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Course Schedule

Day Weekday Date Time Topic
1 Monday June 22nd 9:00-11:00 Bayesian inference

Monday June 22nd 11:30-13:30 Bayesian model criticism
2 Tuesday June 23rd 9:00-11:00 Monte Carlo methods

Tuesday June 23rd 11:30-13:30 Markov chain Monte Carlo methods
3 Friday June 26th 9:00-11:00 Dynamic linear models

Friday June 26th 11:30-13:30 Nonnormal, nonlinear dynamic models
4 Monday June 29th 9:00-11:00 Stochastic volatility models

Monday June 29th 11:30-13:30 Sequential Monte Carlo (SMC)
5 Wednesday July 1st 9:00-11:00 SMC with parameter learning

Wednesday July 1st 11:30-13:30 SMC in stochastic volatility models

Lecture 1 - Bayesian inference

• Basic concepts such as prior, likelihood, posterior and predictive distributions are introduced.

• The intuitive sequential nature of Bayesian learning is illustrated via conjugate families of distri-
butions.

• The lecture ends with Bayesian inference for normal linear models.

Lecture 2 - Bayesian model criticism

• The lecture starts introducing prior and posterior model probabilities and Bayes factor, key ingre-
dients in assessing model uncertainty.

• Model selection as a decision problem will lead to alternative criteria, such as the posterior predictive
criterion (PPC).

• The deviance information criterion (DIC) and cross-validatory measures are also presented.

Lecture 3 - Monte Carlo (MC) methods

• Monte Carlo (MC) integration schemes are introduced to approximate both posterior expectations
as well as predictive ordinates.

• Similarly, acceptance-rejection and sampling importance resampling (SIR) algorithms, as well as
other iterative resampling schemes, are introduced as tools to approximately sample from posterior
distributions.

Lecture 4 - Markov chain Monte Carlo (MCMC) methods

• We start by reviewing basic Markov chain concepts and results that will facilitate the introduction
of more general MCMC schemes.

• A few concepts are irreducibility, reversibility, ergodicity, limiting distributions and effective sample
size.

• The two most famous MCMC schemes are then introduced: the Gibbs sampler and the Metropolis-
Hastings algorithm.
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Lecture 5 - Dynamic linear models (DLM)

• The linear model of the first lecture is extended to accommodate time-varying regression coefficients,
which is one of many instances in the class of dynamic linear models.

• Sequential learning is provided in closed form by the Kalman filter and smoother.

• Inference for fixed parameters, such as observational and evolutional variances, is performed by
integrating out states.

Lecture 6 - Nonnormal, nonlinear dynamic models:

• Forward filtering, backward sampling (FFBS) algorithm and other MCMC schemes.

Lecture 7 - Stochastic volatility models as dynamic models

• FFBS and other MCMC schemes are adapted to stochastic volatility models.

• In particular, we will compare single move and block move MCMC schemes, where block move
schemes are based on mixture of normal densities approximation to the distribution of a log chi-
square random variable with one degree of freedom.

Lecture 8 - Sequential Monte Carlo (SMC) methods

• The lecture starts with standard particle filters, such as the sequential importance sampling with
resampling (SISR) filter and the auxiliary particle filter (APF), to sequentially learn about states
in nonnormal and nonlinear dynamic models.

• SMC methods assist inference for fixed parameters, such as observational and evolutional variances.
Stochastic volatility models are used to illustrate the filters.

Lecture 9 - SMC with parameter learning

• The APF is coupled with mixture approximation to the posterior distribution of fixed parameters
to produced online estimates of both states and parameters in dynamic systems.

• The lecture concentrates on the particle learning (PL) filter and several simulated exercises are
performed to compare PL to SISR, APF and MCMC alternatives.

Lecture 10 - SMC in stochastic volatility models

• PL and other filters are compared based on stochastic volatility models.

• The lecture also list current research agenda linking, Markov chain Monte Carlo methods, sequential
Monte Carlo methods and general stochastic volatility models.
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LECTURE 1

BAYESIAN INFERENCE

Example i. Sequential learning

• John claims some discomfort and goes to the doctor.

• The doctor believes John may have the disease A.

• θ = 1: John has disease A; θ = 0: he does not.

• The doctor claims, based on his expertise (H), that

P (θ = 1|H) = 0.7

• Examination X is related to θ as follows{
P (X = 1|θ = 0) = 0.40, positive test given no disease
P (X = 1|θ = 1) = 0.95, positive test given disease

Exam’s result: X = 1

P (θ = 1|X = 1) ∝ l(θ = 1 ;X = 1)P (θ = 1)
∝ (0.95)(0.7) = 0.665

P (θ = 0|X = 1) ∝ l(θ = 0 ;X = 1)P (θ = 0)
∝ (0.40)(0.30) = 0.120

Consequently

P (θ = 0|X = 1) = 0.120/0.785 = 0.1528662 and
P (θ = 1|X = 1) = 0.665/0.785 = 0.8471338

The information X = 1 increases, for the doctor, the probability that John has the disease A from
70% to 84.71%.

2nd exam: Y
John undertakes the test Y , which relates to θ as follows{

P (Y = 1|θ = 1) = 0.99 P (X = 1|θ = 1) = 0.95
P (Y = 1|θ = 0) = 0.04 P (X = 1|θ = 0) = 0.40

Predictive:
P (Y = 0|X = 1) = (0.96)(0.1528662) + (0.01)(0.8471338) = 0.1552229.

Suppose the observed result was Y = 0. This is a reasonably unexpected result as the doctor only
gave it roughly 15% chance.
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Questions
He should at least consider rethinking the model based on this result. In particular, he might want

to ask himself

1. Did 0.7 adequately reflect his P (θ = 1|H)?

2. Is test X really so unreliable?

3. Is the sample distribution of X correct?

4. Is the test Y so powerful?

5. Have the tests been carried out properly?

What is P (θ|X = 1, Y = 0)?
Let H2 = {X = 1, Y = 0} and using the Bayes theorem

P (θ = 1|H2) ∝ l(θ = 1 ;Y = 0)P (θ = 1|X = 1)
∝ (0.01)(0.8471338) = 0.008471338 and

P (θ = 0|H2) ∝ l(θ = 0 ;Y = 0)P (θ = 0|X = 1)
∝ (0.96)(0.1528662) = 0.1467516

P (θ = 1|Hi) =

 0.7000 , H0: before X and Y
0.8446 , H1: after X=1 and before Y
0.0546 , H2: after X=1 and Y=0

Example ii. Normal model and prior ⇒ normal posterior
Suppose X, conditional on θ, is modeled by

X|θ ∼ N(θ, σ2)

and the prior distribution of θ is

θ ∼ N(θ0, τ
2
0 )

with σ2, θ0 and τ2
0 known.

Posterior of θ: (θ|X = x) ∼ N(θ1, τ
2
1 )

θ1 = wθ0 + (1− w)x
τ−2
1 = τ−2

0 + σ−2

where w = τ−2
0 /(τ−2

0 + σ−2) measures the relative information contained in the prior distribution with
respect to the total information (prior plus likelihood).
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Example from Box & Tiao (1973)
Prior A: Physicist A (large experience): θ ∼ N(900, (20)2)

Prior B: Physicist B (not so experienced): θ ∼ N(800, (80)2).

Model: (X|θ) ∼ N(θ, (40)2).

Observation: X = 850

(θ|X = 850, HA) ∼ N(890, (17.9)2)
(θ|X = 850, HB) ∼ N(840, (35.7)2)

Information (precision)

Physicist A: from 0.002500 to 0.003120 (an increase of 25%)

Physicist B: from 0.000156 to 0.000781 (an increase of 400%)

Priors and posteriors
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Example iii. Simple linear regression
A simple normal linear regression relates the dependent variable yi and the the explanatory variable

xi, for i = 1, . . . , n, by

yi|θ,H ∼ N(θxi;σ2)
θ|H ∼ N(θ0, τ

2
0 )

Therefore H = {σ2, θ0, τ
2
0 , x1, . . . , xn}.

Example iv. Simple stochastic volatility model
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The simplest stochastic volatility model with first-order auregressive log-volatilities, namely SV-
AR(1), relates log-return of financial time series yt to log-volatility θt, for t = 1, . . . , T , via

yt|θ,H ∼ N(0; eθt)
θt|H ∼ N(α+ βθt−1, σ

2)

Therefore H = {α, β, σ2, θ0}.

Bayesian ingredients

• Posterior (Bayes’ Theorem)

p(θ | x, H) =
p(θ,x | H)
p(x | H)

=
p(x | θ, H)p(θ | H)

p(x | H)

• Predictive (or marginal) distribution

p(x|H) =
∫

Θ

p(x,θ|H) dθ = Eθ[p(x | θ, H)]

p(x|H) is also known as normalizing constant and plays an important role in Bayesian model
criticism.

Bayesian ingredients (cont.)

• Posterior predictive

p(y | x, H) =
∫

Θ

p(y,θ | x, H)dθ

=
∫

Θ

p(y | θ,x, H)p(θ | x, H)dθ

=
∫

Θ

p(y | θ, H)p(θ | x, H)dθ

= Eθ|x [p(y | θ, H)]

since, in general, but not always,

X,Y are independent given θ.

It might be more useful to concentrate on prediction rather than on estimation because the former
is verifiable, i.e. y is observable while θ is not.

Sequential Bayes theorem: a rule for updating probabilities
Experimental result: x1 ∼ p1(x1 | θ)

p(θ | x1) ∝ l1(θ;x1)p(θ)
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Experimental result: x2 ∼ p2(x2 | θ)

p(θ | x2,x1) ∝ l2(θ;x2)p(θ | x1)
∝ l2(θ;x2)l1(θ;x1)p(θ)

Experimental results: xi ∼ pi(xi | θ), for i = 3, · · · , n

p(θ | xn, · · · ,x1) ∝ ln(θ;xn)p(θ | xn−1, · · · ,x1)

∝

[
n∏
i=1

li(θ;xi)

]
p(θ)

Example iii. Revisited
Combining likelihood and prior

yi|θ,H ∼ N(θxi;σ2)
θ|H ∼ N(θ0, τ

2
0 )

leads to posterior
θ|y, H ∼ N(θ1, τ

2
1 )

where

τ−2
1 = τ−2

0 + σ−2
n∑
i=1

x2
i and θ1 = τ2

1

(
τ−2
0 θ0 + σ−2

n∑
i=1

yixi

)

When τ−2
0 → 0, i.e. with little prior knowledge about θ, the above moments converge to ordinary

least squares counterparts:

τ−2
1 = σ−2

n∑
i=1

x2
i and θ1 =

∑n
i=1 yixi∑n
i=1 x

2
i

Example v. Multiple normal linear regression
The standard Bayesian approach to multiple linear regression is

(y|X,β, σ2) ∼ N(Xβ, σ2In)

where y = (y1, . . . , yn), X = (x1, . . . , xn)′ is the (n× q), design matrix and q = p+ 1.

The prior distribution of (β, σ2) is NIG(b0, B0, n0, S0), i.e.

β|σ2 ∼ N(b0, σ2B0)
σ2 ∼ IG(n0/2, n0S0/2)

for known hyperparameters b0, B0, n0 and S0.

Example v. Conditionals and marginals
It is easy to show that (β, σ2) is NIG(b1, B1, n1, S1), i.e.

(β|σ2, y,X) ∼ N(b1, σ2B1)
(σ2|y,X) ∼ IG(n1/2, n1S1/2)
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where

B−1
1 = B−1

0 +X ′X

B−1
1 b1 = B−1

0 b0 +X ′y

n1 = n0 + n

n1S1 = n0S0 + (y −Xb1)′y + (b0 − b1)′B−1
0 b0.

It is also easy to derive the full conditional distributions, i.e.

(β|y,X) ∼ tn1(b1, S1B1)
(σ2|β, y,X) ∼ IG(n1/2, n1S11/2)

where
n1S11 = n0S0 + (y −Xβ)′(y −Xβ).

Example v. Ordinary least squares
It is well known that

β̂ = (X ′X)−1X ′y

σ̂2 =
Se
n− q

=
(y −Xβ̂)′(y −Xβ̂)

n− q

are the OLS estimates of β and σ2, respectively.

The conditional and unconditional sampling distributions of β̂ are

(β̂|σ2, y,X) ∼ N(β, σ2(X ′X)−1)

(β̂|y,X) ∼ tn−q(β, Se)

respectively, with
(σ̂2|σ2) ∼ IG

(
(n− q)/2, ((n− q)σ2/2

)
.

Example v. Sufficient statistics recursions
Recall the multiple linear regression (yt|xt, β, σ2) ∼ N(x′tβ, σ

2) for t = 1, . . . , n, β|σ2 ∼ N(b0, σ2B0)
and σ2 ∼ IG(n0/2, n0S0/2).

Then, for yt = (y1, . . . , yt) and Xt = (x1, . . . , xt)′, it follows that

(β|σ2, yt, Xt) ∼ N(bt, σ2Bt)
(σ2|yt, Xt) ∼ IG(nt/2, ntSt/2)

where nt = nt−1+1, B−1
t = B−1

t−1+xtx
′
t, B

−1
t bt = B−1

t−1bt−1+ytxt and ntSt = nt−1St−1+(yt − b′txt)yt + (bt−1 − bt)′B−1
t−1bt−1.

The only ingredients needed are: xtx′t, ytxt and y2
t .

These recursions will play an important role later on when deriving sequential Monte Carlo
methods for conditionally Gaussian dynamic linear models, like many stochastic volatility models.
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Example v. Predictive
The predictive density can be seen as the marginal likelihood, i.e.

p(y|X) =
∫
p(y|X,β, σ2)p(β|σ2)p(σ2)dβdσ2

or, by Bayes’ theorem, as the normalizing constant, i.e.

p(y|X) =
p(y|X,β, σ2)p(β|σ2)p(σ2)
p(β|σ2, y,X)p(σ2|y,X)

which is valid for all (β, σ2).

Closed form solution is available for the multiple normal linear regression:

(y|X) ∼ tn0(Xb0, S0(In +XB0X
′)).

Unfortunately, closed form solutions are
rare.

Example iv. Revisited
The posterior distribution of θ = (θ1, . . . , θT ) is given by

p(θ|y) ∝
T∏
t=1

p(θt|θt−1, H)
T∏
t=1

p(yt|θt)

×
T∏
t=1

exp
{
− 1

2σ2
(θt − α− βθt−1)2

}

∝
T∏
t=1

e−θt/2 exp
{
−1

2
yte
−θt

}

• How to compute E(θ43|y) or V (θ11|y)?

• How to compute 95% credible regions for (θ35, θ36|y)?

• How to sample from p(θ|y) or p(θ|y1, . . . , y10)?

• How to compute p(y) or p(yt|y1, . . . , yt−1)?
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LECTURE 2

BAYESIAN MODEL
CRITICISM

Outline

• Prior and posterior model probabilities

• Posterior odds

• Bayes factor

• Computing normalizing constants

• Savage-Dickey density ratio

• Bayesian Model Averaging

• Posterior predictive criterion

• Deviance information criterion

Prior and posterior model probabilities
Suppose that the competing models can be enumerated and are represented by the setM = {M1,M2, . . .}.

Bayesian model comparison is commonly performed by computing posterior model probabilities,

Pr(Mj |y) ∝ f(y|Mj)Pr(Mj)

where Pr(Mj) and

f(y|Mj) =
∫
f(y|θj ,Mj)p(θj |Mj)dθj

are, respectively, the prior model probability and the predictive density of model Mj , for j = 1, 2, . . .

Posterior odds
Posterior odds of model Mj relative to Mk

Pr(Mj |y)
Pr(Mk|y)︸ ︷︷ ︸

posterior odds

=
Pr(Mj)
Pr(Mk)︸ ︷︷ ︸

prior odds

× f(y|Mj)
f(y|Mk)︸ ︷︷ ︸

Bayes factor

.

The Bayes factor can be viewed as the weighted likelihood ratio of Mj to Mk.
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Bayes factor
Jeffreys (1961) recommends the use of the following rule of thumb to decide between models j and k:

Bjk > 100 : decisive evidence against k
10 < Bjk ≤ 100 : strong evidence against k

3 < Bjk ≤ 10 : substantial evidence against k

Posterior model probability for model j is

Pr(Mj |y) =

{ ∞∑
k=1

Bkj
Pr(Mk)
Pr(Mj)

}−1

for j = 1, 2, . . ..

Computing normalizing constants
A basic ingredient for model assessment is given by the predictive density

f(y|M) =
∫
f(y|θ,M)p(θ|M)dθ ,

which is the normalizing constant of the posterior distribution.
The predictive density can now be viewed as the likelihood of model M .
It is sometimes referred to as predictive likelihood, because it is obtained after marginalization of

model parameters.
For any given model, the predictive density can be written as

f(y) = E[f(y|θ)]

where expectation is taken with respect to the prior distribution p(θ).

Approximate methods (discussed more later)
Several approximations for f(y) based on Monte Carlo and Markov chain Monte Carlo methods are

routinely available. Amongst them are:

• Laplace-Metropolis estimator

• Simple Monte Carlo

• Monte Carlo via importance sampling

• Harmonic mean estimator

• Chib’s estimator

• Reversible jump MCMC

Key references are DiCiccio, Kass, Raftery and Wasserman (1997) Han and Carlin (2001) and Lopes
and West (2004).
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Savage-Dickey Density Ratio
⇒ Suppose that M2 is described by

p(y|ω, ψ,M2)

and M1 is a restricted verison of M2, ie.

p(y|ψ,M1) ≡ p(y|ω = ω0, ψ,M2)

⇒ Suppose also that
π(ψ|ω = ω0,M2) = π(ψ|M1)

⇒ Therefore, it can be proved that the Bayes factor is

B12 =
π(ω = ω0|y,M2)
π(ω = ω0|M2)

where {ψ(1), . . . , ψ(N)} ∼ π(ψ|y,M2). See Verdinelli and Wasserman (1995) for further details.

Example i. Normality x Student-t
Suppose we have two competing models

M1 : xi ∼ N(µ, σ2)
M2 : xi ∼ tλ(µ, σ2)

Letting ω = 1/λ, M1 is a particular case of M2 when ω = ω0 = 0.0, with ψ = (µ, σ2).

