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Nonnormal & nonlinear dynamic models

Most nonnormal and nonlinear dynamic models are defined by

» Observation equation

P(Ye+1lxet1,0)
» System or evolution equation
p(xes1lxe, 0)
» Initial distribution

p(xl6)

The fixed parameters that drive the state space model, 6, is kept
known and omitted for now.



Forward filtering

Posterior at time t:

p(xely”).
Prior at time t + 1:
plxe+1ly’) = /p(Xt+1|Xt) pxely’)  dx
—— N—— N——
prior at t evolution posterior at t-1

Posterior at time t + 1:

p(xeraly™) o< p(yesilxes1)p(xer1ly?)

These densities are usually unavailable in closed form.




Boostrap filter (BF)

Gordon, Salmond and Smith's (1993) seminal paper uses SIR to
obtain draws from p(x;+1|y*!) based on draws from p(x:|y?).

Let x,_gi) be a draw from p(x¢|y?), fori=1,..., N.

Let ’?521 be a draw from p(xt+1|xt(')), fori=1,...,N.
Then )“(t(Ql is a draw from p(xzy1|yttt), fori=1,..., N.

SIR argument: Sample k' from {1,..., M} with (unnormalized)
weights _ '
wgll X P(Yt+1|>~<t(j+)1)

and let xEQl = ifill)

Then x(i)

i1 is a draw from p(xe41]y®™*?), for i=1,...,N.
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SIS with Resampling (SISR)

{z},...a)} ~ plwly’) e 2 sescomen
Fy o~ plarl) e eew © 006 ® o smoo °
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{$t+1a~--=$t+1} ~ p($t+1|yt+ ) s 3 /.55 5
Tl ~ plaegelriy) w wooo L) o0e ° [T
L]
Wire < P(Yrr2|Tiys) 'S o
Q‘A 0‘2 D‘U U‘? 0‘4 U‘E

Uniform weights is the goal!
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Resampling or not?
Theoretically, the resampling step is not necessary. Within a given
time t, resampling always increases the variability of estimators.

For instance, let
. . 1 N .
h = Z AW and b = N Z} h(x")

be two MC estimators of E(h(x¢)|y") with /; based on
(normalized) weights

ZJI‘V:1 WEJ) '
It can be shown (Raoblackwellization) that

V(h) < V(h).
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Effective sample size

Liu and Chen (1995, 1998) argue that resampling at every time ¢t
is usually neither necessary nor efficient since it induces excessive

variations.

Kong et al. (1994) and Liu (1996) proposed resampling whenever
the effective sample size

Nefr: =

is less than a certain threshold.
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Example 1: Local level model

The model is

yt’Xt ~ N(Xt, 02)

Xt‘Xt—l ~ N(Xt—].; 72)

with (xo|y®) ~ N(mo, Co).

If (xe_1]y®™!) ~ N(m:_1, Ci_1), then
(xely® 1) ~ N(me1, Re)
where Ry = C;_1 + 72 and
(xely®) ~ N(me, Cr)

where mey = (1 — At)mt_l + At)/t, Ct = At0'2 and
At = Rt/(Rt+U2)
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Example 1: SIS and bootstrap filters

Sequential importance sampling (SIS):
> {(xe-1,we-1) DLy ~ p(xealyth).

> {()?t,wt,l)(") fvzl ~ p(xelyt™1), where

2~ N, 7).

t—

> {()?t,wt)(")},’-v:l ~ p(x*t|y?), where

wgi) x wgglfN(yt; >"<t(i),a2).
Resampling:
Resample {x,_gl), . ,X,EN)} from {)"(t(l), e ,)"(t(N)} with (normalized)
weights {wt(l), e wt(N)}.

In this case, {(xe,we) DN, ~ p(x¢|y?) with weights w; o< 1.
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Example 1: local level model
n="50, xp=0, 72 =0.5and 0 = (0.25,0.5,1.0).

sig2=1
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SIS filter

sig2=025 Sig2=0.5 sig2=1

e 8- 8-

2 g1
§g § g 8 g
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Ped- feq- Pgq.

175 / &)



Bootstrap filter

sig2=025

Sig2=0.5

sig2=1

1 = © I 0 1 = B o 1 1 » o
e e e
&
g g1
0 = © I 0 10 = I o 1 = » »
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SISg,: SIS filter with resampling when Ngg# < 0.2N
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SIS, BF, SISq

Comparing estimates of E(x¢|y?).

yyyyyyyyyyyyyy
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Comparing BF and SISg» when n =50
MAE=Y""_, |x: — E(x¢|y?)|/n; RMAE = MAE s /MAE

M1=200 =500 M1=800

T ———

i ——— | —
522025 52025 sg2:025
M1=200 M1=500 M1=800

i 1 | E—
205 205 205
M1=200 M1=500 M1=800
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Comparing BF and SISg,> when n

2
H

E

M1=200 M1=500 M1=800
EI ; : : T
X ‘ : — i —
wi-z00 =500 =500
| : — ———
w1200 =500 =600
st st st
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Comparing BF and SISg,> when n

