Y = 0|θ = 0)P(θ = 0|X = 1)

+ P(Y = 0|θ = 1)P(θ = 1|X = 1)

= (0.96)(0.1528662) + (0.01)(0.8471338)

= 15.52%

Key condition: X and Y are conditionally independent given
θ.

1Recall that P(X = 1|θ = 1) = 0.95 and P(X = 1|θ = 0) = 0.40.
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Model criticism

Suppose the observed result was Y = 0. This is a reasonably
unexpected result as the doctor only gave it roughly 15%
chance.

He should at least consider rethinking the model based on this
result. In particular, he might want to ask himself

1 Did 0.7 adequately reflect his P(θ = 1|H)?

2 Is test X really so unreliable?

3 Is the sample distribution of X correct?

4 Is the test Y so powerful?

5 Have the tests been carried out properly?
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Observe Y = 0

Let H2 = {X = 1,Y = 0}. Then, Bayes theorem leads to

P(θ = 1|H2) ∝ P(Y = 0|θ = 1)P(θ = 1|X = 1)

∝ (0.01)(0.8471338) = 0.008471338

P(θ = 0|H2) ∝ P(Y = 0|θ = 0)P(θ = 0|X = 1)

∝ (0.96)(0.1528662) = 0.1467516

Therefore,

P(θ = 1|X = 1,Y = 0) =
P(Y = 0, θ = 1|X = 1)

P(Y = 0|X = 1)
= 0.0545753

P(θ = 1|Hi ) =


0.7000 ,H0: before X and Y
0.8446 ,H1: after X=1 and before Y
0.0546 ,H2: after X=1 and Y=0
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Example ii . Normal-normal

Consider a simple measurement error model

X = θ + ε ε ∼ N(0, σ2)

where
θ ∼ N(θ0, τ

2
0 ).

The quantities (σ2, θ0, τ
2
0 ) are known.

The posterior distribution of θ (after X = x is observed) is

p(θ|x) =
p(x |θ)p(θ)

p(x)
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More precisely,
p(θ|x) ∝ exp{−0.5(θ2 − 2θx)/σ2}exp{−0.5(θ2 − 2θθ0)/τ2

0 }
× exp{−0.5(θ2(1/σ2 + 1/τ2

0 ) + 2θ(x/σ2 + θ0/τ
2
0 )}

= exp{−0.5(θ2/τ2
1 + 2θτ2

1 (x/σ2 + θ0/τ
2
0 )/τ2

1 }
= exp{−0.5(θ2 + 2θθ1)/τ2

1 }.

Therefore, θ|x is normally distributed with

E (θ|x) = τ2
1 (x/σ2 + θ0/τ

2
0 )

and
V (θ|x) =

(
1/σ2 + 1/τ2

0

)−1
.

Notice that
E (θ|x) = ωθ0 + (1− ω)x

where

ω =
σ2

σ2 + τ2
0

measures the relative information contained in the prior
distribution with respect to the total information (prior plus
likelihood).
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Illustration

Prior A: Physicist A (large experience): θ ∼ N(900, (20)2)

Prior B: Physicist B (not so experienced): θ ∼ N(800, (80)2).

Model: (X |θ) ∼ N(θ, (40)2).

Observation: X = 850

(θ|X = 850,HA) ∼ N(890, (17.9)2)

(θ|X = 850,HB) ∼ N(840, (35.7)2)

Information (precision)

Physicist A: from 0.002500 to 0.003120 (an increase of 25%)

Physicist B: from 0.000156 to 0.000781 (an increase of 400%)
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Turning the Bayesian crank

We usually decompose

p(θ, x |H)

into
p(θ|H) and p(x |θ,H)

The prior predictive distribution

p(x |H) =

∫
Θ

p(x |θ,H)p(θ|H) dθ = Eθ[p(x |θ,H)]

if of key importance in Bayesian model assessment.
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Posterior distribution

The posterior distribution of θ is obtained, after x is observed,
by Bayes’ Theorem:

p(θ|x ,H) =
p(θ, x |H)

p(x |H)

=
p(x |θ,H)p(θ|H)

p(x |H)

∝ p(x |θ,H)p(θ|H).
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Posterior predictive distribution

Let y be a new set of observations conditionally independent of
x given θ, ie.

p(x , y |θ) = p(x |θ,H)p(y |θ,H).

Then,

p(y |x ,H) =

∫
Θ

p(y , θ|x ,H)dθ

=

∫
Θ

p(y |θ, x ,H)p(θ|x ,H)dθ

=

∫
Θ

p(y |θ,H)p(θ|x ,H)dθ

= Eθ|x [p(y |θ,H)]
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In general, but not always (time series, for example) x and y
are independent given θ.