Let ω ∼ U(0, 1), with ω = 1 corresponding to a Cauchy distribution. Assuming that

π(µ, σ2|M1) = π(µ, σ2, ω|M2) ∝ σ−2

the Savage-Dickey formula holds and the Bayes factor is

B12 = π(ω0|x,M2)

the marginal posterior of ω evaluated at 0.

Results
Because π(µ, σ2, ω|x,M2) has no closed form solution, they use a Metropolis algorithm.

When n = 100 from N(0, 1), then
B12 = 3.79

with standard error of 0.145.

When n = 100 from Cauchy(0, 1), then

B12 = 0.000405

with standard error of 0.000240.
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Bayesian model averaging
Let M denote the set that indexes all entertained models.
Assume that ∆ is an outcome of interest, such as the future value yt+k, or an elasticity well defined

across models, etc.
The posterior distribution for ∆ is

p(∆|y) =
∑
m∈M

p(∆|m, y)Pr(m|y)

for data y and posterior model probability

Pr(m|y) =
p(y|m)Pr(m)

p(y)

where Pr(m) is the prior probability model.

See Hoeting, Madigan, Raftery and Volinsky (1999) for more details.

Posterior predictive criterion
Gelfand and Ghosh (1998) introduced a posterior predictive criterion that, under squared error loss,

favors the model Mj which minimizes
DG
j = PGj +GGj

where

PGj =
n∑
t=1

V (ỹt|y,Mj)

GGj =
n∑
t=1

[yt − E(ỹt|y,Mj)]2

and (ỹ1, . . . , ỹn) are predictions/replicates of y.

The first term, Pj , is a penalty term for model complexity.

The second term, Gj , accounts for goodness of fit.

More general losses
Gelfand and Ghosh (1998) also derived the criteria for more general error loss functions.

Expectations E(ỹt|y,Mj) and variances V (ỹt|y,Mj) are computed under posterior predictive densi-
ties, ie.

E[h(ỹt)|y,Mj ] =
∫ ∫

h(ỹt)f(ỹt|y, θj ,Mj)π(θj |Mj)dθjdỹt

for h(ỹt) = ỹt and h(ỹt) = ỹ2
t .

The above integral can be approximated via Monte Carlo.
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Deviance information criterion
Inspired by Dempster’s (1997) suggestion to compute the posterior distribution of the log-likelihood,

D(θj) = −2 log f(y|θj ,Mj), Spiegelhalter et al. (2002) introduced the deviance information criterion
(DIC)

DS
j = PSj +GSj

where

PSj = E[D(θj)|y,Mj ]−D[E(θj |y,Mj)]

GSj = E[D(θj)|y,Mj ].

The DIC is decomposed into two important components:

• One responsible for goodness of fit: (GSj )

• One responsible for model complexity: (PSj )

PSj is also currently referred to as the effective number of parameters of model Mj .

DIC and WinBUGS
The DIC has become very popular in the applied Bayesian community due to its computational

simplicity and, consequently, its availability in WinBUGS.

Further applications appear, amongst many others, in

• Berg, Meyer and Yu (2002): stochastic volatility models.

• Celeux et al. (2005): mixture models, random effects models and several missing data models.

• Nobre, Schmidt and Lopes (2005): space-time hierarchical models.

• van der Linde (2005): variable selection.

• Lopes and Salazar (2006): nonlinear time series models.

• Silva and Lopes (2008): mixture of copulas models.
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LECTURE 3

MONTE CARLO METHODS

Basic Bayesian computation
Main ingredients:

Posterior : π(θ) =
f(x|θ)p(θ)
f(x)

Predictive : f(x) =
∫
f(x|θ)p(θ)dθ

Bayesian Agenda:

• Posterior modes: maxθ π(θ);

• Posterior moments: Eπ[g(θ)];

• Density estimation: π̂(g(θ));

• Bayes factors: f(x|M0)/f(x|M1);

• Decision: maxd
∫
U(d, θ)π(θ)dθ.

Analytic approximations

• Asymptotic approximation (Carlin&Louis, 2000)

• Laplace approximation (Tierney&Kadane, 1986)

• Gaussian quadrature (Naylor and Smith, 1982)

Stochastic approximations/simulations

• Simulated annealing (Metropolis et al, 1953)

• Metropolis-Hastings algorithm (Hastings, 1970)

• Monte Carlo integration (Geweke, 1989)

• Gibbs sampler (Gelfand and Smith, 1990)

• Rejection methods (Gilks and Wild, 1992)

• Importance Sampling (Smith and Gelfand, 1992)

Monte Carlo methods
In what follows we will introduce several Monte Carlo methods for integrating and/or sampling from

nontrivial densities.

• Simple Monte Carlo integration

• Monte Carlo integration via importance sampling

• Sampling via the rejection method

• Sampling via importance resampling (SIR)
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Monte Carlo integration
The objective here is to compute moments

Eπ[h(θ)] =
∫
h(θ)π(θ)dθ

If θ1, . . . , θn is a random sample from π(·)

⇒ h̄mc =
1
n

n∑
i=1

h(θi)→ Eπ[h(θ)]

If, additionally, Eπ[h2(θ)] <∞, then

Vπ[h̄mc] =
1
n

∫
{h(θ)− Eπ[h(θ)]}2π(θ)dθ

and

vmc =
1
n2

n∑
i=1

(h(θi)− h̄mc)2 → Vπ[h̄mc]

Example i.
The objective here is to estimate

p =
∫ 1

0

[cos(50θ) + sin(20θ)]2dθ = 0.965

by noticing that the above integral can be rewritten as

Eπ[h(θ)] =
∫
h(θ)π(θ)dθ

where h(θ) = [cos(50θ) + sin(20θ)]2 and π(θ) = 1 is the density of a U(0, 1).
Therefore

p̂ =
1
n

n∑
i=1

h(θi)

where θ1, . . . , θn are i.i.d. from U(0, 1).
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Monte Carlo via importance sampling
The objective is still the same, ie to compute

Eπ[h(θ)] =
∫
h(θ)π(θ)dθ

by noticing that

Eπ[h(θ)] =
∫
h(θ)π(θ)
q(θ)

q(θ)dθ

where q(·) is an importance function. Therefore, if θ1, . . . , θn is a random sample from q(·) then

⇒ h̄is =
1
n

n∑
i=1

h(θi)π(θi)/q(θi)→ Eπ[h(θ)]

Ideally, q(·) should be (i) as ”close” as possible to h(·)π(·) and (ii) easy to sample from.

Example ii.
The objective here is to estimate

p =
∫ ∞

2

1
π(1 + θ2)

dθ

Three Monte Carlo estimators of p are

p̂1 =
1
n

n∑
i=1

I{θi ∈ (2,∞)}

p̂2 =
1
n

n∑
i=1

1
2
I{θi ∈ (−∞,−2) ∪ (2,∞)}

p̂3 =
1
n

n∑
i=1

u−2
i

2π[1 + u−2
i ]

where θ1, . . . , θn ∼ Cauchy(0,1) and u1, . . . , un ∼ U(0, 1/2).

n vmc1 vmc2 vmc3

50 0.051846 0.033941 0.001407
100 0.030000 0.021651 0.000953
700 0.014054 0.008684 0.000359

1000 0.011738 0.007280 0.000308
5000 0.005050 0.003220 0.000138

10000 0.003543 0.002276 0.000097
100000 0.001124 0.000721 0.000031

1000000 0.000355 0.000228 0.000010

If 0.0035 is the desired level of precision in the estimation, then 1 million draws would be necessary for
estimator p̂1 while only 700 for estimator p̂3, i.e. roughly 3 orders of magnitude smaller.
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Rejection method
The objective is to draw from a target density

π(θ) = cππ̃(θ)

when only draws from an auxiliary density

q(θ) = cq q̃(θ)

is available. Here cπ and cq are normalizing constants.
If there exist a constant A <∞ such that

π̃(θ) ≤ Aq̃(θ) for all θ

then q(θ) becomes a blanketing density or an envelope and A the envelope constant.

ππ((θθ)) q((θθ))

PROPOSAL: CAUCHY(0,2.5)
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Algorithm
Under the previous conditions the following algorithm can be used to draw from π(θ).

1. Draw θ∗ from q(·);

2. Draw u from U(0, 1);
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3. Accept θ∗ if u ≤ π̃(θ∗)
Aq̃(θ∗) ;

4. Repeat 1, 2 and 3 until n draws are accepted.

Proof
Applying Bayes’ theorem:

p(θ | Auq̃(θ) ≤ π̃(θ)) =
Pr(Auq̃(θ) < π̃(θ) | θ)q(θ)∫
Pr(Auq̃(θ) ≤ π̃(θ) | θ)q(θ)dθ

=
Pr
(
u < π̃(θ)

Aq̃(θ) | θ
)
q(θ)∫

Pr
(
u < π̃(θ)

Aq̃(θ) | θ
)
q(θ)dθ

=
π̃(θ)
Aq̃(θ)cq q̃(θ)∫ π̃(θ)
Aq̃(θ)cq q̃(θ)dθ

=
π̃(θ)∫
π̃(θ)dθ

= π(θ) .

One does not need to known cπ and cq.

The smaller the A is the larger the acceptance rate.

The theoretical acceptance rate is

Pr

(
u ≤ π̃(θ)

Aq̃(θ)

)
=

∫
Pr

(
u ≤ π̃(θ)

Aq̃(θ)
|θ
)
q(θ)dθ

=
∫

π̃(θ)
Aq̃(θ)

cq q̃(θ)dθ

=
1
A

∫
π̃(θ)dθ∫
q̃(θ)dθ

=
cq
Acπ

.

Example iii.
Enveloping the N(0,1) density

π(θ) =
1√
2π

exp{−0.5θ2}

by a multiple of a Cauchy density

qC(θ) =
1

π
√

2.5

[
1 +

θ2

2.5

]−1

or a multiple of a Uniform density

qU (θ) =
1
12

θ ∈ (−6, 6).

n = 2000 draws sampled from qC(·), an observed acceptance rate of 49.65% and true acceptance rate
of 1/

√
1.25π = 50%.

n = 2000 draws sampled from qU (·), an observed acceptance rate of 20.85% and true acceptance rate
of
√

2π/12 = 21%.
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Sampling importance resampling
No need to rely on the existance of A!

Algorithm

1. Draw θ∗1 , . . . , θ
∗
n from q(·)

2. Compute weights

wi =
π(θ∗i )/q(θ∗i )∑n
j=1 π(θ∗j )/q(θ∗j )

, i = 1, . . . , n

3. For j = 1, . . . ,m, sample
θj from {θ∗1 , . . . , θ∗n}

such that Pr(θj = θ∗i ) = ωi, i = 1, . . . , n.

Rule of thumb: n/m = 20.

SIR in the Bayesian context
Let the target distribution is the posterior distribution

π(θ) = cπp(θ)f(x|θ)

A natural (but not necessarily good) choice is

q(θ) = p(θ)

so the weights

ωi =
f(x|θi)∑n
j=1 f(x|θj)

, i = 1, . . . , n

are the normalized likelihoods.

Example iv.
Assume that σ2/n = 4.5, x̄ = 7, µ0 = 0 and τ2

0 = 1.
Normal model

f(x|µ) =
1√

2πσ2
exp

{
− n

2σ2
(µ− x̄)2

}
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Cauchy prior

p(µ) ∝ 1
τ2
0 + (µ− µ0)2

Posterior

π(µ) ∝
exp

{
− n

2σ2 (µ− x̄)2
}

τ2
0 + (µ− µ0)2

200 draws from the prior
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LECTURE 4

MARKOV CHAIN MONTE CARLO

Homogeneous Markov chain
A Markov chain is a stochastic process where given the present state, past and future states are

independent, i.e.
Pr(θ(n+1) ∈ A|θ(n) = x, θ(n−1) ∈ An−1, . . . , θ

(0) ∈ A0)

equals
Pr(θ(n+1) ∈ A|θ(n) = x)

for all sets A0, . . . , An−1, A ⊂ S and x ∈ S.

When the above probability does not depend on n, the chain is said to be homogeneous and a
transition function, or kernel P (x,A), can be defined as:

1. for all x ∈ S, P (x, ·) is a probability distribution over S;

2. for all A ⊂ S, the function x 7→ P (x,A) can be evaluated.

Example i. Random walk
Consider a particle moving independently left and right on the line with successive displacements

from its current position governed by a probability function f over the integers and θ(n) representing
its position at instant n, n ∈ N . Initially, θ(0) is distributed according to some distribution π(0). The
positions can be related as

θ(n) = θ(n−1) + wn = w1 + w2 + . . .+ wn

where the wi are independent random variables with probability function f . So, {θ(n) : n ∈ N} is a
Markov chain in Z.

The position of the chain at instant t = n is described probabilistically by the distribution of w1 +
. . .+ wn.
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Pr{θ(n) = θ(n−1) + i} = 1/2, for i = −1, 1 and θ(0) = 0.0.

Example ii. Birth and death processes
Consider a Markov chain that from the state x can only move in the next step to one of the neighboring

states x− 1, representing a death, x or x+ 1, representing a birth. The transition probabilities are given
by

P (x, y) =


px , if y = x+ 1
qx , if y = x− 1
rx , if y = x
0 , if |y − x| > 1

.

where px, qx and rx are non-negative with px + qx + rx = 1 and q0 = 0.
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Pr{θ(n) = θ(n−1) + i} = 1/3, for i = −1, 0, 1 and θ(0) = 0.0.

Discrete state spaces
If S is finite with r elements, S = {x1, x2, . . . , xr}, a transition matrix P with (i, j)th element given

by P (xi, xj) can be defined as

P =

 P (x1, x1) . . . P (x1, xr)
...

...
P (xr, x1) . . . P (xr, xr)

 .

Transition probabilities from state x to state y over m steps, denoted by Pm(x, y), is given by the
probability of a chain moving from state x to state y in exactly m steps. It can be obtained for m ≥ 2 as

Pm(x, y) = Pr(θ(m) = y|θ(0) = x)

=
X
x1

· · ·
X
xm−1

Pr(y, xm−1, . . . , x1|x)

=
X
x1

· · ·
X
xm−1

Pr(y|xm−1) . . . P r(x1|x)

=
X
x1

· · ·
X
xm−1

P (xm−1, y) · · ·P (x, x1)
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Chapman-Kolmogorov equations

Pn+m(x, y) =
X
z

Pr(θ(n+m) = y|θ(n) = z, θ(0) = x)

× Pr(θ(n) = z|θ(0) = x)

=
X
z

Pn(x, z)Pm(z, y)

and (more generally)
Pn+m = PnPm.

Marginal distributions
Let

π(n) = (π(n)(x1), · · · , π(n)(xr))

with the initial distribution of the chain when n = 0. Then,

π(n)(y) =
∑
x∈S

Pn(x, y)π(0)(x)

or, in matrix notation,

π(n) = π(0)Pn

π(n) = π(n−1)P

Example iii. 2-state Markov chain
Consider {θ(n) : n ≥ 0}, a Markov chain in S = {0, 1} with π(0) given by

π(0) = (π(0)(0), π(0)(1))

and transition matrix

P =
(

1− p p
q 1− q

)
.

It is easy to see that

Pr(θ(n) = 0) = (1− p)Pr(θ(n−1) = 0) + qPr(θ(n−1) = 1)

= (1− p− q)nπ(0)(0) + q

n−1X
k=0

(1− p− q)k

If p+ q > 0,
Pr(θ(n) = 0) =

q

p+ q
+ (1− p− q)n

„
π(0)(0)−

q

p+ q

«
If 0 < p+ q < 2 then

lim
n→∞

Pr(θ(n) = 0) =
q

p+ q

lim
n→∞

Pr(θ(n) = 1) =
p

p+ q
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Stationary distributions
A fundamental problem for Markov chains is the study of the asymptotic behavior of the chain as

the number of iterations n→∞.
A key concept is that of a stationary distribution π. A distribution π is said to be a stationary

distribution of a chain with transition probabilities P (x, y) if∑
x∈S

π(x)P (x, y) = π(y), ∀y ∈ S

or in matrix notation as πP = π.
If the marginal distribution at any given step n is π then the next step distribution is πP = π.
Once the chain reaches a stage where π is its distribution, all subsequent distributions are π.
π is also known as the equilibrium distribution.

Example iv. 10-state Markov chain
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Ergodicity
A chain is said to be geometrically ergodic if ∃λ ∈ [0, 1), and a real, integrable function M(x) such

that

‖Pn(x, ·)− π(·)‖ ≤M(x)λn (1)

for all x ∈ S.
If M(x) = M , then the ergodicity is uniform.
Uniform ergodicity implies geometric ergodicity which implies ergodicity.
The smallest λ satisfying (??) is called the rate of convergence.
A very large value of M(x) may slow down convergence considerably.

Ergodic theorem
Once ergodicity of the chain is established, important limiting theorems can be stated. The first and

most important one is the ergodic theorem.
The ergodic average of a real-valued function t(θ) is the average t̄n = (1/n)

∑n
i=1 t(θ

(i)). If the chain
is ergodic and Eπ[t(θ)] <∞ for the unique limiting distribution π then

t̄n
a.s.→ Eπ[t(θ)] as n→∞

which is a Markov chain equivalent of the law of large numbers.
It states that averages of chain values also provide strongly consistent estimates of parameters of the

limiting distribution π despite their dependence.
There are also versions of the central limit theorem for Markov chains.

Inefficiency factor or integrated autocorrelation time
Define the autocovariance of lag k of the chain t(n) = t(θ(n)) as γk = Covπ(t(n), t(n+k)), the variance

of t(n) as σ2 = γ0, the autocorrelation of lag k as ρk = γk/σ
2 and τ2

n/n = V arπ(t̄n).
It can be shown that

τ2
n = σ2

(
1 + 2

n−1∑
k=1

n− k
n

ρk

)
(2)
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and that

τ2
n → τ2 = σ2

(
1 + 2

∞∑
k=1

ρk

)
(3)

as n→∞.
The term between parentheses in Equation (??) can be called inefficiency factor or integrated au-

tocorrelation time because it measures how far t(n)s are from being a random sample and how much
V arπ(t̄n) increases because of that.

