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Learning θ offline

Two-step strategy: On the first step, approximate p(θ|yn) by

pN(θ|yn) =
pN(yn|θ)p(θ)

p(yn)
∝ pN(yn|θ)p(θ)

where pN(yn|θ) is a SMC approximation to p(yn|θ). Then, on the
2nd step, sample θ via a MCMC scheme or a SIR scheme1.

Problem 1: SMC looses its appealing sequential nature.

Problem 2: Overall sampling scheme is sensitive to pN(y |θ).

1
See Fernándes-Villaverde and Rubio-Raḿırez (2007) “Estimating Macroeconomic Models: A Likelihood

Approach”, DeJong, Dharmarajan, Liesenfeld, Moura and Richard (2009) “Efficient Likelihood Evaluation of
State-Space Representations” for applications of this two-step strategy to DSGE and related models.
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Example i: Exact integrated likelihood p(y n|σ2, τ 2)
Let us revisit our 1st order DLM, where
n = 100, x0 = 0, σ2 = 1, τ2 = 0.5 and x0 ∼ N(0.0, 100)
30× 30 grid: σ2 = (0.1, . . . , 2) and τ2 = (0.1, . . . , 3)
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Example i: Approximated pN(y n|σ2, τ 2)

Based on N = 1000 particles

σσ2

ττ2

0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

t=10

● ●

σσ2

ττ2

0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

t=20

●
●

σσ2

ττ2

0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

t=30

●

●

σσ2

ττ2

0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

t=40

●●

σσ2

ττ2

0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

t=50

●

●

σσ2

ττ2

0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

t=60

●
●

σσ2

ττ2

0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

t=70

●
●

σσ2

ττ2

0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

t=80

●●

σσ2

ττ2

0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

t=90

●●

σσ2

ττ2

0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

t=100

●
●

5 / 62



Learning θ sequentially
Sequentially learning xt and θ.

Posterior at t : p(xt |θ, y t)p(θ|y t)

⇓
Prior ate t+1 : p(xt+1|θ, y t)p(θ|y t)

⇓
Posterior at t+1 : p(xt+1|θ, y t+1)p(θ|y t+1)

Advantages:
Sequential updates of p(θ|y t), p(xt |y t) and p(θ, xt |y t)
Sequential h-steps ahead forecast p(yt+h|y t)
Sequential approximations for p(yt |y t−1)
Sequential Bayes factors

B12t =

∏t
j=1 p(yj |y j−1,M1)∏t
j=1 p(yj |y j−1,M2)
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Liu and West filter

Liu and West (2001) approximates p(θ|y t) by

pN(θ|y t) =
N∑

i=1

ω
(i)
t fN(θ|aθ(i)

t + (1− a)θ̄t , (1− a2)Vt)

where θ̄t and Vt approximate the mean and variance of θ, given y t .

This leads to

p(θt+1|x (i)
t , θ

(i)
t ) = fN(θt+1|aθ(i)

t + (1− a)θ̄t , (1− a2)Vt)

and weights

ω
(i)
t+1 = ω

(i)
t

p(yt+1|(xt+1, θt+1)(i))

q1((x̃t , θ̃t)(i))|yt+1)
.
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Resampling step

q1(xt , θt |yt+1) = p(yt+1|g(xt),m(θt))

where

g(xt) = E (xt+1|xt ,m(θt))

m(θt) = aθt + (1− a)θ̄t

The weights are then

ω
(i)
t+1 = ω

(i)
t

p(yt+1|x (i)
t+1, θ

(i)
t+1)

p(yt+1|g(x̃
(i)
t ),m(θ̃

(i)
t ))
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Choice of a

Liu and West (2001) use a discount factor argument (see West
and Harrison, 1997) to set the parameter a:

a =
3δ − 1

2δ

For example,

I δ = 0.50 leads to a = 0.500

I δ = 0.75 leads to a = 0.833

I δ = 0.95 leads to a = 0.974

I δ = 1.00 leads to a = 1.000.

In the last case, i.e. a = 1.0, the particles of θ will degenerate over
time to a single particle.
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LW algorithm
For particles {(xt , θt , ωt)(j)}Nj=1 summarizing p(xt , θ|y t), estimates

θ̄t =
∑N

i=1 ω
(i)
t θ

(i)
t and Vt =

∑N
i=1 ω

(i)
t (θ

(i)
t − θ̄t)(θ

(i)
t − θ̄t)′, and

given shrinkage parameter a, the algorithm runs as follows.

I For i = 1, . . . ,N, compute

I m(θ
(i)
t ) = aθ

(i)
t + (1− a)θ̄t .

I g(x
(i)
t ) = E (xt+1|x (i)

t ,m(θ
(i)
t )).

I w
(i)
t+1 = p(yt+1|g(x

(j)
t ),m(θ

(j)
t )).

I For i = 1, . . . ,N
I Resample (x̃t , θ̃t)(i) from {(xt , θt ,wt+1)(j)}Nj=1.

I Sample θ
(i)
t+1 ∼ N(m(θ̃

(i)
t ), h2Vt).

I Sample x
(i)
t+1 from p(xt+1|x̃ (i)

t , θ
(i)
t+1).

I Compute weight

ω
(i)
t+1 = ω

(i)
t

p(yt+1|x (i)
t+1, θ

(i)
t+1)

p(yt+1|g(x̃
(i)
t ),m(θ̃

(i)
t ))

.