It might be more useful to concentrate on prediction rather
than on estimation since the former is verifiable.

x and y can be (and usually are) observed; θ can not!
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Sequential Bayes theorem

Experimental result: x1 ∼ p1(x1|θ)

p(θ|x1) ∝ l1(θ; x1)p(θ)

Experimental result: x2 ∼ p2(x2|θ)

p(θ|x2, x1) ∝ l2(θ; x2)p(θ|x1)

∝ l2(θ; x2)l1(θ; x1)p(θ)

Experimental results: xi ∼ pi (xi |θ), for i = 3, . . . , n

p(θ|xn, . . . , x1) ∝ ln(θ; xn)p(θ|xn−1, . . . , x1)

∝

[
n∏

i=1

li (θ; xi )

]
p(θ)
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Model probability

Suppose that the competing models can be enumerated and
are represented by the set

M = {M1,M2, . . .}

and that the true model is in M (Bernardo and Smith, 1994).

The posterior model probability of model Mj is given by

Pr(Mj |y) =
f (y |Mj)Pr(Mj)

f (y)
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Ingredients

Prior predictive density of model Mj

f (y |Mj) =

∫
f (y |θj ,Mj)p(θj |Mj)dθj

Prior model probability of model Mj

Pr(Mj)

Overall prior predictive

f (y) =
∑

Mj∈M

f (y |Mj)Pr(Mj)
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Posterior odds
The posterior odds of model Mj relative to Mk is given by

Pr(Mj |y)

Pr(Mk |y)︸ ︷︷ ︸
posterior odds

=
Pr(Mj)

Pr(Mk)︸ ︷︷ ︸
prior odds

×
f (y |Mj)

f (y |Mk)︸ ︷︷ ︸
Bayes factor

.

The Bayes factor can be viewed as the weighted likelihood ratio
of Mj to Mk .

The main difficulty is the computation of the marginal
likelihood or normalizing constant f (y |Mj).

Therefore, the posterior model probability for model j can be
obtained from

1

Pr(Mj |y)
=
∑

Mk∈M

Bkj
Pr(Mk)

Pr(Mj)
.
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Bayes factor
Jeffreys (1961) recommends the use of the following rule of
thumb to decide between models j and k :

log10 Bjk Bjk Evidence against k

0.0 to 0.5 1.0 to 3.2 Not worth more than a bare mention
0.5 to 1.0 3.2 to 10 Substantial
1.0 to 2.0 10 to 100 Strong
> 2 > 100 Decisive

Kass and Raftery (1995) argue that “it can be useful to
consider twice the natural logarithm of the Bayes factor, which
is on the same scale as the familiar deviance and likelihood
ratio test statistics”. Their slight modification is:

2 loge Bjk Bjk Evidence against k

0.0 to 2.0 1.0 to 3.0 Not worth more than a bare mention
2.0 to 6.0 3.0 to 20 Substantial
6.0 to 10.0 20 to 150 Strong
> 10 > 150 Decisive
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Marginal likelihood
A basic ingredient for model assessment is given by the
predictive density

f (y |M) =

∫
f (y |θ,M)p(θ|M)dθ ,

which is the normalizing constant of the posterior distribution.

The predictive density can now be viewed as the likelihood of
model M.

It is sometimes referred to as predictive likelihood, because it is
obtained after marginalization of model parameters.

The predictive density can be written as the expectation of the
likelihood with respect to the prior:

f (y) = Ep[f (y |θ)].
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Example iii. Multiple linear
regression

The standard Bayesian approach to multiple linear regression is

yi = x ′iβ + εi

for i = 1, . . . , n, xi a q-dimensional vector of regressors and
residuals εi iid N(0, σ2).

In matrix notation,

(y |X , β, σ2) ∼ N(Xβ, σ2In)

where y = (y1, . . . , yn), X = (x1, . . . , xn)′ is the (n × q), design
matrix and q = p + 1.
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Example iii. Maximum likelihood
estimation

It is well known that

β̂ = (X ′X )−1X ′y

σ̂2 =
Se

n − q
=

(y − X β̂)′(y − X β̂)

n − q

are the OLS estimates of β and σ2, respectively.

The conditional and unconditional sampling distributions of β̂
are

(β̂|σ2, y ,X ) ∼ N(β, σ2(X ′X )−1)

(β̂|y ,X ) ∼ tn−q(β,Se(X ′X )−1)

respectively, with

(σ̂2|σ2) ∼ IG
(
(n − q)/2, ((n − q)σ2/2

)
.
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Example iii. Conjugate prior

The prior distribution of (β, σ2) is NIG (b0,B0, n0,S0), i.e.

β|σ2 ∼ N(b0, σ
2B0)

σ2 ∼ IG (n0/2, n0S0/2)

for known hyperparameters b0,B0, n0 and S0.

For clarification, when σ2 ∼ IG (a, b), if follows that

p(σ2) ∝ (σ2)−(a+1) exp

{
− b

σ2

}
with

E (σ2) =
b

a− 1
and V (σ2) =

b2

(a− 1)2(a− 2)
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Example iii. Conditionals
It is easy to show that

(β|σ2, y ,X ) ∼ N(b1, σ
2B1)

where

B−1
1 = B−1

0 + X ′X

B−1
1 b1 = B−1

0 b0 + X ′y .