Effective sample size
The inefficiency factor can be used to derive the effective sample size

neff =
n

1 + 2
∑∞
k=1 ρk

(4)

which can be thought of as the size of a random sample with the same variance since

V arπ(t̄n) = σ2/neff.

It is important to distinguish between

σ2 = V arπ[t(θ)] and τ2

the variance of t(θ) under the limiting distribution π and the limiting sampling variance of
√
n t̄, respec-

tively.
Note that under independent sampling they are both given by σ2. They are both variability measures

but the first one is a characteristic of the limiting distribution π whereas the second is the uncertainty of
the averaging procedure.

Central limit theorem
If a chain is uniformly (geometrically) ergodic and t2(θ) (t2+ε(θ)) is integrable with respect to π (for

some ε > 0) then

t̄n − Eπ[t(θ)]
τ/
√
n

d−→ N(0, 1), (5)

as n→∞.
Just as (??) provides theoretical support for the use of ergodic averages as estimates, Equation (??)

provides support for evaluation of approximate confidence intervals.

Reversible chains
Let (θ(n))n≥0 be an homogeneous Markov chain with transition probabilities P (x, y) and stationary

distribution π.
Assume that one wishes to study the sequence of states θ(n), θ(n−1), . . . in reversed order. It can be

shown that this sequence is a Markov chain with transition probabilities are

P ∗n(x, y) = Pr(θ(n) = y | θ(n+1) = x)

=
Pr(θ(n+1) = x | θ(n) = y)Pr(θ(n) = y)

Pr(θ(n+1) = x)

=
π(n)(y)P (y, x)
π(n+1)(x)
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and in general the chain is not homogeneous.
If n→∞ or alternatively, π(0) = π, then

P ∗n(x, y) = P ∗(x, y) = π(y)P (y, x)/π(x)

and the chain becomes homogeneous.
If P ∗(x, y) = P (x, y) for all x and y ∈ S, the Markov chain is said to be reversible. The reversibility

condition is usually written as

π(x)P (x, y) = π(y)P (y, x) (6)

for all x, y ∈ S.
It can be interpreted as saying that the rate at which the system moves from x to y when in equilib-

rium, π(x)P (x, y), is the same as the rate at which it moves from y to x, π(y)P (y, x).
For that reason, (??) is sometimes referred to as the detailed balance equation; balance because it

equates the rates of moves through states and detailed because it does it for every possible pair of states.

MCMC: a bit of history
Dongarra and Sullivan (2000) 1 list the top 10 algorithms with the greatest influence on the develop-

ment and practice of science and engineering in the 20th century (in chronological order):

• Metropolis Algorithm for Monte Carlo

• Simplex Method for Linear Programming

• Krylov Subspace Iteration Methods

• The Decompositional Approach to Matrix Computations

• The Fortran Optimizing Compiler

• QR Algorithm for Computing Eigenvalues

• Quicksort Algorithm for Sorting

• Fast Fourier Transform

40s and 50s
Stan Ulam soon realized that computers could be used in this fashion to answer questions of neutron

diffusion and mathematical physics;

He contacted John Von Neumann and they developed many Monte Carlo algorithms (importance
sampling, rejection sampling, etc);

In the 1940s Nick Metropolis and Klari Von Neumann designed new controls for the state-of-the-art
computer (ENIAC);

Metropolis and Ulam (1949) The Monte Carlo method. Journal of the American Statistical Associa-
tion, 44, 335-341;

Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953) Equations of state calculations by fast
computing machines. Journal of Chemical Physics, 21, 1087-1091.

1Guest Editors’ Introduction: The Top 10 Algorithms, Computing in Science and Engineering, 2, 22-23.
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70s
Hastings and his student Peskun showed that Metropolis and the more general Metropolis-Hastings

algorithm are particular instances of a larger family of algorithms.

Hastings (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika,
57, 97-109.

Peskun (1973) Optimum Monte-Carlo sampling using Markov chains. Biometrika, 60, 607-612.

80s and 90s
Geman and Geman (1984) Stochastic relaxation, Gibbs distributions and the Bayesian restoration

of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721-741.

Pearl (1987) Evidential reasoning using stochastic simulation. Artificial Intelligence, 32, 245-257.

Tanner and Wong (1987) The calculation of posterior distributions by data augmentation. Journal
of the American Statistical Association, 82, 528-550.

Gelfand and Smith (1990) Sampling-based approaches to calculating marginal densities. Journal of
the American Statistical Association, 85, 398-409.

Metropolis-Hastings
A sequence {θ(0), θ(1), θ(2), . . . } is drawn from a Markov chain whose limiting equilibrium distribution

is the posterior distribution, π(θ).

Algorithm

1. Initial value: θ(0)

2. Proposed move: θ∗ ∼ q(θ∗|θ(i−1))

3. Acceptance scheme:

θ(i) =
{
θ∗ com prob. α
θ(i−1) com prob. 1− α

where

α = min
{

1,
π(θ∗)

π(θ(i−1))
q(θ(i−1)|θ∗)
q(θ∗|θ(i−1))

}

Special cases

1. Symmetric chains: q(θ|θ∗) = q(θ∗|θ)

α = min
{

1,
π(θ∗)
π(θ)

}
2. Independence chains: q(θ|θ∗) = q(θ)

α = min
{

1,
ω(θ∗)
ω(θ)

}
where ω(θ∗) = π(θ∗)/q(θ∗).
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Random walk Metropolis
The most famous symmetric chain is the random walk Metropolis:

q(θ|θ∗) = q(|θ − θ∗|)

Hill climbing: when

α = min
{

1,
π(θ∗)
π(θ)

}
a value θ∗ with higher density π(θ∗) greater than π(θ) is automatically accepted.

Example v. Bivariate mixture of normals
Tthe target distribution is a two-component mixture of bivariate normal densities, ie:

π(θ) = 0.7fN (θ;µ1,Σ1) + 0.3fN (θ;µ2,Σ2).

where

µ′1 = (4.0, 5.0)
µ′2 = (0.7, 3.5)

Σ1 =
(

1.0 0.7
0.7 1.0

)
Σ2 =

(
1.0 −0.7
−0.7 1.0

)
.

Targe distribution
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Random walk Metropolis: draws
q(θ, φ) = fN (φ; θ, νI2) and ν =tuning.
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 Initial value=(4,5) 

 Acceptance rate=48.5%
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 Initial value=(0,7) 

 Acceptance rate=49.3%
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Independent Metropolis
q(θ, φ) = fN (φ;µ3, νI2) and µ3 = (3.01, 4.55)′.
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 Initial value=(4,5) 

 Acceptance rate=30.9%

Acceptance rate=30.9%
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Gibbs sampler
Technically, the Gibbs sampler is an MCMC scheme whose transition kernel is the product of the full

conditional distributions.
Algorithm

1. Start at θ(0) = (θ(0)
1 , θ

(0)
2 , . . .)

2. Sample the components of θ(j) iteratively:

θ
(j)
1 ∼ π(θ1|θ(j−1)

2 , θ
(j−1)
3 , . . .)

θ
(j)
2 ∼ π(θ2|θ(j)

1 , θ
(j−1)
3 , . . .)

θ
(j)
3 ∼ π(θ3|θ(j)

1 , θ
(j)
2 , . . .)

...
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The Gibbs sampler opened up a new way of approaching statistical modeling by combining simpler
structures (the full conditional models) to address the more general structure (the full model).

Example vi: Poisson with a change point
y1, . . . , yn is a sample from a Poisson distribution.

There is a suspicion of a single change point m along the observation process.

Given m, the observation distributions are

yi|λ ∼ Poi(λ), i = 1, . . . ,m
yi|φ ∼ Poi(φ), i = m+ 1, . . . , n.

Independent prior distributions

λ ∼ G(α, β)
φ ∼ G(γ, δ)
m ∼ U{1, . . . , n}

with α, β, γ and δ known hyperparameters.

Posterior distribution
Combining the prior and the likelihood

π(λ, φ,m) ∝ f(y1, . . . , yn|λ, φ,m)p(λ, φ,m)

=
m∏
i=1

fP (yi;λ)
n∏

i=m+1

fP (yi;φ)

× fG(λ;α, β)fG(φ; γ, δ)
1
n

Therefore,
π(λ, φ,m) ∝

(
λα+sm−1e−(β+m)λ

)(
φγ+sn−sm−1e−(δ+n−m)φ

)
where sl =

∑l
i=1 yi for l = 1, . . . , n.

Full conditional distributions
The full conditional distributions for λ, φ and m are

π(λ|m) = G (α+ sm, β +m)

π(φ|m) = G (γ + sn − sm, δ + n−m)

and

π(m|λ, φ) =
λα+sm−1e−(β+m)λφγ+sn−sm−1e−(δ+n−m)φ∑n
l=1λ

α+sl−1e−(β+l)λφγ+sn−sl−1e−(δ+n−l)φ ,

for m = 1, . . . , n, respectively.
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Coal mining disasters in Great Britain
This model was applied to the n = 112 observed counts of coal mining disasters in Great Britain by

year from 1851 to 1962.

Sample mean from 1951 to 1891 = 3.098
Sample mean from 1892 to 1962 = 0.901
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Markov chains
The Gibbs sampler run: 5000 iterations
Starting point: m(0) = 1891
Hyperparameters: α = β = γ = δ = 0.001
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Exact and approximate posterior summary
Exact posterior can be obtained by analytically deriving π(m) and using it to derive π(λ) and π(φ).
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Par. Mean Var 95% C.I.
λ 3.120 0.280 (2.571,3.719)
φ 0.923 0.113 (0.684,0.963)
m 1890 2.423 (1886,1895)

Approximate posterior summary based on the Gibbs sampler

Par. Mean Var 95% C.I.
λ 3.131 0.290 (2.582,3.733)
φ 0.922 0.118 (0.703,1.167)
m 1890 2.447 (1886,1896)

Example vii: AR(1) with normal errors
Let us assume that

yt = ρyt−1 + εt εt ∼ N(0, σ2)

for t = 1, . . . , n.

Prior specification

y0 ∼ N(m0, C0)
ρ ∼ N(r0, V0)
σ2 ∼ IG(n0/2, n0s

2
0/2)

for known hyperparameters m0, C0, r0, V0, n0 and s2
0.

Full conditional distributions

• (ρ|σ2, y0, y1:n) ∼ N(r1, V1)

V −1
1 = V0 + σ−2

n∑
t=1

y2
t−1

V −1
1 r1 = V −1

0 r0 + σ−2
n∑
t=1

yt−1yt

• (σ2|ρ, y0, y1:n) ∼ IG(n1/2, n1s
2
1/2)

n1 = n0 + n

n1s
2
1 = n0s

2
0 +

n∑
t=1

(yt − ρyt−1)2

• (y0|ρ, σ2, y1:n) ∼ N(m1, C1)

C−1
1 = C0 + σ−2ρ2

C−1
1 m1 = C−1

0 m0 + σ−2ρy1
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Simulated data
Set up: n = 100, y0 = 0.0, ρ = 0.95 and σ2 = 1.0.
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Example viii: AR(1) with drift and normal errors
Let us assume that

yt = µ+ ρyt−1 + εt εt ∼ N(0, σ2)

for t = 1, . . . , n.

Prior specification

y0 ∼ N(m0, C0)
µ ∼ N(µ0,W0)
ρ ∼ N(r0, V0)
σ2 ∼ IG(n0/2, n0s

2
0/2)

for known hyperparameters m0, C0, µ0,W0, r0, V0, n0 and s2
0.

Full conditional distributions

• (ρ|µ, σ2, y0, y1:n) as before with yt replaced by yt − µ.

• (σ2|µ, ρ, y0, y1:n) as before with yt replaced by yt − µ.

• (y0|µ, ρ, σ2, y1:n) as before with y1 replaced by y1 − µ.

• (µ|ρ, σ2, y0, y1:n) ∼ N(µ1,W1)

W−1
1 = W−1

0 + n/σ2

W−1
1 µ1 = W−1

0 µ0 +
n∑
t=1

(yt − ρyt−1)/σ2

Simulated data
Set up: n = 100, y0 = 0.0, µ = 0.1, ρ = 0.99 and σ2 = 1.0.
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Example ix: GARCH(1,1) model with normal errors
Let us assume that

yt ∼ N(0, σ2
t )

σ2
t = a1 + a2y

2
t−1 + a3σ

2
t−1

for t = 1, . . . , n.

Prior specification

y0 ∼ N(m0, V0)
σ2

0 ∼ IG(n0/2, n0s
2
0/2)

ai ∼ N(a0i, V0i) i = 1, . . . , 3

for known m0, C0, n0, s
2
0 and (α0i, V0i) for i = 1, 2, 3.
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Metropolis-Hastings algorithm
None of the full conditionals for a1, a2 and a3 are of known form nor easy to sample from.

Here we implement a very simple M-H algorithm where a new vector a∗ = (a∗1, a
∗
2, a
∗
3) is generated

from
a∗ ∼ N(a(j), v2I3)

where a(j) is the current state of the chain and v is a tuning standard deviations.

Simulated data
Set up: n = 300, a1 = 0.1, a2 = 0.4, a3 = 0.59, y2

0 = σ2
0 = 0.1.
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LECTURE 5

DYNAMIC LINEAR MODELS

Example i. local level model

The local level model (West and Harrison, 1997) is

yt+1|xt+1, θ ∼ N(xt+1, σ
2)

xt+1|xt, θ ∼ N(xt, τ2)

where x0 ∼ N(m0, C0) and θ = (σ2, τ2) fixed (for now).

Example i. Evolution, prediction and updating
Let yt = (y1, . . . , yt).

p(xt|yt) =⇒ p(xt+1|yt) =⇒ p(yt+1|xt) =⇒ p(xt+1|yt+1)

• Posterior at t: (xt|yt) ∼ N(mt, Ct)

• Prior at t+ 1: (xt+1|yt) ∼ N(mt, Rt+1)

• Marginal likelihood: (yt+1|yt) ∼ N(mt, Qt+1)

• Posterior at t+ 1: (xt+1|yt+1) ∼ N(mt+1, Ct+1)

where Rt+1 = Ct + τ2, Qt+1 = Rt+1 + σ2, At+1 = Rt+1/Qt+1, Ct+1 = At+1σ
2, and mt+1 =

(1−At+1)mt +At+1yt+1.

Example i. Backward smoothing
For t = n, xn|yn ∼ N(mn

n, C
n
n ), where

mn
n = mn

Cnn = Cn
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For t < n, xt|yn ∼ N(mn
t , C

n
t ), where

mn
t = (1−Bt)mt +Btm

n
t+1

Cnt = (1−Bt)Ct +B2
tC

n
t+1

and
Bt =

Ct
Ct + τ2

Example i. Backward sampling
For t = n, xn|yn ∼ N(ann, R

n
n), where

ann = mn

Rnn = Cn

For t < n, xt|xt+1, y
n ∼ N(ant , R

n
t ), where

ant = (1−Bt)mt +Btxt+1

Rnt = Btτ
2

and
Bt =

Ct
Ct + τ2

This is basically the Forward filtering, backward sampling algorithm used to sample from p(xn|yn)
(Carter and Kohn, 1994 and Frühwirth-Schnatter, 1994).

Example i. Simulated data
n = 100, σ2 = 1.0, τ2 = 0.5 and x0 = 0.

0 20 40 60 80 100

−
4

−
2

0
2

4
6

8
10

time

y(t)
x(t)
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Example i. p(xt|yt, θ) versus p(xt|yn, θ)
m0 = 0.0 and C0 = 10.0

time

0 20 40 60 80 100

−
4

−
2

0
2

4
6

8
10

Forward filtering
Backward smoothing

Example i. Integrating out states xn

We showed earlier that
(yt|yt−1) ∼ N(mt−1, Qt)

where both mt−1 and Qt were presented before and are functions of θ = (σ2, τ2), yt−1, m0 and C0.

Therefore, by Bayes’ rule,

p(θ|yn) ∝ p(θ)p(yn|θ)

= p(θ)
n∏
t=1

fN (yt|mt−1, Qt).

Example i. p(y|σ2, τ2)

σσ2

ττ2

0.5 1.0 1.5 2.0

0.
5

1.
0

1.
5

2.
0
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Example i. MCMC scheme

• Sample θ from p(θ|yn, xn)

p(θ|yn, xn) ∝ p(θ)
n∏
t=1

p(yt|xt, θ)p(xt|xt−1, θ).

• Sample xn from p(xn|yn, θ)

p(xn|yn, θ) =
n∏
t=1

fN (xt|ant , Rnt )

Example i. p(σ2, τ2|yn)
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Lessons from Example i.
Sequential learning in non-normal and nonlinear dynamic models p(yt+1|xt+1) and p(xt+1|xt) in

general rather difficult since

p(xt+1|yt) =
∫
p(xt+1|xt)p(xt|yt)dxt

p(xt+1|yt+1) ∝ p(yt+1|xt+1)p(xt+1|yt)

are usually unavailable in closed form.

Over the last 20 years:

• FFBS for conditionally Gaussian DLMs;

• Gamerman (1998) for generalized DLMs;

• Carlin, Polson and Stoffer (2002) for more general DMs.

Dynamic linear models
Large class of models with time-varying parameters.

Dynamic linear models are defined by a pair of equations, the observation equation and the evolu-
tion/system equation:

yt = F ′tβt + εt, εt ∼ N(0, V )
βt = Gtβt−1 + ωt, ωt ∼ N(0,W )

• yt: sequence of observations;

• Ft: vector of explanatory variables;

• βt: d-dimensional state vector;

• Gt: d× d evolution matrix;

• β1 ∼ N(a,R).

Example ii. Linear growth model
The linear growth model is slightly more elaborate by incorporation of an extra time-varying param-

eter β2 representing the growth of the level of the series:

yt = β1,t + εt εt ∼ N(0, V )
β1,t = β1,t−1 + β2,t + ω1,t

β2,t = β2,t−1 + ω2,t

where ωt = (ω1,t, ω2,t)′ ∼ N(0,W ) and

Ft = (1, 0)′

Gt =
(

1 1
0 1

)
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Prior, updated and smoothed distributions
Prior distributions

p(βt|yt−k) k > 0

Updated/online distributions
p(βt|yt)

Smoothed distributions
p(βt|yt+k) k > 0

Sequential inference
Let yt = {y1, . . . , yt}.