= 500

M1=200 M1=500 M1=800

s s s

w1200 M1=500 M1=800
4 — ] 4
: H

—
sze0s sze0s sze0s
M1=200 M1=500 W1=800
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Auxiliary particle filter (APF)

Recall the two main steps in any dynamic model:

plxlyt™) = /P(Xt|Xt—1)P(Xt—1|yt1)dXt—1

p(xely®) o< p(yelxe)p(xely™™)

o L e Eo

Ay N
Based on {(Xt*hwf*l)(l)},’:l ~ p(xe_1]yt™1):

N
Pxely™™) o Z P(Xt|XEI—)1)w§21

and

N
plxely®) o Y plyelxe) plxelxp)w? .
=1
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Pitt and Shephard's (1999) idea

The previous mixture approximation suggests an augmentation
scheme where the new target distribution is

N k k
Blxe, kly®) o< plyelxe)p(xelx ).
A natural proposal distribution is

q(xe, k’yt) X P()/t’g(Xt(i)l))P(Xt|X§5)1)W§l:)1

where, for instance, g(x¢t—1) = E(x¢|x¢—1).

By a simple SIR argument, the weight of the particle x; is

p()/t’Xt)
p(y:lg(xe-1))

t
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APF algorithm

AN .
> {(Xt—hwt—l)(’)};:l summarizes p(x;_1|yt™1).
» Forj=1,... N

» Draw K/ from {1,..., N} with weights {(Dgl_)l, e ,Cufﬁ)l}

501 =0 p(yelg(x))

» Draw x; ) from p(xt|xt(fjl)).
» Compute associated weight

G Pl
we o ——— =g
p(y:lg(x:_1))

> {(xt,wt)(i)}?lzl summarizes p(x¢|y?).

» Maybe add a SIR step to replenish x;s.
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Sample-resample filters

1. Sample )?t(ﬂr)l from qs(xt+1]xt(1),yt+1);

2. Resample xEQl from {S(EJJr)l}JN:l with weights

0) p(yt+1‘xt+1)p(xt+1|x )

Wil
qs(XH_l |Xt ) yt+1)

Bootstrap filter (BF)
BF: gs(xt+1|xt, Ye+1) = p(Xt41|xt) - blinded sampling.
BF: w1 = wep(yet1|xer1) - likelihood function.

Optimal bootstrap filter (OBF)
OBF: qs(xt+1|xt, ye+1) = p(Xe41|Xe, Ye+1) - perfectly adapted.
OBF: wit1 = wep(yr+1|xt) - predictive density.
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Resample-sample filters
(1)

1. Resample X;’ from {x;

2. Sample xt); from (a7, yern):

3. New weights

(J)}Nzl with weights q,(xt(j)|yt+1);

(i) p(Yt+1|Xt+1)p(Xt+1’Xt )

Clr(Xt ’)/t+1)qs(Xt+1!Xt s Yiv1)

Wiyl =

Auxiliary particle filter (APF)

APF: q,(xelyi11) = P(veralg(x:) - g(x:) is guess of xes1.
APF: qs(xt+1]xt, ye+1) = p(xe+1|xt) - blinded sampling.
pP(ye+1]xe+1)

plrerie(®)) - likelihood ratio.

APF: W41 = Wt

Optimal auxiliary particle filter (OAPF)

OAPF: q,(xt|yt+1) = p(Ve+1|xt) - predictive density.

OAPF: qa(xes1 e, Ver1) = p(xesa|xe, ves1) - perfectly adapted.
OAPF: w!), = {7,
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Step-by-step filtering

Consider the nonlinear dynamic model (Gordon et al., 1993):

X2
Y~ N (267 1)
Xt|Xt—1 ~ N(g(Xt—1)7 10)

where

g(xe_1) = 0.5x_1 + 251f)‘<§_1 +8cos(1.2(t — 1))
for t =1,2 and xg = 0.1.
The two simulated observations are y; = 8.385527 and 5.336167.
The prior for xg is N(0, 2).

BF and APF are run based on N = 20 particles.
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The bootstrap filter

Posterior at t=0

Prior at t=1

y(t) att=1

Weights at t=1

Posterior at t=1

Prior at t=2 4 o ctesumen
Yo ati=2 = T
Weights at t=2
1
Posterior at t=2 .
T T T T
-10 o 10 0
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The auxiliary particle filter

Posterior at t=0 ®eo e smm e oo
y(t) att=1 [ ]
Resampling weights at t=1 [ Y

Resample at t=1

Propagation at t=1 o .
Final weights at t=1 . .. e - cemoe .
. 1 3 7 3 31 2
Posterior at t=1 . . . LEEEY .
y(t) at t=2 ]
Resampling weights at t=2 . . . o e .
1
Resample at t=2
Propagation at t=2
Final weights at t=2 e wme o
Posterior at t=2 an -a .
T T T T
-10 o 10 0
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BF and APF
n =20 and N = 100.
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BF and APF
n =20 and N = 100.