It is also easy to show that

(σ2|β, y ,X ) ∼ IG (n1/2, n1S11(β)/2)

where

n1 = n0 + n

n1S11(β) = n0S0 + (y − Xβ)′(y − Xβ).
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Example iii. Marginals

It can be shown that

(σ2|y ,X ) ∼ IG (n1/2, n1S1/2)

where

n1S1 = n0S0 + (y − Xb1)′y + (b0 − b1)′B−1
0 b0.

Consequently,
(β|y ,X ) ∼ tn1(b1,S1B1).
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Example iii. MLE versus Bayes
Distributions of the estimators β̂ and σ̂2

(σ̂2|σ2, y ,X ) ∼ IG
(
(n − q)/2, ((n − q)σ2/2

)
(β̂|β, y ,X ) ∼ tn−q(β,Se(X ′X )−1).

Marginal posterior distributions of β and σ2

(σ2|y ,X ) ∼ IG (n1/2, n1S1/2)

(β|y ,X ) ∼ tn1(b1, S1B1).

Vague prior: When B−1
0 = 0, n0 = −q and S0 = 0

b1 = β̂

B1 = (X ′X )−1

n1 = n − q

n1S1 = (y − X β̂)′y = (y − X β̂)′(y − X β̂) = (n − q)σ̂2

S1B1 = σ̂2(X ′X )−1.
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Example iii. Predictive

The predictive density can be obtained by

p(y |X ) =

∫
p(y |X , β, σ2)p(β|σ2)p(σ2)dβdσ2

or (via Bayes’ theorem) by

p(y |X ) =
p(y |X , β, σ2)p(β|σ2)p(σ2)

p(β|σ2, y ,X )p(σ2|y ,X )

which is valid for all (β, σ2).

Closed form solution for the multiple normal linear regression:

(y |X ) ∼ tn0(Xb0, S0(In + XB0X ′)).
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Real data exercise

To better understand the differential role of the prior in
estimation and model comparison, consider the following simple
linear regression application, illustrated using a sample of
n = 1, 217 observations from the National Longitudinal Survey
of Youth (NLSY):

• M0 : yi = β0 + β1xi + εi , εi
iid∼ N(0, σ2).

• M1 : yi = β0 + εi , εi
iid∼ N(0, σ2).

yi : log hourly wage received by individual i .

xi : education in years of schooling completed by individual i .
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β̂ = (1.17766, 0.09101)′ and σ̂2 = 0.2668455.
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Recall the conjugate prior for (β, σ2) is

β|σ2 ∼ N(b0, σ
2B0) and σ2 ∼ IG (n0/2, n0S0/2).

Let us assume that b0 = 0, n0 = 6 and S0 = 0.1333.

Let us consider two different prior variance for β:

• Prior I: B0 = 1.0× 101I2,

• Prior II: B0 = 1.0× 10100I2.
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Posterior summary for the complete model M0

Parameter Prior I Prior II

Post. Mean Post Std. Post Mean Post Std.

β0 1.17439 (0.08626) 1.17439 (0.08637)
β1 0.09125 (0.00654) 0.09125 (0.00655)
σ2 0.26587 (0.01073) 0.26587 (0.01073)

Posterior summary for the restricted model M1

β0 2.35963 (0.01592) 2.35963 (0.01591)
σ2 0.30815 (0.01244) 0.30815 (0.01244)

Log Bayes factor of M0 versus M1

log B01 84.7294 -29.8886

log B01(Prior I) = log p(y |X ,M0,Prior I)− log p(y |X ,M1,Prior I)

= −2458.713− (−2543.442) = 84.7294

log B01(Prior II) = log p(y |X ,M0,Prior II)− log p(y |X ,M1,Prior II)

= −2686.406− (−2656.517) = −29.8886
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Example iv. Stochastic volatility

One of the most used models in financial econometrics is the
diffusive stochastic volatility model, where log-returns are
normally distributed

yt |θt ,H ∼ N(0; eθt )

with heteroscedasticity modeled as

θt |θt−1, γ,H ∼ N(α + βθt−1, σ
2)

for t = 1, . . . ,T and γ = (α, β, σ2), known for now.

The model is completed with

θ0|γ,H ∼ N(m0,C0)

for known hyperparameters (m0,C0).
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Example iv. Posterior distribution

For θ = (θ1, . . . , θT )′, it follows that

p(θ|y ,H) ∝
T∏

t=1

e−θt/2 exp

{
−1

2
y 2
t e−θt

}

×
T∏

t=1

exp

{
− 1

2σ2
(θt − α− βθt−1)2

}
× exp

{
− 1

2C0
(θ0 −m0)2

}
Unfortunately, closed form solutions are rare!

• How to compute E (θ43|y ,H) or V (θ11|y ,H)?

• How to obtain a 95% credible region for (θ35, θ36|y ,H)?

• How to sample from p(θ|y ,H)?

• How to compute p(y |H) or p(yT+1, . . . , yT+k |y ,H)?

36 / 36


	Example i. Sequential learning
	Example ii. Normal-normal
	Turning the Bayesian crank
	Prior predictive
	Posterior
	Posterior predictive
	Sequential Bayes
	Model probability
	Posterior odds
	Bayes factor
	Marginal likelihood

	Example iii. Multiple linear regression
	Real data exercise
	Example iv. SV model