Posterior at time t− 1:
βt−1|yt−1 ∼ N(mt−1, Ct−1)

Prior at time t:

βt|yt−1 ∼ N(at, Rt)

with at = Gtmt−1 and Rt = GtCt−1G
′
t +W .

predictive at time t:

yt|yt−1 ∼ N(ft, Qt)

with ft = F ′tat and Qt = F ′tRtFt + V .

Posterior at time t

p(βt|yt) = p(βt|yt, yt−1) ∝ p(yt|βt) p(βt|yt−1)

The resulting posterior distribution is

βt|yt ∼ N(mt, Ct)

with

mt = at +Atet

Ct = Rt −AtA′tQt
At = RtFt/Qt

et = yt − ft

By induction, these distributions are valid for all times.
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Smoothing
In dynamic models, the smoothed distribution π(β|yn) is more commonly used:

π(β|yn) = p(βn|yn)
n−1∏
t=1

p(βt|βt+1, . . . , βn, y
n)

= p(βn|yn)
n−1∏
t=1

p(βt|βt+1, y
t)

Integrating with respect to (β1, . . . , βt−1):

π(βt, . . . , βn|yn) = p(βn|yn)
n−1∏
k=t

p(βk|βk+1, y
t)

π(βt, βt+1|yn) = p(βt+1|yn)p(βt|βt+1, y
t)

for t = 1, . . . , n− 1.

Marginal smoothed distributions
It can be shown that

βt|yn ∼ N(mn
t , C

n
t )

where

mn
t = mt + CtG

′
t+1R

−1
t+1(mn

t+1 − at+1)

Cnt = Ct − CtG′t+1R
−1
t+1(Rt+1 − Cnt+1)R−1

t+1Gt+1Ct

Individual sampling from π(βt|β−t, yn)
Let β−t = (β1, . . . , βt−1, βt+1, . . . , βn).

For t = 2, . . . , n− 1

π(βt|β−t, yn) ∝ p(yt|βt) p(βt+1|βt) p(βt|βt−1)
∝ fN (yt;F ′tβt, V )fN (βt+1;Gt+1βt,W )
× fN (βt;Gtβt−1,W )
= fN (βt; bt, Bt)

where

bt = Bt(σ−2Ftyt +G′t+1W
−1βt+1 +W−1Gtβt−1)

Bt = (σ−2FtF
′
t +G′t+1W

−1Gt+1 +W−1)−1

for t = 2, . . . , n− 1.
For t = 1 and t = n,

π(β1|β−1, y
n) = fN (β1; b1, B1)

and
π(βn|β−n, yn) = fN (βt; bn, Bn)
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where

b1 = B1(σ−2
1 F1y1 +G′2W

−1β2 +R−1a)
B1 = (σ−2

1 F1F
′
1 +G′2W

−1G2 +R−1)−1

bn = Bn(σ−2
n Fnyn +W−1Gnβn−1)

Bn = (σ−2
n FnF

′
n +W−1)−1

The FFBS algorithm: sampling from π(β|yn)
For t = 1, . . . , n− 1, it can be shown that

(βt|βt+1, V,W, y
t)

is normally distributed with mean

(G′tW
−1Gt + C−1

t )−1(G′tW
−1βt+1 + C−1

t mt)

and variance (G′tW
−1Gt + C−1

t )−1.

Sampling from π(β|yn) can be performed by

• Sampling βn from N(mn, Cn) and then

• Sampling βt from (βt|βt+1, V,W, y
t), for t = n− 1, . . . , 1.

The above scheme is known as the forward filtering, backward sampling (FFBS) algorithm (Carter
and Kohn, 1994 and Frühwirth-Schnatter, 1994).

Sampling from π(V,W |yn, β)
Assume that

φ = V −1 ∼ Gamma(nσ/2, nσSσ/2)
Φ = W−1 ∼ Wishart(nW /2, nWSW /2)

Full conditionals

π(φ|β,Φ) ∝
n∏
t=1

fN (yt;F ′tβt, φ
−1) fG(φ;nσ/2, nσSσ/2)

∝ fG(φ;n∗σ/2, n
∗
σS
∗
σ/2)

π(Φ|β, φ) ∝
n∏
t=2

fN (βt;Gtβt−1,Φ−1) fW (Φ;nW /2, nWSW /2)

∝ fW (Φ;n∗W /2, n
∗
WS
∗
W /2)

where n∗σ = nσ + n, n∗W = nW + n− 1,

n∗σS
∗
σ = nσSσ + σ(yt − F ′tβt)2

n∗WS
∗
W = nWSW + Σnt=2(βt −Gtβt−1)(βt −Gtβt−1)′
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Gibbs sampler for (β, V,W )

• Sample V −1 from its full conditional

fG(φ;n∗σ/2, n
∗
σS
∗
σ/2)

• Sample W−1 from its full conditional

fW (Φ;n∗W /2, n
∗
WS
∗
W /2)

• Sample β from its full conditional
π(β|yn, V,W )

by the FFBS algorithm.

Likelihood for (V,W )
It is easy to see that

p(yn|V,W ) =
n∏
t=1

fN (yt|ft, Qt)

which is the integrated likelihood of (V,W ).

Jointly sampling (β, V,W )
(β, V,W ) can be sampled jointly by

• Sampling (V,W ) from its marginal posterior

π(V,W |yn) ∝ l(V,W |yn)π(V,W )

by a rejection or Metropolis-Hastings step;

• Sampling β from its full conditional
π(β|yn, V,W )

by the FFBS algorithm.

Jointly sampling (β, V,W ) avoids MCMC convergence problems associated with the posterior corre-
lation between model parameters (Gamerman and Moreira, 2002).

Example iii. Comparing sampling schemes
Based on Gamerman, Reis and Salazar (2006) Comparison of sampling schemes for dynamic linear models. International

Statistical Review, 74, 203-214.

First order DLM with V = 1

yt = βt + εt , εt ∼ N(0, 1)
βt = βt−1 + ωt , ωt ∼ N(0,W ),

with (n,W ) ∈ {(100, .01), (100, .5), (1000, .01), (1000, .5)}.

400 runs: 100 replications per combination.

Priors: β1 ∼ N(0, 10) and V and W have inverse Gammas with means set at true values and
coefficients of variation set at 10.

Posterior inference: based on 20,000 MCMC draws.
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Schemes
Scheme I: Sampling β1, . . . , βn, V and W from their conditionals.
Scheme II: Sampling β, V and W from their conditionals.
Scheme III: Jointly sampling (β, V,W ).

Scheme n=100 n=1000
II 1.7 1.9
III 1.9 7.2

Computing times relative to scheme I. For instance, when n = 100 it takes almost 2 times as much to
run scheme III.

Scheme
W n I II III

0.01 1000 242 8938 2983
0.01 100 3283 13685 12263
0.50 1000 409 3043 963
0.50 100 1694 3404 923

Sample averages (based on the 100 replications) of effective sample size neff based on V .

Example iv. Spatial dynamic factor model
Based on Lopes, Salazar and Gamerman (2008) Spatial Dynamic Factor Models. Bayesian Analysis, 3, 759-792.

Let us consider a simple version of their model

yt|ft, θ ∼ N(βft,Σ) (7)
ft|ft−1, θ ∼ N(Γft−1,Λ) (8)

where θ = (β,Σ,Γ,Λ),

yt = (y1t, . . . , yNt)′ is the N -dimensional vector of observations (locations s1, . . . , sN and times t =
1, . . . , T ),

ft is an m-dimensional vector of common factors, for m < N .

β = (β(1), . . . , β(m)) is the N ×m matrix of factor loadings.

Spatial loadings
The jth column of β, denoted by β(j) = (β(j)(s1), . . . , β(j)(sN ))′, for j = 1, . . . ,m, is modeled as a

conditionally independent, distance-based Gaussian random field (GRF), i.e.

β(j) ∼ GRF (τ2
j ρφj

(·)) ≡ N(0, τ2
j Rφj

), (9)

where the (l, k)-element of Rφj
is given by rlk = ρφj

(|sl − sk|), l, k = 1, . . . , N , for suitably defined
correlation functions ρφj

(·), j = 1, . . . ,m.

Matérn spatial aucorrelation function

ρφ(d) = 21−φ2Γ(φ2)−1(d/φ1)φ2Kφ2(d/φ1)

where Kφ2(·) is the modified Bessel function of the second kind and of order φ2.

Key references on spatial statistics are Cressie (1993) and Stein (1999).
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Forecasting
One is usually interested in learning about the h-steps ahead predictive density p(yT+h|y), i.e.

p(yT+h|y) =
∫
p(yT+h|fT+h, θ)p(fT+h|fT , θ)p(fT , θ|y)dfT+hdfT dθ (10)

where

(yT+h|fT+h, θ) ∼ N(βfT+h,Σ)
(fT+h|fT , θ) ∼ N(µh, Vh)

and

µh = ΓhfT and Vh =
h∑
k=1

Γk−1Λ(Γk−1)′

for h > 0.

p(yT+h|y) can be easily approximated by Monte Carlo integration.

Sampling the common factors
Joint distribution p(F |y) =

∏T−1
t=0 p(ft|ft+1, Dt)p(fT |DT ), where Dt = {y1, . . . , yt}, t = 1, . . . , T and

D0 represents the initial information.

Forward filtering: Starting with ft−1|Dt−1 ∼ N(mt−1, Ct−1), it can be shown that

ft|Dt ∼ N(mt, Ct)

where mt = at+At(yt− ỹt), Ct = Rt−AtQtA′t, at = Γmt−1, Rl = ΓCt−1Γ′+Λ, ỹt = βat, Qt = βRtβ
′+Σ

and At = Rtβ
′Q−1

t , for t = 1, . . . , T .

Backward sampling: fT is sampled from p(fT |DT ). For t ≤ T −1, ft is sampled from p(ft|ft+1, Dt) =
fN (ft; ãt, C̃t), where ãt = mt +Bt(ft+1 − at+1), C̃t = Ct −BtRt+1B

′
t and Bt = CtΓ′R−1

t+1.
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Spatial factor loadings

−4 −2 0 2 4

ESP

SAL

MCK

OXF DCP

CKT

LYK

PNF

QAK

CDR

VPI

MKG

PAR

KEF

SHN

PED

PSU

ARE

BEL

CTH

WSP

CAT

+SPD

+BWR

−4 −2 0 2 4

ESP

SAL

MCK

OXF DCP

CKT

LYK

PNF

QAK

CDR

VPI

MKG

PAR

KEF

SHN

PED

PSU

ARE

BEL

CTH

WSP

CAT

+SPD

+BWR

0 2 4 6

ESP

SAL

MCK

OXF DCP

CKT

LYK

PNF

QAK

CDR

VPI

MKG

PAR

KEF

SHN

PED

PSU

ARE

BEL

CTH

WSP

CAT

+SPD

+BWR

1.5 2 2.5 3 3.5

ESP

SAL

MCK

OXF DCP

CKT

LYK

PNF

QAK

CDR

VPI

MKG

PAR

KEF

SHN

PED

PSU

ARE

BEL

CTH

WSP

CAT

+SPD

+BWR

1.2 1.4 1.6 1.8 2 2.2 2.4

ESP

SAL

MCK

OXF DCP

CKT

LYK

PNF

QAK

CDR

VPI

MKG

PAR

KEF

SHN

PED

PSU

ARE

BEL

CTH

WSP

CAT

+SPD

+BWR

Dynamic factors

1998 1999 2000 2001 2002 2003 2004

−
0.
3

−
0.
2

−
0.
1

0.
0

0.
1

0.
2

0.
3

1998 1999 2000 2001 2002 2003 2004

−
0.
2

−
0.
1

0.
0

0.
1

0.
2

1998 1999 2000 2001 2002 2003 2004

−
0.
2

−
0.
1

0.
0

0.
1

0.
2

1998 1999 2000 2001 2002 2003 2004

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1998 1999 2000 2001 2002 2003 2004

−
0.
6

−
0.
2

0.
0

0.
2

0.
4

0.
6

Spatial interpolation (stations SPD and BWR)

S
O

2

0
5

10
15

20
25

30

2001−1 2001−26 2002−1 2002−26 2003−1 2003−26 2004−1

Observed
Post. Mean
95% C.I.

S
O

2

0
10

20
30

40
50

60

2001−1 2001−26 2002−1 2002−26 2003−1 2003−26 2004−1

Observed
Post. Mean
95% C.I.

54



Forecasting
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LECTURE 6

NONNORMAL AND

NONLINEAR DYNAMIC

MODELS

Generalized linear models
An extension of regression models still preserving linearity and influence of covariates through the

mean response is given by generalized linear models.

The observations remain independent but now have distributions in the exponential family.

The model is

f(yi|θi) = a(yi) exp{yiθi + b(θi)}
E(yi|θi) = −b′(θi) = µi

g(µi) = ηi

ηi = xi1β1 + . . .+ xidβd

for i = 1, . . . , n, where the link function g is differentiable.

Binomial regression
Consider yi|πi ∼ bin(ni, πi), i = 1, . . . , n, and assume that the probabilities πi are determined by the

values of a variable x.

The πi lie between 0 and 1 and can be associated to a distribution function.

One possibility is the normal distribution and in this case

πi = Φ(α+ βxi), i = 1, . . . , n

where Φ is the distribution function of the N(0,1) distribution and α and β are constants.

The binomial distribution belongs to the exponential family and the link function g1 = Φ−1 is
differentiable.

The structure of a generalized linear model is completed with the linear predictor

ηi = α+ βxi, i = 1, . . . , n.

Other possible links include the logistic and complementary log-log transformations

g2(πi) = logit(πi) = log
(

πi
1− πi

)
g3(πi) = log

{
log
(

1
1− πi

)}
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associated respectively to the logistic and extreme-value distributions.

Note that g1, g2 and g3 take numbers from [0,1] to the real line.

Example i. O-ring data
Christensen (1997) analyzed binary observations of O-ring failures yi (1=failure) in relation to tem-

perature ti (Fahrenheit).

y = (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0)

t = (53, 57, 58, 63, 66, 67, 67, 67, 68, 69, 70, 70, 70, 70, 72, 73, 75, 75, 76, 76, 78, 79, 81)

● ● ● ●

● ●●● ● ● ●●

●●

● ● ●

●

●● ● ● ●

55 60 65 70 75 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Temperature (in Fahrenheit)

O
−

R
in

g 
fa

ilu
re

• Bernoulli model: yi|πi ∼ Bern(πi), for i = 1, . . . , n = 23.

• Link function: g(πi) = α+ β(ti − t̄)

• Prior: β ∼ N(0, Vβ)

• Other constants: α = −1.26 and t̄ = 69.6.

• Links

Logit : g1(π) = log
(

π

1− π

)
Probit : g2(π) = Φ(π)

Log-log : g3(π) = log
{

log
(

1
1− π

)}

• Prior variances

– Vβ = 1.0

– Vβ = 10.0

– Vβ = 100.0

Posterior model probability (PMP)
Assume that Pr(Mi) = 1/9 for all i.
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Vβ Link PMP
1 Log-log 0.361
1 Logit 0.311

10 Log-log 0.115
10 Logit 0.101

100 Log-log 0.037
100 Logit 0.033

1 Probit 0.030
10 Probit 0.010

100 Probit 0.003

Pr(y = 1|t)
Bayesian model averaging (black), logit models (red), probit models (green) and complementary

log-log models (blue).
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Dynamic generalized linear model
Dynamic generalized models were introduced by West, Harrison and Migon (1985).

The model is

f(yt|θt) = a(yt) exp{ytθt + b(θt)}
E(yt|θt) = µt

g(µt) = F ′tβt

βt = Gtβt+1 + wt

with wt ∼ N(0,Wt) and the link function g is again differentiable.

The model is completed with a prior β1 ∼ N(a,R).

It combines the prior specification of normal dynamic models with the observational structure of
generalized linear models.

Dynamic binomial and Poisson regressions
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Dynamic logistic regression with a series of binomial observations yt with respective success prob-
abilities πt dynamically related to explanatory variables x = (x1, . . . , xd)′ through the logistic link
logit(πt) = x′tβt.

Poisson counts with means λt dynamically related through multiplicative perturbations λt = λt−1w
∗
t .

After a logarithmic transformation, one obtains log λt = log λt−1 + wt with wt = log w∗t .

Posterior inference via MCMC
Assuming that the variances of the system disturbances are constant, the model parameters are given

by the state parameters β = (β1, . . . , βn)′ and the system variance W = Φ−1.

The model is specified with the observation and system equations and completed with the independent
prior distributions β1 ∼ N(a,R) and Φ ∼W (nW /2, nWSW /2).

The posterior distribution is given by

π(β,Φ) ∝
n∏
t=1

f(yt|βt)
n∏
i=2

p(βt|βt−1,Φ) p(β1)p(Φ) .

Full conditional for Φ

πΦ(Φ) ∝
n∏
t=2

p(βt|βt−1,Φ) p(Φ)

∝
n∏
t=2

|Φ|1/2 exp
{
−1

2
tr[(βt −Gtβt−1)(βt −Gtβt−1)′Φ]

}
× |Φ|[nW−(p+1)]/2 exp

{
−1

2
tr(nWSWΦ)

}
∝ |Φ|[n

∗
W−(d+1)]/2 exp

{
−1

2
tr [(n∗WS

∗
W ) Φ]

}
.

that is the density of the W (n∗W /2, n
∗
WS
∗
W /2) distribution with

n∗W = nW + n− 1

n∗WS
∗
W = nWSW +

n∑
t=2

(βt −Gtβt−1)(βt −Gtβt−1)′

Full conditionals for β
For block β

πβ(β) ∝
nY
t=1

f(yt|βt)
nY
t=2

p(βt|βt−1,Φ) p(β1)

∝ exp

(
nX
t=1

[ytθt + b(θt)]−
1

2

nX
t=1

(βt −Gtβt−1)′Φ(βt −Gtβt−1)

)
.
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For block βt, t = 2, . . . , n− 1

πt(βt) ∝ f(yt|βt) p(βt|βt−1,Φ)p(βt+1|βt,Φ)

∝ exp {ytθt + b(θt)} exp


−1

2

ˆ
(βt −Gtβt−1)′Φ(βt −Gtβt−1)

+ (βt+1 −Gt+1βt)
′Φ(βt+1 −Gt+1βt) ]} .