— DATA

— APF

Time
5
I

20
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Example 2: Simulation exercise

Three data sets (72 = (0.25,0.5,0.75)) with n = 100 observations
were generated from

Yt|Xt ~ N(Xtaaz)
Xe|Xe—1 ~ N(a+ﬁxt—1a7'2)

with (a, 8,02) = (0.05,0.95,1.0) and xo = 0.5.
xo ~ N(0.5,10) and true p(x¢|y") are available in closed form.
R = 20 replications based on N = 1000 particles.

T |»
MAE = >, 85 — a1/ T-

where g¢ and g{'; are the true and approximate ath percentile of
p(xely®).
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BF, APF, OBF and OAPF

BF is based on p(x¢|x¢—1) and p(y¢|xt).
APF is based on p(x¢|x;—1) and

qr(xe—1ly:) = N(pe, 7'2)7

where py = g(xt—1) = @ + Bx¢—1.

OBF and OAPF are based on

p(yelxe-1) = N(pe, 0% +1%)
p(xelxe-1, ") N((1 = A)pt + Ayr, Ad?)

where A = 72/(0? + 72).
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2.5th, 50th and 97.5th percentiles of p(x:|y®)

Column 1: y; (black) versus x; (red).
Columns 2 and 4: BF and APF (true:black, filter:gray)
Columns 4 and 5: OBF and OAPF (true:black, filter:gray)

1, M . |
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Relative MAE

S = 20 datasets
n = 100 observations

(u=0.05 - 25 porcentie weozs-2smpecense  weozs-2snpecee

H | [ — [ ——
uuuuuuuuuuuuuuuuuu =025 - 500 o w075 -50mpe

NI g T z
i : R T :
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Relative MAE

S = 20 datasets
n = 1000 observations

aaaaaaaaaaaaaaaaa
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; : =—————
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Empirical findings

BF and OBF are similar.

OAPEF is significantly better than APF.

OAPF is uniformly better than BF and OBF.

The above findings are more significant when n = 1000.

The above findings are more pronounced for larger values of 72.
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Revisiting the nonlinear dynamic model
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BF:

n. M = 100,000 particles.

M EmEy




ort=1,...,n . M = 100,000 particles.

i

e
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APF's resampling proposal is

(vt g(xe-1), 7).

An alternative (potentially better) proposal is
fu(ve; g(xe—-1), 7°&%(x¢—1)/100 + o2),

which is based on a 1st order Taylor expansion of h(x;) = x2/20
around g(x¢—1).
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Another APF:

P(xt|yt) Vt. M = 100,000 particles.

G

sh=l=t==

=h=h=t—iu

- e



Root MSE:
Based on R = 100 data sets, n = 100 and M = 1,000 particles.

Root MSE is \/% S (% — Xf)?2, where xf = E(xely?).

>
®
-
w
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g
8
g -
& _— ;
° ; :
°
< : : :
T T
BF APF APF better
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L

1,000,000 particles.

n M

t=1,...,

ing (0%, 12

t) for

L

Bl

BF + learn

AT / B0




1,000,000 particles.

n M

t=1,...,

ing (0’2’ 7'2

t) for

e RN

Pl

APF + learn




Parameter learning:
p(o?|y?) and p(72|y?) for t =1,...,n. M = 1,000,000 particles.
Left column: BF. Right column: APF.

o
o T T T T T

3 0o 20 0 0 o 0 20 3 4 50 0 0 20 % 0 50

rrrrrrrrrr

P 2
© T T T T T ° T
o 0 2 3 4 50 50
Time
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Parameter learning:
Root MSE based on R = 100 data sets, n = 100 and M = 1,000

particles.

Root MSE

T T T
BF APF APF better
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MCMC:

p(c?ly™) and p(72|y"). Burn-in=10,000,

size=1,000.

Lag=100 and MCMC

T T T T
0 800 1000 20 30 12
[ER B I T T
e T T T [T 8
. S



Comparison:
p(c?ly™) and p(72|y"). MCMC is based on burn-in=10, 000,
Lag=100 and MCMC size=1,000. Particle filters are based on
M = 1,000,000 particles.

nnnnnnnnn
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Autocorrelation functions for MCMC draws from p(x:|y").
Top graph: based on all 110,000 draws.
Bottom graph: based on 1,000 draws (after burn-in=10,000 and
keeping only 100th draw.

1.0

ACF
0.6
|

0.4

0.2

0.0
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P(xnly"). MCMC is based on burn-in=10, 000, Lag=100 and
MCMC size=1,000. Particle filters are based on M = 1,000, 000
particles.
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2.5th, 50th and 97.5th percentiles of p(x¢|y") for t =1,..., n.
MCMC is based on burn-in=10,000, Lag=100 and MCMC
size=1,000. True values x;s are the red dots.
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Basic references

Gordon, Salmond and Smith (1993) Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. Radar and Signal Processing, IEE Proceedings F 140,
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