Similar results follow for blocks β1 and βn.

Sampling schemes
Knorr-Held (1997) suggested the use of independence chains with prior proposals.

Shephard and Pitt (1997) used independence chains with proposals based on both prior and a normal
approximation to the likelihood.

Ravines (2005) used independence normal proposals for the block β with moments given by the
approximation of West, Harrison and Migon (1985).

Singh and Roberts (1982) and Fahrmeir and Wagenpfeil (1997) extended to the dynamic setting the
method of mode evaluation for static regression.

An alternative previously discussed is the reparametrization in terms of the system disturbances wt
(Gamerman, 1998)

Example ii. Generalized Spatial Dynamic Factor Model
Let {s1, . . . , sN} be the N spatial locations in the region of study S, where S ⊂ R2 and yt =

(yt1, . . . , ytN ) be the N -dimensional vector of measurements at time t, for t = 1, . . . , T .

The GSDFM of Lopes, Gamerman and Salazar (2009) is a hierarchical model with first level mea-
surement equation for conditionally independent univariate observations yti in the one-parameter natural
exponential family, i.e.

p(yti | ηti, ψ) = exp{ψ[ytiηti − b(ηti)] + c(yti, ψ)}

where ηti is the natural parameter and ψ is a dispersion parameter.
The mean and variance of yti are, respectively, b′(ηti) and b′′(ηti)/ψ.

The natural parameter ηti is deterministically defined by a linear combination of spatial and temporal
components through the link function υ, i.e. ηti = υ(θti).

The GSDFM is then completed by specifying the spatio-temporal dependence of the θtis.

Temporal and spatial variations
The temporal behavior of yt is modeled by two levels of hierarchy

θt = µt + βft

ft | ft−1 ∼ N(Γft−1,Λ)

where µt is the mean level of the space-time process, ft contains m common factors, f0 ∼ N(m0, C0) and
Λ is the evolutional variance.
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The spatial variation of yt is modeled via the columns of the factor loadings matrix β, i.e. βj =
(β1j , . . . , βNj)′, for j = 1, . . . ,m, is modeled as

βj ∼ N(κj , τ2
j Rj)

where κj is a N -dimensional mean vector. The (l, k)-element of Rj = R(φj) is given by rlk = ρφj
(|sl−sk|),

l, k = 1, . . . , N , for suitably defined correlation functions ρφj (·).

Example ii. Modeling rainfall in Minas Gerais, Brazil
T = 365 daily occurrences of rain in 2005 measured at 17 meteorological stations in the state of Minas

Gerais, Brazil.
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Mean probability maps for two typical days in 2005 (January 6th and March 2nd) for gauged stations
(dot) and ungauged stations (+).
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Example iii: Nonlinear model
Let yt, for t = 1, . . . , n, be generated by the following nonlinear dynamic model

(yt|xt, ψ) ∼ N(x2
t/20, σ2)

(xt|xt−1, ψ) ∼ N(G′xt−1
θ, τ2)

x0 ∼ N(m0, C0)

where G′xt
=
(
xt, xt/(1 + x2

t ), cos(1.2t)
)
, θ = (α, β, γ)′ and ψ = (ξ′, σ2, τ2).

Prior distribution

σ2 ∼ IG(n0/2, n0σ
2
0/2)

θ|τ2 ∼ N(θ0, τ
2V0)

τ2 ∼ IG(ν0/2, ν0τ
2
0 /2)

Sampling (ψ|x0:n, y
n)

Let yn = (y1, . . . , yn) and x0:n = (x0, . . . , xn)′.

It follows that

(θ, τ2|x0:n) ∼ N(θ1, τ
2V1)IG(ν1/2, ν1τ

2
1 /2)

(σ2|yn, xn) ∼ IG(n1/2, n1σ
2
1/2)

where ν1 = ν0 + n, n1 = n0 + n

Z = (Gx0 , . . . , Gxn−1)′

V −1
1 = V −1

0 + Z ′Z

V −1
1 θ1 = V −1

0 θ0 + Z ′x1:n

ν1τ
2
1 = ν0τ

2
0 + (y − Zθ1)′(y − Zθ1) + (θ1 − θ0)′V −1

0 (θ1 − θ0)

n1σ
2
1 = n0σ

2
0 +

n∑
t=1

(yt − x2
t/20)2
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Sampling x1, . . . , xn

Let x−t = (x0, . . . , xt−1, xt+1, . . . , xn), for t = 1, . . . , n− 1, x−0 = xn, x−n = x0:(n−1) and y0 = ∅.

For t = 0
p(x0|x−0, y0, ψ) ∝ fN (x0;m0, C0)fN (x1;G′x0

θ, τ2)

For t = 1, . . . , n− 1

p(xt|x−t, yt, ψ) ∝ fN (yt;x
2
t/20, σ2)fN (xt;G

′
xt−1θ, τ

2)fN (xt+1;G′xt
θ, τ2)

For t = n
p(xn|x−n, yn, ψ) ∝ fN (yn;x2

n/20, σ2)fN (xn;G′xn−1
θ, τ2)

Metropolis-Hastings algorithm
A simple random walk Metropolis algorithm with tuning variance v2

x would work as follows. For
t = 0, . . . , n

1. Current state: x(j)
t

2. Sample x∗t from N(x(j)
t , v2

x)

3. Compute the acceptance probability

α = min

(
1,

p(x∗t |x−t, yt, ψ)

p(x
(j)
t |x−t, yt, ψ)

)

4. New state:

x
(j+1)
t =

{
x∗t w. p. α

x
(j)
t w. p. 1− α

Simulation set up
We simulated n = 100 observations based on θ = (0.5, 25, 8)′, σ2 = 1, τ2 = 10 and x0 = 0.1.
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Prior hyperparameters

• x0 ∼ N(m0, C0)
m0 = 0.0 and C0 = 10

• θ|τ2 ∼ N(θ0, τ
2V0)

θ0 = (0.5, 25, 8)′ and V0 = diag(0.0025, 0.1, 0.04)

• τ2 ∼ IG(ν0/2, ν0τ
2
0 /2)

ν0 = 6 and τ2
0 = 20/3

such that E(τ2) =
√
V (τ2) = 10.

• σ2 ∼ IG(n0/2, n0σ
2
0)

n0 = 6 and σ2
0 = 2/3

such that E(σ2) =
√
V (σ2) = 1.

MCMC setup

• Metropolis-Hastings tuning parameter
v2
x = (0.1)2

• Burn-in period, step and MCMC sample size

M0 = 1, 000 L = 20 M = 950 ⇒ 20, 000 draws

• Initial values

– θ = (0.5, 25, 8)′

– τ2 = 10

– σ2 = 1

– x0:n = xtrue
0:n
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LECTURE 7

STOCHASTIC VOLATILITY

MODELS

Stochastic volatility model
The canonical stochastic volatility model (SV-AR(1), hereafter), is

yt = eht/2εt

ht = µ+ φht−1 + τηt

where εt and ηt are N(0, 1) shocks with E(εtηt+h) = 0 for all h and E(εtεt+l) = E(ηtηt+l) = 0 for all
l 6= 0.

τ2: volatility of the log-volatility.

|φ| < 1 then ht is a stationary process.

Let yn = (y1, . . . , yn)′, hn = (h1, . . . , hn)′ and ha:b = (ha, . . . , hb)′.

Prior information
Uncertainty about the initial log volatility is h0 ∼ N (m0, C0).

Let θ = (µ, φ)′, then the prior distribution of (θ, τ2) is normal-inverse gamma, i.e. (θ, τ2) ∼
NIG(θ0, V0, ν0, s

2
0):

θ|τ2 ∼ N(θ0, τ
2V0)

τ2 ∼ IG(ν0/2, ν0s
2
0/2)

For example, if ν0 = 10 and s2
0 = 0.018 then

E(τ2) =
ν0s

2
0/2

ν0/2− 1
= 0.0225

V ar(τ2) =
(ν0s

2
0/2)2

(ν0/2− 1)2(ν0/2− 2)
= (0.013)2

Hyperparameters: m0, C0, θ0, V0, ν0 and s2
0.

Posterior inference
The SV-AR(1) is a dynamic model and posterior inference via MCMC for the the latent log-volatility

states ht can be performed in at least two ways.

Let h−t = (h0:(t−1), h(t+1):n), for t = 1, . . . , n− 1 and h−n = h1:(n−1).

• Individual moves for ht
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– (θ, τ2|hn, yn)
– (ht|h−t, θ, τ2, yn), for t = 1, . . . , n

• Block move for hn

– (θ, τ2|hn, yn)
– (hn|θ, τ2, yn)

Sampling (θ, τ2|hn, yn)
Conditional on h0:n, the posterior distribution of (θ, τ2) is also normal-inverse gamma:

(θ, τ2|yn, h0:n) ∼ NIG(θ1, V1, ν1, s
2
1)

where X = (1n, h0:(n−1)), ν1 = ν0 + n

V −1
1 = V −1

0 +X ′X

V −1
1 θ1 = V −1

0 θ0 +X ′h1:n

ν1s
2
1 = ν0s

2
0 + (y −Xθ1)′(y −Xθ1) + (θ1 − θ0)′V −1

0 (θ1 − θ0)

Sampling (h0|θ, τ2, h1)
Combining

h0 ∼ N(m0, C0)

and
h1|h0 ∼ N(µ+ φh0, τ

2)

leads to (by Bayes’ theorem)
h0|h1 ∼ N(m1, C1)

where

C−1
1 m1 = C−1

0 m0 + φτ−2(h1 − µ)
C−1

1 = C−1
0 + φ2τ−2

Conditional prior distribution of ht
Given ht−1, θ and τ2, it can be shown that, for t = 1, . . . , n− 1,(

ht
ht+1

)
∼ N

{(
µ+ φht−1

(1 + φ)µ+ φ2ht−1

)
, τ2

(
1 φ
φ (1 + φ2)

)}
so E(ht|ht−1, ht+1, θ, τ

2) and V (ht|ht−1, ht+1, θ, τ
2) are

µt =
(

1− φ
1 + φ2

)
µ+

(
φ

1 + φ2

)
(ht−1 + ht+1)

ν2 = τ2(1 + φ2)−1

respectively. Therefore,

(ht|ht−1, ht+1, θ, τ
2) ∼ N(µt, ν2) t = 1, . . . , n− 1

(hn|hn−1, θ, τ
2) ∼ N(µn, τ2)

where µn = µ+ φhn−1.
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Sampling ht via random walk Metropolis
Let ν2

t = ν2 for t = 1, . . . , n− 1 and ν2
n = τ2, then

p(ht|h−t, yn, θ, τ2) = fN (ht;µt, ν2
t )fN (yt; 0, eht)

for t = 1, . . . , n.

A simple random walk Metropolis algorithm with tuning variance v2
h would work as follows:

For t = 1, . . . , n

1. Current state: h(j)
t

2. Sample h∗t from N(h(j)
t , v2

h)

3. Compute the acceptance probability

α = min

(
1,

fN (h∗t ;µt, ν
2
t )fN (yt; 0, eh

∗
t )

fN (h
(j)
t ;µt, ν2

t )fN (yt; 0, eh
(j)
t )

)

4. New state:

h
(j+1)
t =

{
h∗t w. p. α

h
(j)
t w. p. 1− α

Example i. Simulated data

• Simulation setup

– n = 500

– h0 = 0.0

– µ = −0.00645

– φ = 0.99

– τ2 = 0.152

• Prior distribution

– µ ∼ N(0, 100)

– φ ∼ N(0, 100)

– τ2 ∼ IG(10/2, 0.28125/2)

– h0 ∼ N(0, 100)

• MCMC setup

– M0 = 1, 000

– M = 1, 000
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Time series of yt and exp{ht}
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Sampling ht via independent Metropolis-Hastings
The full conditional distribution of ht is given by

p(ht|h−t, yn, θ, τ2) = p(ht|ht−1, ht+1, θ, τ
2)p(yt|ht)

= fN (ht;µt, ν2)fN (yt; 0, eht).

Kim, Shephard and Chib (1998) explored the fact that

log p(yt|ht) = const− 1
2
ht −

y2
t

2
exp(−ht)
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and that a Taylor expansion of exp(−ht) around µt leads to

log p(yt|ht) ≈ const− 1
2
ht −

y2
t

2
(
e−µt − (ht − µt)e−µt

)
g(ht) = exp

{
−1

2
ht(1− y2

t e
−µt)

}

Proposal distribution
Let ν2

t = ν2 for t = 1, . . . , n− 1 and ν2
n = τ2.

Then, by combining fN (ht;µt, ν2
t ) and g(ht), for t = 1, . . . , n, leads to the following proposal distri-

bution:
q(ht|h−t, yn, θ, τ2) ≡ N

(
ht; µ̃t, ν2

t

)
where µ̃t = µt + 0.5ν2

t (y2
t e
−µt − 1).

Metropolis-Hastings algorithm
For t = 1, . . . , n

1. Current state: h(j)
t

2. Sample h∗t from N(µ̃t, ν2
t )

3. Compute the acceptance probability

α = min

(
1,

fN (h∗t ;µt, ν
2
t )fN (yt; 0, eh

∗
t )

fN (h
(j)
t ;µt, ν2

t )fN (yt; 0, eh
(j)
t )
× fN (h

(j)
t ; µ̃t, ν

2
t )

fN (h∗t ; µ̃t, ν
2
t )

)

4. New state:

h
(j+1)
t =

{
h∗t w. p. α

h
(j)
t w. p. 1− α
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Sampling hn - normal approximation and FFBS
Let y∗t = log y2

t and εt = log ε2
t .

The SV-AR(1) is a DLM with nonnormal observational errors, i.e.

y∗t = ht + εt

ht = µ+ φht−1 + τηt

where ηt ∼ N(0, 1).

The distribution of εt is logχ2
1, where

E(εt) = −1.27

V (εt) =
π2

2
= 4.935

Normal approximation
Let εt be approximated by N(α, σ2), zt = y∗t − α, α = −1.27 and σ2 = π2/2.

Then

zt = ht + σvt

ht = µ+ φht−1 + τηt

is a simple DLM where vt and ηt are N(0, 1).

Sampling from
p(hn|θ, τ2, σ2, zn)

can be performed by the FFBS algorithm.
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logχ2
1 and N(−1.27, π2/2)
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Sampling hn - mixtures of normals and FFBS
The logχ2

1 distribution can be approximated by

7∑
i=1

πiN(µi, ω2
i )

where

i πi µi ω2
i

1 0.00730 -11.40039 5.79596
2 0.10556 -5.24321 2.61369
3 0.00002 -9.83726 5.17950
4 0.04395 1.50746 0.16735
5 0.34001 -0.65098 0.64009
6 0.24566 0.52478 0.34023
7 0.25750 -2.35859 1.26261

logχ2
1 and

∑7
i=1 πiN(µi, ω2

i )
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Mixture of normals
Using an argument from the Bayesian analysis of mixture of normal, let z1, . . . , zn be unobservable

(latent) indicator variables such that zt ∈ {1, . . . , 7} and Pr(zt = i) = πi, for i = 1, . . . , 7.

Therefore, conditional on the z’s, yt is transformed into log y2
t ,

log y2
t = ht + log ε2

t

ht = µ+ φht−1 + τηηt

which can be rewritten as a normal DLM:

log y2
t = ht + vt vt ∼ N(µzt

, ω2
zt

)

ht = µ+ φht−1 + wt wt ∼ N(0, τ2
η )

where µzt
and ω2

zt
are provided in the previous table.

Then hn is jointly sampled by using the the FFBS algorithm.

Parameters
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Example ii. LSTAR-SV models (Lopes and Salazar, 2006)
Lopes and Salazar (2006) adapt the LSTAR structure to model time-varying variances, SV-LSTAR(k):

yt | ht ∼ N(0, eht)
ht ∼ N(x′tθ1 + π(γ, c, ht−d)x′tθ2, σ

2)

with x′t = (1, ht−1, . . . , ht−k) and θi = (θ0i, θ1i, . . . , θki), for i = 1, 2. The logistic transition function is

π(γ, c, ht−d) = 1/(1 + e−γ(ht−d−c)).

Particular case: k = d = 1

E(ht|ht−1, c, θ) =

„
θ10 +

θ20

1 + e−γ(ht−1−c)

«
+

„
θ11 +

θ21

1 + e−γ(ht−1−c)

«
ht−1
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S&P500 stock index
MCMC: Conditional on hn, sampling θ1, θ2, c, γ and σ2 are relatively easy. To sample the compo-

nents of hn, we use the single parameter move introduced by Jacquier, Polson and Rossi (1994).

North American Standard and Poors 500 index, daily observed from January 7th, 1986 to December
31st, 1997. A total of 3127 observations. We entertained six models for the stochastic volatility:

• M1 : AR(1)

• M2 : AR(2)

• M3 : LSTAR(1) with d = 1

• M4 : LSTAR(1) with d = 2

• M5 : LSTAR(2) with d = 1

• M6 : LSTAR(2) with d = 2

Model comparison

Models AIC BIC DIC
M1 : AR(1) 12795 31697 7223.1
M2 : AR(2) 12624 31532 7149.2
M3 : LSTAR(1, d = 1) 12240 31165 7101.1
M4 : LSTAR(1, d = 2) 12244 31170 7150.3
M5 : LSTAR(2, d = 1) 12569 31507 7102.4
M6 : LSTAR(2, d = 2) 12732 31670 7159.4

AIC: Akaike’s information criteria, BIC: Schwarz’s information criteria, and DIC: Deviance informa-
tion criteria.

Posterior inference

Example iii. Factor SV models (Lopes and Carvalho, 2007)
Factor stochastic volatility models appear in Pitt and Shephard (1999), Aguilar and West (2000) and

Lopes and Migon (2002) and Lopes and Carvalho (2007), to name just a few. The model is

(yt|ft, βt,Σt) ∼ N(βtft; Σt)
(ft|Ht) ∼ N(0;Ht)

with Σt = diag(σ2
1t, · · · , σ2

pt) and Ht = diag(h1t, . . . , hqt). Let ηt = log(Σt) and λt = log(Ht). Then

(ηt|ηt−1, µ, ρ, V ) ∼ N(µ+ ρηt−1, V )
(λt|λt−1, α, φ, U) ∼ N(α+ φλt−1, U)

Pitt and Shephard (1999): diagonal V and U and βt = β.

Aguilar and West (2000): nondiagonal V and U and βt = β.

Lopes and Migon (2002): diagonal V and U and βt.

Lopes and Carvalho (2007): diagonal V and U , βt and Markov switching for λt.
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Parameter M1 M2 M3 M4 M5 M6

θ01 -0.060 -0.066 0.292 -0.154 -4.842 -6.081
(0.184) (0.241) (0.579) (0.126) (0.802) (1.282)

θ11 0.904 0.184 0.306 0.572 -0.713 -0.940
(0.185) (0.242) (0.263) (0.135) (0.306) (0.699)

θ21 - 0.715 - - -1.018 -1.099
(0.248) (0.118) (0.336)

θ02 - - -0.685 0.133 4.783 6.036
(0.593) (0.092) (0.801) (1.283)

θ12 - - 0.794 0.237 0.913 1.091
(0.257) (0.086) (0.314) (0.706)

θ22 - - - - 1.748 1.892
(0.114) (0.356)

γ - - 118.18 163.54 132.60 189.51
(16.924) (23.912) (10.147) (0.000)

c - - -1.589 0.022 -2.060 -2.125
(0.022) (0.280) (0.046) (0.000)

τ2 0.135 0.234 0.316 0.552 0.214 0.166
(0.020) (0.044) (0.066) (0.218) (0.035) (0.026)

Daily exchange rate returns
To illustrate the time-varying loadings extension we analyze the returns on weekday closing spot

prices for six currencies relative to the US dollar (as in Aguilar and West, 2000):

• German Mark (DEM)

• British Pound (GBP)

• Japanese Yen (JPY)

• French Franc (FRF)

• Canadian Dollar (CAD)

• Spanish Peseta (ESP)

To keep the analysis comparable with Aguilar and West (2000) we only use the rst 1000 observations
ranging from 1/1/1992 to 10/31/1995.

Time varying factor loadings
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Time varying variance decomposition


                                         

                                                                                                                
                               



                                                                                                                                                                                                                                                                                                                                                                                                           
                                                                                                 

                                                                                                                 
                                                        

                      
         
          

                                                                      
     
                      
                               
                                                                

             
               
                     
                      
                 
            
                                                                

          
                             
     
               
                
                  
              
            
         
                    
   
                                     
                  
         
                                               

                                
    
                                  
                 
                            
                                
    
                            
            
           
                   
       
                         
                         
     
       
            

                                                        
      
    
                                                    

        
                       
           
  
  
  
  
                   
                             
                    
   
             
                     
                
                                
                         
                                     
     
                                      

                  
                             
                     
        
    
                           
      
                                                     

             
            
                  
         
   
                       
                                 
                  
  
                         
             
   
 
  
                              
               
         
                     
                      
         
                     
    
  
                              

                                                                                                                                                                                                                                                                                                                                                                                                                                     

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
                                                                                                                                                                               

                                                                                       
                                        

                               
                     
                                                                                                                                                                                               

              
                                                  

                                       
                              
         
                
                                                

                                 
            
            
                                                                                                  

          
                                                                                  

         
             

                                                                                                                                                                                                                                                                                                                                                                                                                                              

      
                                           

                   
   
    
                                               

              
                       
             
   
                                                                        

        
    
   
         
          
                
                                                     

        
      
                                 
                                                            

                                 
                  
        
     
                           
                                                         

    
                                                                                                           

                 
         
                            
   
  
  
                  
           
                         
                 
                 
         
                             
     
                           

                   
               
                                        

                        
    
                                
   
                                                         

                           
                                                                                                                                                                                 

                                              
                     
                        
                                                    

        
                                                                       

                                     
    
              
                                                                                                          

                                                                                 
                

                
 

  

 
    
                      

 

  

 
  
                                                        

                            
                     
  
          
      
                                                   

   

  

 
  
                 
  
 
     
                        
 

 
 
 
          
 
 
 

 
 
 
   
    
  
   
     
         
  
 
                   
    
   
    
   
 
  
  
                     
                   
                                                                                      

  
 
  
                                 

        
                                                       

                 
 
 
 
   
           
     
 

 
 

 
   
     
      
 
    
       
     
         
  
    
 
  
     
 
  
    
      
                                              

                     
 
 
 

 
  
  
    
   
   
 

 
 



             
 
 

  

 
                              

 
 

  

 
                                                     

                        
                               

  
                                                                

       
  
 

  

 
                    
 
  
 
                         
  
 
 

 
 

 
       
  
 
 
 

 
 
 
       
  
      
         
 
  
 
               
  
  
    
 
      
 
              
       
                                                                              

                                   
   
 
  
 
                                   

                                                      
                             
  
 
 
           
  
 
    
 
 

 
 

 
              
 
 
           
             
 
  
    
 
       
 
                                                         

  
                         
  
 
 

 
  
         
  
 
 

 
 

                                                                                                                                                                                                                                                                                                                                                             
                                                                                                                                     

   
                                                                                                                      

                                                                                                                                  


                                                                                                                                            
                                        

                                                                                                 
                                                                                                                                                                                           

  
                                                                                                                   

                       

             
                                                

                                                                                      
                     
                                                                                                                                                              

                      
      
                                                         

                                  
                                                          

                                           
                               
                                                                                                   

   
   
                            
              
           
                                                   

                        
    
                   

                                           
                           
                                      

   
      
                             
              
            
 
 

     
 
 
 
 
  
    
        
     
  
       
      
 
     
  
           
                            
  
     
       
   
   
 
  
      
  
  
                          
 
  
  
        
 

 

 
 
 
  
   
 
  
      
 
 
 
 
  
                 
 
 
               
  
  
  
 
                      
 
 
  
 
             
               
         
 
 
    
        
           
 
 
  
       
 
  
    
 
 
  
    
  
 
 
  
  
     
 
 
 
        
   
   
         
        
  
  
          
         
     
   
       
                           
   
    
               
 
      
   
  
            
  
 
     
  
    
                                      

 
 
 
  
 
  
   
     
 
  
  
   
  
  
            
     
            
         
       
 
  
           
  
  
    
          
 
 
 
    
      
         
    
      
           
     
   
     
          
                    
        
       
                    



                              
         
                      
                                   

  
  
                               
                      
            
  
 
 

     
 
 
 
 
             
                   
 
 
                                             

 
          
  
  
  
 
   
 
 
                   
           
     
  
 
          
  
 

 

 
 
 
     
 
  
      
 
 
 
 
 
             
   
  
 
 
    
  
     
     
   
  
 
    
   
             
   
 
   
        
                          
  
 
 
        
        
     
   
 
 
        
  
 
      
 
 
      
  
 
 
          
 
 
    
                         
  
       
     
       
  
                       
      
                                   
  
 
         
          
  
 
  
 
                                                

  
  
 
 
 
 
           
  
 
  
 
                        
 
      
  
       
  
      
     
        
 
  
                
    
 
 
 
   
 
      
      
                        
  
                                     
             
 
                         
  

Importance of time-varying loadings
An interesting observation that highlights the importance of time-varying loadings in the context

of this example is the change in the explanatory power of factor 1, the European factor on the British
Pound.

The nal months of 1992 marks the withdrawal of Great Britain from the European Union exchange-
rate agreement (ERM), fact that is captured in our analysis by changes in the British loading in factor 1
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FSV FSV+MSSV
µ ρ v µ ρ v

IBOVESPA -0.202 0.980 0.040 -0.284 - 0.971 0.047
MEXBOL -0.440 0.959 0.065 -0.434 - 0.957 0.051
MERVAL -0.409 0.959 0.083 -0.508 - 0.947 0.068
IPSA -0.600 0.947 0.058 -0.765 - 0.932 0.071

α φ u α1 α2 φ u
Factor -0.305 0.971 0.067 -0.951 -0.588 0.912 0.090
E(λt) -10.517 -10.807 -6.682

and emphasized by the changes in the percentage of variation of the British Pound explained by factors
1 and 2.

If temporal changes on the factor loadings were not allowed, the only way the model could capture
this change in Great Britains monetary policy would be by a shock on the idiosyncratic variation of the
Pound, reducing, inturn, thepredictiveabilityof thelatentfactorstructure.

Latin american stock returns
We now illustrate the FSV+MSSV generalization in a extended version of the dataset in Lopes and

Migon (2002).

Returns on week-day closing spot prices in Latin American:

• Brazilian Indice Bovespa (IBOVESPA)

• Mexican Indice de Precios y Cotaziones (MEXBOL)

• Argentinean Indice Merval (MERVAL)

• Chilean Indice de Precios Selectivos de Acciones (IPSA).

The series are observed daily from January, 3rd 1994 to May, 26th 2005 (2974 observations), which
includes several international currency crises. These crises have directly impacted on Latin American
markets, generating higher levels of uncertainty and consequently higher levels of volatility.

Comparing FSV and FSV+MSSV models

Common factor volatilities
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Under the model with k = 2 the persistency parameter φ is likely to be smaller in line with conclusions
drawn in Carvalho and Lopes (2007).

The model with k = 2 estimates two unconditional means to the log-volatility process that correspond
to times of high and low risk in the market. More specifically, the posterior mean of the unconditional
standard deviation of the common factor in the FSV model is roughly the same as the one obtained for
the low volatility regime in the FSV+MSSV, however the factor is on a high volatility state around 6%
of the time, in which the unconditional standard deviation is about eight times higher.

This allows the volatilities to react “faster” once a regime switch is identified, which is highlighted
by the previous figure that compares FSV and FSV+MSSV common factor’s volatilities.
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LECTURE 8

SEQUENTIAL MONTE CARLO

METHODS

Nonnormal/nonlinear dynamic models
Most nonnormal and nonlinear dynamic models are defined by

• Observation equation
p(yt|xt, ψ)

• System or evolution equation
p(xt|xt−1, ψ)

• Initial distribution
p(x0|ψ)

The fixed parameters that drive the state space model, ψ, is kept known and omitted for now.

Evolution and updating
Let the information regarding xt−1 at time t− 1 be summarized by

p(xt−1|yt−1)

Then Evolution and updating are represented by

p(xt|yt−1) =
∫
p(xt|xt−1)p(xt−1|yt−1)dxt−1

and

p(xt|yt) ∝ p(yt|xt)p(xt|yt−1)

respectively.

These densities are usually unavailable in closed form.

The Bayesian boostrap filter
Gordon, Salmond and Smith’s (1993) seminal paper uses SIR ideas to obtain draws from p(xt|yt)

based on draws from p(xt−1|yt−1).

SIR: the goal is to draw from p(x) based on draws from q(x).

1. Draw x∗1, . . . , x
∗
N from q

2. Compute (unnormalized) weights ωi = p(x∗i )/q(x
∗
i )
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3. Draw x1, . . . , xM from {x∗1, . . . , x∗N} with weights {ω1, . . . , ωN}

Sampling from the prior: If
p(x) ∝ π(x)l(x)

where π(x) and l(x) are prior and likelihood, respectively, then a natural (but not necessarily good,
actually usually bad!) choice is

q(x) = π(x).

Under this choice, unnormalized weights are likelihoods, i.e.

ω(x) ∝ l(x).

Example i. Revisiting the 1st order DLM
For illustration, let us reconsider the local level model where closed form solutions are promptly

available. The model is

yt|xt ∼ N(xt, σ2)
xt|xt−1 ∼ N(xt−1, τ

2)

• Posterior at t = 0: (x0|y0) ∼ N(m0, C0)

• Prior at t = 1: (x1|y0) ∼ N(m0, C0 + τ2)

• Likelihood at time t: l(x1; y1) ∝ fN (x1; y1, σ
2)

• Posterior at time t: (x1|y1) ∼ N(m1, C1)

where A1 = (C0 + τ2)/(C0 + τ2 + σ2), m1 = (1−A1)m0 +A1y1 and C1 = A1σ
2.

Example i. One step update
Let {(x0, ω0)(i)}Ni=1 summarizes p(x0|y0). For example,

E(g(x0)|y0) ≈ 1
N

N∑
i=1

ω
(i)
0 g(x(i)

0 ).

Then, {(x1, ω0)(i)}Ni=1 summarizes p(x1|y0), where

x
(i)
1 ∼ N(x(i)

0 , τ2) i = 1, . . . , N.

are draws from the prior p(x1|y0).

Then, {(x1, ω1)(i)}Ni=1 summarizes p(x1|y1), where

ω
(i)
1 = ω

(i)
0 fN (y1;x(i)

1 , σ2) i = 1, . . . , N.
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Example i. Sequential importance sampling (SIS)
Let {(xt−1, ωt−1)(i)}Ni=1 summarizes p(xt−1|yt−1).

Then, {(xt, ωt−1)(i)}Ni=1 summarizes p(xt|yt−1), where

Propagation: x
(i)
t ∼ N(x(i)

t−1, τ
2) i = 1, . . . , N,

and {(xt, ωt)(i)}Ni=1 summarizes p(xt|yt), where

Reweighting: ω
(i)
t = ω

(i)
t−1fN (yt;x

(i)
t , σ2) i = 1, . . . , N.

Effective sample size
Liu (1996) proposed using the following measure of degeneracy of an algorithm:

Neff,t =
1∑N

i=1

(
w

(i)
t

)2

where wts are normalized weights, i.e. w(i)
t = ω

(i)
t /

∑N
j=1 ω

(j)
t .

If w(i)
t = 1/N (equally balanced weights), then

Neff,t = N.

If w(j)
t = 1 for only one j (particle degeneracy) then

Neff,t = 1.

Example i. SIS with resampling (SISR)
SIS:

• {(xt−1, ωt−1)(i)}Ni=1 summarizes p(xt−1|yt−1).

• {(x̃t, ωt−1)(i)}Ni=1 summarizes p(xt|yt−1), where x̃(i)
t ∼ N(x(i)

t−1, τ
2), for i = 1, . . . , N.

• {(x̃t, ω̃t)(i)}Ni=1 summarizes p(xt|yt), where ω̃(i)
t = ω

(i)
t−1fN (yt; x̃

(i)
t , σ2), for i = 1, . . . , N.

Resampling:

Draw x
(1)
t , . . . , x

(N)
t from the set

{
x̃

(1)
t , . . . , x̃

(N)
t

}
with weights

{
ω̃

(1)
t , . . . , ω̃

(N)
t

}
.

Therefore, {(xt, ωt)(i)}Ni=1 summarizes p(xt|yt), where ωt = 1/N.

88



SIS with Resampling (SISR)

Uniform weights is the goal!

Example i. Simulated data
n = 50, x0 = 0, τ2 = 0.5 and σ2 = (0.25, 0.5, 1.0).
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√
Ct.

Left: τ/σ = 1.414; center: τ/σ = 1.000; right: τ/σ = 0.707.

Example i. SIS, N = 1, 000

89



time

−
2

0
2

4
6

1 10 20 30 40 50

time

−
8

−
6

−
4

−
2

0

1 10 20 30 40 50

time

−
4

−
2

0
2

1 10 20 30 40 50

time

0
10

20
30

40
50

60

1 10 20 30 40 50

time

0
20

40
60

80

1 10 20 30 40 50

time

0
20

40
60

80
10

0
12

0

1 10 20 30 40 50

Top: States; Bottom: Neff.
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Example i. SIS, N = 10, 000
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Example i. SISR, N = 10, 000
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Example i. SISR, n = 1, 000 and N = 1, 000
et,α = |q̂α(xt|yt)− qα(xt|yt)|, for α = 0.025, 0.5, 0.975.
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Left: τ/σ = 1.414; center: τ/σ = 1.000; right: τ/σ = 0.707.

Auxiliary particle filter (APF)
Recall the two main steps in any dynamic model:

p(xt|yt−1) =
∫
p(xt|xt−1)p(xt−1|yt−1)dxt−1

p(xt|yt) ∝ p(yt|xt)p(xt|yt−1)

•
{

(xt−1, ωt−1)(i)
}N
i=1

summarizes p(xt−1|yt−1).
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• Approximating p(xt|y−1) by

pN (xt|yt−1) =
N∑
i=1

p(xt|x(i)
t−1)ω(i)

t−1

• Approximating p(xt|yt) by

pN (xt|yt) =
N∑
i=1

p(yt|xt)p(xt|x(i)
t−1)ω(i)

t−1

Pitt and Shephard’s (1999) idea
The previous mixture approximation suggests an augmentation scheme where the new target distri-

bution is
pN (xt, k|yt) = p(yt|xt)p(xt|x(k)

t−1)ω(k)
t−1.

A natural proposal distribution is

q(xt, k|yt) = p(yt|g(x(k)
t−1))p(xt|x(k)

t−1)ω(k)
t−1

where, for instance, g(xt−1) = E(xt|xt−1).

By a simple SIR argument, the weight of the particle xt is

ωt ∝
p(yt|xt)

p(yt|g(x(k)
t−1))

APF algorithm

•
{

(xt−1, ωt−1)(i)
}N
i=1

summarizes p(xt−1|yt−1).

• For j = 1, . . . , N

– Draw kj from {1, . . . , N} with weights {ω̃(1)
t−1, . . . , ω̃

(N)
t−1}:

ω̃
(i)
t−1 = ω

(i)
t−1p(yt|g(x(i)

t−1))

– Draw x
(j)
t from p(xt|x(kj)

t−1 ).

– Compute associated weight

ω
(j)
t ∝

p(yt|x(j)
t )

p(yt|g(x(kj)
t−1 ))

.

•
{

(xt, ωt)(i)
}N
i=1

summarizes p(xt|yt).

• Maybe add a SIR step to replenish xts.
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Example i. APF, n = 1, 000 and N = 1, 000
et,α = |q̂α(xt|yt)− qα(xt|yt)|, for α = 0.025, 0.5, 0.975.
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Left: τ/σ = 1.414; center: τ/σ = 1.000; right: τ/σ = 0.707.

Example i. SISR & APF, n = 1, 000 and N = 100
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Example ii. Nonlinear dynamic model
Recall the nonlinear dynamic model previously studied

(yt|xt, ψ) ∼ N(x2
t/20, σ2)

(xt|xt−1, ψ) ∼ N(G′xt−1
θ, τ2)

where x0 ∼ N(m0, C0), θ = (α, β, γ)′, ψ = (ξ′, σ2, τ2) and

G′xt
=
(
xt, xt/(1 + x2

t ), cos(1.2t)
)

Simulated data: n = 100, σ2 = 1, τ2 = 10, θ = (0.5, 25, 8), x0 = 0.1.
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Prior setup: m0 = 0 and C0 = 10.

MCMC setup: m0 = 0, C0 = 10, v = 0.1, M0 = 1000 and M = 5000.

SMC setup: N = 5000.

Comparing SMCMC, SISR and APF
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Smoothing
Godsill, Doucet and West (2004) proposed a smoothing scheme based on particle filter draws.

The key results are

p(xn|yn) = p(xn|yn)
n−1∏
t=1

p(xt|xt+1, y
t)

and (by Bayes rule and conditional independence)

p(xt|xt+1, y
t) ∝ p(xt+1|xt, yt)p(xt|yt).

We can now jointly sample from p(xn|yn) by sequentially sampling from filtered particles with weights
proportional to p(xt+1|xt, yt).

Backward sampling algorithm
Repeat the following three steps N times.

• Sample x̃n from {x(i)
n }Ni=1 with weights {ω(i)

n }Ni=1.

• For t = n− 1, . . . , 1

Sample x̃t from {x(i)
t }Ni=1 with weights {ω̃(i)

t }Ni=1

ω̃
(i)
t ∝ ω

(i)
t p

(
x̃t+1|x(i)

t

)
i = 1, . . . , N

• Then {x̃(j)
1 , . . . , x̃

(j)
n } is a draw from p(xn|yn).
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Example i. smoothing
n = 50, τ2 = 0.5, σ2 = 1, x0 = 0, m0 = 0, C0 = 100, N = 1000.
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Example i. outlier in yt
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Example i. outlier in xt
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LECTURE 9

SEQUENTIAL MONTE CARLO WITH
PARAMETER LEARNING

Revisiting the bootstrap and the AP filters
Consider the following general state space model

Observation equation : p(yt+1|xt+1)
State equation : p(xt+1|xt)

For a given time t
{(xt, ωt)(i)}Ni=1

is a particle representation of
p(xt|yt)

where yt = (y1, . . . , yn).

Sample-resample
Goal: {(xt+1, ωt+1)(i)}Ni=1 ∼ p(xt+1|yt+1).

Algorithm

• Sample x(i)
t+1 from q(xt+1|x(i)

t , yt+1)

• Compute weights

ω
(i)
t+1 = ω

(i)
t

p(yt+1|x(i)
t+1)p(x(i)

t+1|x
(i)
t )

q(x(i)
t+1|x

(i)
t , yt+1)

Special case: bootstrap filter
In the bootstrap filter

q(xt+1|xt, yt+1) = p(xt+1|xt),

i.e. the transition equation.

This proposal density has no information about yt+1, so we say that the scheme is blinded.

The weights are then proportional to the likelihoods

ω
(i)
t+1 = ω

(i)
t p(yt+1|x(i)

t+1).
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Special case: optimal filter
In the optimal filter

q(xt+1|xt, yt+1) = p(xt+1|xt, yt+1).

The weights are then
ω

(i)
t+1 = ω

(i)
t p(yt+1|yt) ∝ ω(i)

t

so, if ω0 ∝ 1, then ωt+1 ∝ 1 for all t.

This is a perfectly adapted filter.

Resample-sample
Goal: {(xt+1, ωt+1)(i)}Ni=1 ∼ p(xt+1|yt+1).

Algorithm

• Resample x̃(i)
t from {x(1)

t , . . . , x
(N)
t } with weights

q1(x(j)
t |yt+1) j = 1, . . . , N

• Sample x(i)
t+1 from q2(xt+1|x̃(i)

t , yt+1)

• Compute weights

ω
(i)
t+1 = ω

(i)
t

p(yt+1|x(i)
t+1)p(x(i)

t+1|x̃
(i)
t )

q1(x̃(i)
t |yt+1)q2(x(i)

t+1|x̃
(i)
t , yt+1)

Special case: auxiliary particle filter
In the auxiliary particle filter

q1(xt|yt+1) = p(yt+1|g(xt))

where, for instance, g(xt) = E(xt+1|xt).

Also,
q2(xt+1|xt, yt+1) = p(xt+1|xt)

i.e. the transition equation, so again a blinded proposal.

The weights are then equal to

ω
(i)
t+1 = ω

(i)
t

p(yt+1|x(i)
t+1)

p(yt+1|g(x̃(i)
t ))

.

Special case: optimal filter
In the optimal filter both proposals q1 and q2 depend on yt+1, i.e.

q1(xt|yt+1) = p(yt+1|xt).

and
q2(xt+1|xt, yt+1) = p(xt+1|xt, yt+1).
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The weights are then equal to
ω

(i)
t+1 = ω

(i)
t

so, if ω0 ∝ 1, then ωt+1 ∝ 1 for all t.

This is a perfectly adapted filter.

Resample-sample with learning θ

The objective is to combine {(xt, θt, ωt)(i)}Ni=1 ∼ p(xt, θ|yt) with yt+1 to produce {(xt+1, θt+1, ωt+1)(i)}Ni=1 ∼
p(xt+1, θ|yt+1).

The index t and t + 1 in θ(i) are used to facilitate the identification of the time at which draws are
being used.

Algorithm

• Resample (x̃t, θ̃t)(i) from {(xt, θt)(j)}Nj=1 with weights

q1((xt, θt)(j)|yt+1) j = 1, . . . , N.

• Sample (xt+1, θt+1)(i) from q2(xt+1, θ|(x̃t, θ̃t)(i), yt+1).

• Compute weights

ω
(i)
t+1 = ω

(i)
t

p(yt+1|(xt+1, θt+1)(i))

q1((x̃t, θ̃t)(i))|yt+1)

p((xt+1, θt+1)(i)|(x̃t, θ̃t)(i))
q2((xt+1, θt+1)(i)|(x̃t, θ̃t)(i), yt+1)

Questions:

• How to choose q1 and q2?

• What is p(xt+1, θt+1|xt, θt)?

• Is it okay to decompose it as

p(xt+1, θt+1|xt, θt) = p(xt+1|θt, xt)p(θt+1|xt, θt)?

• If so, then what is p(θt+1|xt, θt)?

Liu and West (2001)
They approximate p(θ|yt) by a N -component mixture of multivariate normal distributions, i.e.

p(θ|yt) =
N∑
i=1

ω
(i)
t fN (θ|aθ(i)

t + (1− a)θ̄t, (1− a2)Vt)

where θ̄t =
∑N
i=1 ω

(i)
t θ

(i)
t and Vt =

∑N
t=1 ω

(i)
t (θ(i)

t − θ̄t)(θ
(i)
t − θ̄t)′.
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This leads to
p(θt+1|x(i)

t , θ
(i)
t ) = fN (θt+1|aθ(i)

t + (1− a)θ̄t, (1− a2)Vt)

They use the same decomposition for q2. So the weights are

ω
(i)
t+1 = ω

(i)
t

p(yt+1|(xt+1, θt+1)(i))
q1((x̃t, θ̃t)(i))|yt+1)

Resampling step

q1(xt, θt|yt+1) = p(yt+1|g(xt),m(θt))

where
g(xt) = E(xt+1|xt,m(θt))

for instance, and
m(θt) = aθt + (1− a)θ̄t

The weights are then

ω
(i)
t+1 = ω

(i)
t

p(yt+1|x(i)
t+1, θ

(i)
t+1)

p(yt+1|g(x̃(i)
t ),m(θ̃(i)

t ))

Choosing a

Liu and West (2001) use a discount factor argument (see West and Harrison, 1997) to set the param-
eter a:

a =
3δ − 1

2δ

For example,

• δ = 0.50 leads to a = 0.500

• δ = 0.75 leads to a = 0.833

• δ = 0.95 leads to a = 0.974

• δ = 1.00 leads to a = 1.000.

In the last case, i.e. a = 1.0, the particles of θ will degenerate over time to a single particle.

The LW filter in one page

For particles {(xt, θt, ωt)(j)}Nj=1 summarizing p(xt, θ|yt), estimates θ̄t =
∑N
i=1 ω

(i)
t θ

(i)
t and Vt =∑N

i=1 ω
(i)
t (θ(i)

t − θ̄t)(θ
(i)
t − θ̄t)′, and given shrinkage parameter a, the algorithm runs as follows.

• For i = 1, . . . , N , compute
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– m(θ(i)
t ) = aθ

(i)
t + (1− a)θ̄t.

– g(x(i)
t ) = E(xt+1|x(i)

t ,m(θ(i)
t )).

– w
(i)
t+1 = p(yt+1|g(x(j)

t ),m(θ(j)
t )).

• For i = 1, . . . , N

– Resample (x̃t, θ̃t)(i) from {(xt, θt, wt+1)(j)}Nj=1.

– Sample θ(i)
t+1 ∼ N(m(θ̃(i)

t ), h2Vt).

– Sample x(i)
t+1 from p(xt+1|x̃(i)

t , θ
(i)
t+1).

– Compute weight

ω
(i)
t+1 = ω

(i)
t

p(yt+1|x(i)
t+1, θ

(i)
t+1)

p(yt+1|g(x̃(i)
t ),m(θ̃(i)

t ))
.

Example i. first order dynamic linear model
The revisit the first order dynamic linear model

yt = xt + νt νt ∼ N(0, σ2)
xt = xt−1 + ωt ωt ∼ N(0, τ2)

where x0 = 25, σ2 = 0.1, τ2 = (0.2, 0.1, 0.05) and n = 200.

Prior setup:

σ2 ∼ IG(a0, b0)
x0 ∼ N(m0, C0)

where a0 = 5, b0 = 0.4, m0 = 25 and C0 = 100.

Particle filter setup:

N = 2000
δ = (0.75, 0.95)

Example i. LW + optimal propagation
Liu and West’s (2001) filter with optimal resampling proposal, i.e.

p(xt+1|xt, σ2, yt+1) = fN (xt+1|mt+1, Ct+1)

where

C−1
t+1 = τ−2 + σ−2

mt+1 = Ct+1(σ−2yt+1 + τ−2xt)
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Example i. LW + optimal propagation + kernel for σ2

Optimal propagation + with mixture approximating σ2 directly, i.e.

q(σ2|xt, σ2
t , yt+1) ∝ fN (yt+1;xt, σ2)fIG(σ2|α(σ2

t ), β(σ2
t ))

where

α(σ2
t ) =

{m(σ2
t )}2

v(σ2
t )

+ 2

β(σ2
t ) = m(σ2

t )α(σ2
t )

and

m(σ2
t ) = aσ2

t + (1− a)σ̄2

v(σ2
t ) = (1− a2)S2

σ2

with σ̄2 and S2
σ2 the particle approximation to the mean and variance of σ2 from p(σ2|yt).

Example i. Comparing various LW filters

• LW1 : LW + log σ2

• LW2 : LW + σ2

• LW3 : LW + log σ2 + optimal propagation

• LW4 : LW + σ2 + optimal propagation

Example i. τ/σ = 1.4
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Example i. τ/σ = 1.0
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Example i. τ/σ = 0.7
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Example ii. nonlinear dynamic model
Let yt, for t = 1, . . . , n, be modeled as

(yt|xt, ψ) ∼ N(x2
t/20, σ2)

(xt|xt−1, ψ) ∼ N(G′xt−1
ξ, τ2)

where G′xt
=
(
xt, xt/(1 + x2

t ), cos(1.2t)
)
, ψ = (ξ′, σ2, τ2) and ξ = (α, β, γ)′.
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Prior distributions for θ0, ξ, σ2 and τ2 are

x0 ∼ N(m0, V0)
ξ ∼ N(c0, C0)
σ2 ∼ IG(a0, A0)
τ2 ∼ IG(b0, B0)

Example ii. Simulation set up
We simulated n = 200 observations based on ξ = (0.5, 25, 8)′, σ2 = 10, τ2 = 1 and x0 = 0.1.

Prior hyperparameters:

m0 = 0.0 and V0 = 5
c0 = (0.5, 25, 8)′ and C0 = diag(0.1, 16, 2)
a0 = 3 and A0 = 20
b0 = 3 and B0 = 2

Example ii. Simulated data
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Example ii. (N, δ, a) = (2000, 0.75, 0.83)
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Example ii. (N, δ, a) = (2000, 0.90, 0.94)

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

−10 0 10 20

−
10

0
10

20

xt

TRUE

P
os

te
rio

r 
m

ea
n

alpha

Time

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

beta

Time

0 50 100 150 200

15
20

25
30

gamma

Time

0 50 100 150 200

4
5

6
7

8
9

10

sigma2

Time

0 50 100 150 200

5
10

15
20

25
30

35

tau2

Time

0 50 100 150 200

0
1

2
3

4
5

Example ii. (N, δ, a) = (5000, 0.90, 0.94)
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Example ii. (N, δ, a) = (10000, 0.90, 0.94)
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Example ii. Assessing MC error - α
N = 5000
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Example ii. Assessing MC error - β
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Example ii. Assessing MC error - γ
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Example ii. Assessing MC error - σ2
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Example ii. Assessing MC error - τ2
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Example ii. Assessing MC error - α
N = 10000
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Example ii. Assessing MC error - β
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Example ii. Assessing MC error - γ
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Example ii. Assessing MC error - σ2
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Example ii. Assessing MC error - τ2
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Particle Learning (PL)
Carvalho, Johannes, Lopes and Polson (2009) introduce Particle Learning (PL) as the following

resample-sample scheme, where st is the vector of sufficient statistics for θ.

• Posterior at t: {(xt, st, θ)(i)}Ni=1 ∼ p(xt, st, θ|yt).

• Resampling weights: w(j)
t+1 ∝ p(yt+1|x(j)

t , θ(j)), j = 1, . . . , N.

• For i = 1, . . . , N

– Resample: Draw {(x̃t, s̃t, θ̃)(i)}Ni=1 from {(xt, st, θ)(j), wt+1}Nj=1.

– Sample: Draw x
(i)
t+1 ∼ p(xt+1|(x̃t, θ̃)(i), yt+1).
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– Recursive sufficient statistics: s(i)
t+1 = S(s̃(i)

t , x
(i)
t+1, yt+1).

– Offline sampling of fixed parameters: θ(i) ∼ p(θ|s(i)
t+1).

PL ingredients

Resampling distribution
p(yt+1|xt, θ)

Propagating distribution
p(xt+1|xt, θ, yt+1)

Recursive sufficient statistics
st+1 = S(st, xt+1, yt+1)

Example i. 1st order dynamic linear model via PL

• p(yt+1|xt, σ2) is
N(yt+1;xt, σ2 + τ2)

• p(xt+1|xt, σ2, yt+1) is
N(xt+1;Ayt+1 + (1−A)xt, Aσ2)

where A = τ2/(τ2 + σ2).

• p(σ2|st+1) is
IG(at+1, bt+1)

where st+1 = (at+1, bt+1) is recursively updated

at+1 = at +
1
2

bt+1 = bt +
(yt − xt)2

2

Example i. learning τ2 - n = 200, 500, 1000
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Example i. learning τ2 - n = 5000 and N = 2000
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Example iii. MCMC and PL comparison

• Simulation set up: For t = 1, . . . , n = 300,

p(yt|xt, θ) ≡ fN (xt;σ2) (11)
p(xt|xt−1, θ) ≡ fN (ρxt−1; τ2) (12)

where θ = (ρ, σ2, τ2) = (1.0, 1.0, 0.25) and x0 = 0.

• Model set up: Equations (1) and (2) above plus

p(θ, x0) ≡ fN (ρ; r0,W0)fIG(σ2; a0, b0)
× fIG(τ2; c0, d0)fN (x0;m0, V0)

where r0 = 0, W0 = 3, a0 = 3, b0 = 2, c0 = 3, d0 = 0.5, m0 = 0 and V0 = 3.

• MCMC set up: M0 = 100K, L = 100 and M = 20K. A total of 2100K draws.

• SMC set up: M = 20K particles.

Example iii. MCMC algorithms

• Gibbs sampler (GIBBS)

– Sample x from p(x|y, θ) - FFBS

– Sample σ2 from p(σ2|x, y)

– Sample ρ from p(ρ|x, τ2)

– Sample τ2 from p(τ2|x, ρ)

• Random-walk Metropolis (RW)
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– Sample x from p(x|y, θ) - FFBS

– Sample θ∗ from
q(θ∗|θ) = qρ(ρ, Vρ)qσ2(σ, Vσ2)qτ2(τ2, Vτ2),

with Vρ = 0.01, Vσ2 = 0.01 and Vτ2 = 0.01, and accept with probability

α = min
{

1,
p(y|θ∗)p(θ∗)q(θ∗|θ)
p(y|θ)p(θ)q(θ|θ∗)

}
.

Note : Since p(y|θ) =
∫
p(y|x, θ)p(x|θ)dx can be analytically derived, x and θ are jointly sampled.

Example iii. Simulated yt and xt
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Example iii. MCMC trace plots
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Example iii. MCMC autocorrelation plots
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Example iii. MCMC marginal posteriors
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Example iii. MCMC and true marginal posteriors
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Example iii. p(xt|yn) via MCMC
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Example iii. PL and MCMC quantiles
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BOTTOM: True, GIBBS and PL estimates of F (θ|yn).

Example iii. PL and GIBBS quantiles
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Example iii. PL and MCMC quantiles
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Example iii. Effective sample sizes

ESSt = M
(

1 + V (ωt)
E2(ωt)

)−1

and ESS = M (1 + 2
∑∞
k=1 ρk)−1.
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ωt are particle weights.

ρk = covπ(t(n), t(n+k))/varπ(t(n)) and t(n) = t(θ(n)).

Example iv. Dynamic factor model with switching loadings
For t = 1, . . . , T , the model is defined as follows 2:

• Observation equation
yt|zt, θ ∼ N(γtxt, σ2I2)

• State equations

xt|xt−1, θ ∼ N(xt−1, σ
2
x)

λt|λt−1, θ ∼ Ber((1− p)1−λt−1qλt−1)

where zt = (xt, λt)′, γt = (1, βλt
)′ is the vector of time-varying loadings and θ = (β1, β2, σ

2, σ2
x, p, q)

′ is
the vector of fixed parameters.

The prior distributions are conditionally conjugate:

(βi|σ2) ∼ N
(
bi0, σ

2Bi0
)

for i = 1, 2,

σ2 ∼ IG

(
ν00

2
,
d00

2

)
σ2
x ∼ IG

(
ν10

2
,
d10

2

)
p ∼ Beta(p1, p2)
q ∼ Beta(q1, q2)
x0 ∼ N(m0, C0)

Particle representation
At time t, particles {

(xt, λt, θ, sxt , st)
(i)
}N
i=1

approximating
p
(
xt, λt, θ, s

x
t , st|yt

)
where

2This example is from Carvalho, Johannes, Lopes and Polson (2009)
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• sxt = S(sxt−1, θ) are state sufficient statistics

• st = S(st−1, xt, λt) are fixed parameter sufficient statistics

Re-sampling (xt, λt, θ, sxt , st)
Let us redefine βi = (1, βi)′ whenever necessary.

Draw an index k(i) ∼Multi(ω(i)) with weights

ω(i) ∝ p(yt+1|(sxt , λt, θ)k(i))

with

p(yt+1|mt, Ct, λt, θ) =
2∑
j=1

fN (yt+1;βjmt, Vj)Pr (λt+1 = j|λt, θ)

where Vj = (Ct + σ2
x)βjβ′j + σ2I2, mt and Ct are components of sxt and fN denotes the normal density

function.

Propagating states
• Draw auxiliary state λt+1

λ
(i)
t+1 ∼ p(λt+1|(sxt , λt, θ)k(i), yt+1)

where
Pr(λt+1 = j|sxt , λt, θ, yt+1) ∝ fN (yt+1;βjmt, Vj) p (λt+1 = j|λt, θ) .

• Draw state xt+1 conditionally on λt+1

x
(i)
t+1 ∼ p(xt+1|λ(i)

t+1, (s
x
t , θ)

k(i), yt+1)

by a simply Kalman filter update.

Updating sufficient statistics for states, sxt+1

The Kalman filter recursion yield

mt+1 = mt +At+1(yt+1 − βλt+1mt)

Ct+1 = Ct + σ2
x −At+1Q

−1
t+1A

′
t+1

where

Qt+1 = (Ct + σ2
x)γt+1γ

′
t+1 + σ2I2

At+1 = (Ct + σ2
x)γ′t+1Q

−1
t+1

Updating sufficient statistics for parameters, st+1

Recall that st+1 = S(st, xt+1, λt+1). Then,

(βi|σ2, st+1) ∼ N
(
bi,t+1, σ

2Bi,t+1

)
for i = 1, 2,

(σ2|st+1) ∼ IG

(
ν0t

2
,
d0,t+1

2

)
(σ2
x|st+1) ∼ IG

(
ν1t

2
,
d1,t+1

2

)
(p|st+1) ∼ Beta(p1,t+1, p2,t+1)
(q|st+1) ∼ Beta(q1,t+1, q2,t+1)
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where Iλt+1=i = Ii, Iλt=i,λt+1=j = Iij , νit = νi,t−1 + 1, B−1
i,t+1 = B−1

it + x2
t+1, B−1

i,t+1bi,t+1 = B−1
it bit +

xt+1yt+1,2Ii, pi,t+1 = pit + I1i (similarly for qi,t+1) for i = 1, 2, d0,t+1 = d0,t + (yt+1,1 − xt+1)2 +∑2
j=1

[
(yt+1,2 − bj,t+1xt+1) yt+1,2 +B−1

j,t+1bj,t+1

]
Ij , and d1,t+1 = d1,t + (xt+1 − xt)2.

CASE I: Randowm walk dynamic factor, static loadings

• Simulation setup:

n = 500
β = 2
σ2 = 0.2
σ2
x = 0.05

• Prior hyperparameters:

β : b0 = 0 B0 = 10
σ2 : ν00 = 10 d00 = 1.8
σ2
x : ν10 = 10 d10 = 0.45

Time series and dynamic factor

Parameter learning: M = 1000

Parameter learning: M = 5000

Dynamic factor
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CASE II: AR(1) dynamic factor, static loadings

xt|xt−1, θ ∼ N(ρxt−1, 1.0)
ρ ∼ N(ρ0, Vρ)

• Simulation setup:

n = 200
β = 2
σ2 = 2.0
ρ = 9

• Prior hyperparameters:

β : b0 = 0 B0 = 100
σ2 : ν00 = 10 d00 = 18
ρ : ρ0 = 1 Vρ = 100

Time series and state variables

Parameter learning: M = 1000 particles

Dynamic factor

CASE III: Random walk dynamic factor, time-varying loadings
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• Simulation setup:

n = 300
(β1, β2) = (1, 2)

σ2 = 0.2
σ2
x = 0.05
p = q = 0.975

• Prior hyperparameters:

β1 : b10 = 0 B10 = 2
β2 : b20 = 3 B20 = 2
σ2 : ν00 = 5 d00 = 1.0
σ2
x : ν10 = 5 d10 = 0.25

p, q : p1 = p2 = q1 = q2 = 1

Time series and state variables

Parameter learning: M = 5000 particles

Discrete switching state

Dynamic factor

Dynamic factor
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LECTURE 10

STOCHASTIC VOLATILITY via

SEQUENTIAL MONTE CARLO

METHODS

Example i: Stochastic volatility
Let yt, for t = 1, . . . , n, be modeled as

yt|xt ∼ N(0, ext)
(xt|xt−1, θ) ∼ N(α+ βxt−1, τ

2)

where θ = (α, φ, τ2).

Simulation setup: n = 500, α = −0.0031, β = 0.9951 and τ2 = 0.0074 and x1 = α/(1 − β) =
−0.632653 (13% of annualized standard deviation).

Prior setup:

x0 ∼ N(m0, C0) α ∼ N(α0, Vα)
β ∼ N(β0, Vβ) τ2 ∼ IG(n0/2, n0τ

2
0 /2)

where m0 = 0.0, C0 = 0.1, α0 = −0.0031, Vα = 0.01, β0 = 0.9951, Vβ = 0.01, n0 = 3 and τ2
0 = 0.0074.

LW filter with shrinkage factor a

Particles t: {(xt, θ)(j), ω
(j)
t }Mj=1 ∼ p(xt, θ|yt).

Summary of p(θ|yt): θ̄ ≈ E(θ|yt) and V ≈ V (θ|yt).

Resample quantities: For j = 1, . . . ,M
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• Compute m(j) = aθ(j) + (1− a)θ̄

• Compute g(j) = α(j) + φ(j)x
(j)
t

Algorithm: For l = 1, . . . ,M

• Draw kl ∈ {1, . . . ,M}, with P (kl = j) ∝ ω(j)
t p(yt+1|g(j))

• Sample θ(l) from N(m(kl), (1− a2)V )

• Sample x(l)
t+1 from p(xt+1|x(kl)

t , θ(l))

• Compute weight ω(l)
t+1 ∝ p(yt+1|x(l)

t+1)/p(yt+1|g(kl))

Particles at t+ 1: {(xt+1, θ)(j), ω
(j)
t+1}Mj=1 ∼ p(xt+1, θ|yt+1).

Time series yt and p(ext |yt)
N = 5000 and θ = (α, β, log(τ2)).
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Example ii: SV-AR(1) via sequential MCMC and LW
We simulated n = 50 observations based on α = −0.0031, β = 0.9951, τ2 = 0.0074, with m0 = 0.0

and C0 = 0.1.

Also, x1 = α/(1 − β) = −0.632653, which corresponds to annualized standard deviations around
13%.

p(xt|yt) when θ is known
MCMC: Kim, Shephard and Chib (1994)
SMC: Liu and West (2001) with δ = 0.75 and a = 0.9521743.
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MCMC: (burn,niter,lag)=(2000,2000,1) 
 SMC: N=2000

Seq.MCMC
APF

p(xt|yt) when θ is known
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p(xt|yt) when (α, β) is unknown
Prior: α ∼ N(−0.0031, 0.01) and φ ∼ N(0.9951, 0.01)
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p(α|yt) and p(β|yt)
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The prior for τ2 is IG(1.5, 0.0111).
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Sequential parameter learning
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Example iii: Markov switching stochastic volatility
Carvalho and Lopes (2007) adapted APF and LW filters to sequentially estimate states and param-

eters in Markov switching stochastic volatility (MSSV) models.

Let the daily returns of the IBOVESPA index, yt, be modeled by a MSSV model, ie.

yt|λt ∼ N(0, exp(λt))
(λt|λt−1, ξ, st) ∼ N(αst

+ φλt−1, σ
2)

where ξ = (α, φ, σ2), α = (α1, . . . , αk) and regime variables st following a k-state first order Markov
process,

pij = Pr(st = j|st−1 = i) for i, j = 1, . . . , k

and P = (p11, . . . , p1k−1, . . . , pk1, . . . , pk,k−1).

Particle filter

• Step 0:
{
λ

(j)
t , s

(j)
t , w

(j)
t

}M
j=1
∼ p(λt, st, θ|Dt)

• Step 1: For j = 1, . . . ,M ,

s̃
(j)
t+1 = arg max

l∈1,...,k
Pr(st+1 = l|st = s

(j)
t )

µ
(j)
t+1 = α

(j)

s̃
(j)
t+1

+ φ
(j)
t λ

(j)
t

• Step 2: For l = 1, . . . ,M

1. Sample kl from {1, . . . , k}, with Pr(kl) ∝ p(yt+1|µ(kl)
t+1)w(kl)

t

2. Sample θ(l)
t+1 from N(m(kl)

t , b2Vt)
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Jul 2nd, 97 Thailand devalues the baht by as much as 20%.
Aug 11th, 97 IMF and Thailand set a rescue agreement.
Oct 23rd, 97 Hong Kong’s stock index falls 10.4%. South Korea Won weakens.
Dec 2nd, 97 IMF and South Korea set a bailout agreement.
Jun 1st, 98 Russia’s stock market crashes.
Jun 20th, 98 IMF gives final approval to a loan package to Russia.
Aug 19th, 98 Russia officially falls into default.
Oct 09th, 98 IMF and World Bank joint meeting + Fed cuts interest rates.
Jan 15th, 99 The real is allowed to float freely by lifting exchange controls.
Feb 2nd, 99 Arminio Fraga is named president of Brazil’s Central Bank.

3. Sample s(l)
t+1 from 1, . . . , k with Pr(s(l)

t+1) = Pr(s(l)
t+1|s

(kl)
t )

4. Sample λ(l)
t+1 from p(λt+1|λ(kl)

t , s
(l)
t+1, θ

(l)
t+1)

• Step 3: For l = 1, . . . ,M , compute new weights

w
(l)
t+1 ∝ p(yt+1|λ(l)

t+1)/p(yt+1|µ(kl)
t+1)

• Step 4:
{
λ

(j)
t+1, S

(j)
t+1, w

(j)
t+1

}M
j=1
∼ p(λt+1, St+1, θ|Dt+1).

Currency crisis

Carvalho and Lopes (2007) used IBOVESPA daily data from January 2nd, 1997 to January, 16th
2001 (1000 observations).

Fitting regime shifts
The vertical lines indicate key market events.
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Sequential inference for fixed parameters
Posterior mean, 5% and 95% quantiles of θ.

alpha1

time

0 200 400 600 800 1000
−
2.
5

−
1.
5

−
0.
5

log(gamma1)

time

0 200 400 600 800 1000

−
2.
0

−
1.
5

−
1.
0

−
0.
5

0.
0

phi

time

0 200 400 600 800 1000

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

sigma2

time

0 200 400 600 800 1000

0.
06

0.
10

0.
14

logit(p11)

time

0 200 400 600 800 1000

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

logit(p12)

time

0 200 400 600 800 1000
−
4.
5

−
3.
5

Sequential Bayes factor: MSSV vs SV

1/2/97 7/2/97 12/2/97 6/1/98 10/9/98 1/13/00 1/15/01

−
2

0
2

4
6

SV-AR(1) via Particle Learning
This example was kindly prepared by my PhD student Samir Warty.
Recall the AR(1) stochastic volatility model:

yt+1 = exp
(xt+1

2

)
εt+1

xt+1 = α+ βxt + τνt+1
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where (εt, νt) ∼ N(02, I2) and θ = (α, β, τ).

Prior distribution:

τ2|s0 ∼ IG
(
n0

2
,
n0S0

2

)
α, β|τ2, s0 ∼ N(m0, τ

2C0)

where s0 = (n0, S0,m0, C0).

Data augmentation argument
Following Kim, Shephard and Chib’s (1998) idea:

zt+1 ≡ log y2
t+1 = xt+1 + log ε2t+1 ≈ xt+1 + ut

where

ut ∼
7∑
i=1

πiN (µi, σ2
i )

Particle learning (PL) uses augments the state vector to include λt+1 ∈ {1, . . . , 7}, the component of
the Normal mixture approximation.

Let st denote the set of sufficient statistics for (α, β, τ2) at time t.

Algorithm

• Resample old particles ct = (xt, st, θ) with weights

wt ∝ p(zt+1|ct) =
7∑
i=1

πifN (zt+1;µi + α+ βxt, σ
2
i + τ2)

• Propagate new states xt+1 from

p(xt+1|ct, zt+1) =
7∑
i=1

πifN (xt+1; γi, ωi)

where

ωi = (σ−2
i + τ−2)−1

γi = ωi(σ−2
i (zt+1 − µi) + τ−2(α+ βxt))

Algorithm (cont.)

• Update sufficient statistics st+1 = (nt+1, St+1,mt+1, Ct+1)

nt+1 = nt + 1

nt+1St+1 = ntSt +
(xt+1 −Xtmt)2

1 +XtCtX ′t

C−1
t+1 = C−1

t +X ′tXt

C−1
t+1mt+1 = C−1

t mt +X ′txt+1

where Xt = (1, xt).
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• Sample parameters

τ2|st ∼ IG
(
nt+1

2
,
nt+1St+1

2

)
α, β|τ2, st ∼ N (mt+1, τ

2Ct+1)

Resampling weights

wt ∝ p(zt+1|ct, λt, z
t
)

∝
7X

i=1

Z
R

p(zt+1|xt, st, θ, λt+1 = i, λt, z
t
, xt+1)p(xt+1|xt, st, θ, λt+1 = i, λt)dxt+1

(Marginalization over data augmentation)

∝
7X

i=1

Z
R

p(zt+1|λt+1 = i, xt+1)p(xt+1|xt, θ)dxt+1 (Conditional independence)

∝
7X

i=1

Z
R

fN (zt+1;µi + xt+1, σ
2
i )fN (xt+1;α+ βxt, τ

2
)dxt+1

∝
7X

i=1

πifN (zt+1;µi + α+ βxt, σ
2
i + τ

2
)

Posterior distribution for new states

p(xt+1|ct, λt, zt+1) =

7X
i=1

πip(xt+1|ct, λt+1 = i, λt, zt+1) (Marginalization over data augmentation)

=

7X
i=1

πi
p(zt+1|xt, st, θ, λt+1 = i, λt, xt+1)p(xt+1|xt, st, θ, λt+1 = i, λt)

p(zt+1|xt, st, θ, λt+1 = i, λt)
(Bayes theorem)

=

7X
i=1

πi
p(zt+1|λt+1 = i, xt+1)p(xt+1|xt, θ)

p(zt+1|xt, θ, λt+1 = i)
(Conditional independence)

=

7X
i=1

πi
fN (zt+1;µi + xt+1, σ

2
i )fN (xt+1;α+ βxt, τ

2)

fN (zt+1;µi + α+ βxt, σ2
i + τ2)

=

7X
i=1

πifN (xt+1; γi, ωi)

where ωi = (σ−2
i + τ−2)−1 and γi = ωi(σ

−2
i (zt+1 − µi) + τ−2(α+ βxt)).

Recursive sufficient statistics

139



nt+1St+1 = ntSt + (xt+1 −Xt(C
−1
t +X

′
tXt)

−1
(C
−1
t mt +X

′
txt+1))

′
xt+1

+ (mt − (C
−1
t +X

′
tXt)

−1
(C
−1
t mt +X

′
txt+1))

′
C
−1
t mt

= ntSt + (x
′
t+1xt+1 − x′t+1Xt(C

−1
t +X

′
tXt)

−1
(C
−1
t mt +X

′
txt+1))

+ (m
′
t(C
−1
t )
′
mt −m′t(C

−1
t )
′
(C
−1
t +X

′
tXt)

−1
(C
−1
t mt +X

′
txt+1))

= ntSt + (x
′
t+1xt+1 − x′t+1Xt

„
Ct −

CtX
′
tXtCt

1 +XtCtX′t

«
(C
−1
t mt +X

′
txt+1))

+ (m
′
tC
−1
t mt −m′tC

−1
t

„
Ct −

CtX
′
tXtCt

1 +XtCtX′t

«
(C
−1
t mt +X

′
txt+1))

= ntSt + x
′
t+1

 
1− c+

c2

1 + c

!
xt+1 − x′t+1

„
1−

c

1 + c

«
Xtmt

−m′tX
′
t

„
1−

c

1 + c

«
xt+1 +

m′tX
′
tXtmt

1 + c
(where c ≡ XtCtX

′
t)

= ntSt +

„
1

1 + c

«
(x
′
t+1xt+1 − 2x

′
t+1Xtmt +m

′
tX
′
tXtmt)

= ntSt +

„
1

1 + c

«
(xt+1 −Xtmt)

′
(xt+1 −Xtmt)

where

(C
−1
t +X

′
tXt)

−1
=

„
Ct −

CtX
′
tXtCt

1 +XtCtX′t

«

when Xt is a vector.
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