10 / 62



Example ii. State and parameter learning in the NDLM

Let us consider the following NDLM

yt |xt , θ ∼ N(xt , σ
2)

xt |xt−1, θ ∼ N(α + βxt−1, τ
2)

with x0 ∼ N(m0,C0) and θ = (α, β, σ2, τ2).

The optimal resampling distribution is

(yt |xt−1, θ) ∼ N(α + βxt−1, σ
2 + τ2).

The optimal sampling distributions is

(xt |xt−1, y
t , θ) ∼ N((1− A)(α + βxt−1) + Ayt ,Aσ

2),

where A = τ2/(σ2 + τ2).
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Example ii. Learning θ
Assume that the prior of θ = (α, β, τ2, σ) is

p(θ|s0) = pIG (σ2; n0/2, n0σ
2
0/2)pNIG (γ, τ2; g0,G0, ν0/2, ν0τ

2
0 /2),

where γ = (α, β) and known s0 = (n0, σ
2
0, g0,G0, ν0, τ

2
0 ).

It follows that

p(θ|st) = pIG (σ2; nt/2, ntσ
2
t /2)pNIG (γ, τ2; gt ,Gt , νt/2, νtτ

2
t /2),

where nt = nt−1 + 1, νt = νt−1 + 1, zt = (1, xt−1)′,

ntσ
2
t = nt−1σ

2
t−1 + (yt − xt)2

G−1
t = G−1

t−1 + ztz
′
t

G−1
t gt = G−1

t−1gt−1 + ztxt

νtτ
2
t = νt−1τ

2
t−1 + x2

t − g ′tG
−1
t gt

and
st = (nt , σ

2
t , gt ,Gt , νt , τ

2
t ) = S(st−1, xt−1, xt , yt).
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Particle learning

For particle set {(xt−1, st−1, θ)(i)}Ni=1, the algorithm is:

1. Resample (x̃t−1, s̃t−1, θ̃)(i) from the above set with weights

ω
(i)
t ∝ p(yt |x (i)

t−1, θ
(i));

2. Sample x
(i)
t ∼ p(xt |x̃ (i)

t−1, y
t , θ̃(i));

3. Update s
(i)
t = S(s̃

(i)
t−1, x̃

(i)
t−1, x

(i)
t , yt);

4. Sample θ(i) ∼ p(θ|s(i)
t ).
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Storvik’s filter

For particle set {(xt−1, st−1, θ)(i)}Ni=1, the algorithm is:

1. Sample x
(i)
t ∼ p(xt |x (i)

t−1, y
t , θ(i));

2. Resample (x̃t−1, x̃t , s̃t−1, θ̃)(i) from the above set with weights

ω
(i)
t ∝ p(yt |x (i)

t−1, θ
(i));

3. Update s
(i)
t = S(s̃

(i)
t−1, x̃

(i)
t−1, x̃

(i)
t , yt);

4. Sample θ(i) ∼ p(θ|s(i)
t );

5. Set x
(i)
t = x̃

(i)
t .

See Storvik (2002) and Fearnhead (2002).
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Integrating xt−1 out

Let (xt−1|y t−1, θ) ≡ (xt−1|rt−1, θ) ∼ N(mt−1,Ct−1), where

rt−1 = (mt−1,Ct−1).

Goal: rt = R(rt−1, θ).

The optimal resampling distribution is

(yt |y t−1, θ) ≡ (yt |rt−1, θ) ∼ N(at ,Qt)

where at = α + βmt−1 and Qt = β2Ct−1 + τ2 + σ2.

It is easy to see that

(xt |y t , θ) ≡ (xt |yt , rt−1, θ) ∼ N(mt ,Ct)

where mt = (1− At)at + Atyt and Ct = Atσ
2, for At = Rt/Qt .
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However, in order to update st (and sample θ) we need to sample

(xt−1, xt) ∼ p(xt−1, xt |yt , rt−1, θ)

It can be shown that

(xt |xt−1, yt , rt−1, θ) ∼ N((1− A)(α + βxt−1) + Ayt ,Aσ
2)

and
(xt−1|yt , rt−1, θ) ∼ N(vx ,Vx)

where

A = τ2/(σ2 + τ2)

V−1
x = C−1

t−1 + Aτ−2β2

V−1
x vx = Ct−1mt−1 + Aτ−2β(yt − α)
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PL with state sufficient statistics

For particle set {(rt−1, st−1, θ)(i)}Ni=1, the algorithm is:

1. Resample (r̃t−1, s̃t−1, θ̃)(i) from the above set with weights

ω
(i)
t ∝ p(yt |r (i)

t−1, θ
(i));

2. Sample x
(i)
t−1 ∼ p(xt−1|yt , r̃

(i)
t−1, θ̃

(i));

3. Sample x
(i)
t ∼ p(xt |x (i)

t−1, yt , r̃
(i)
t−1, θ̃

(i));

4. Update s
(i)
t = S(s̃

(i)
t−1, x

(i)
t−1, x

(i)
t , yt);

5. Sample θ(i) ∼ p(θ|s(i)
t );

6. Update r
(i)
t = R(r̃

(i)
t−1, θ̃

(i)).
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Example ii. Bootstrap filter with learning θ

For particle set {(xt−1, st−1, θ)(i)}Ni=1, the algorithm is:

1. Sample x̃
(i)
t ∼ p(xt |x (i)

t−1, θ
(i));

2. Sample k i ∼ {1, . . . ,M} with ω
(i)
t ∝ p(yt |x̃ (i)

t );

3. Set x
(i)
t = x̃

(k i )
t ;

4. Update s
(i)
t = S(s

(k i )
t−1, x

(k i )
t−1 , x

(i)
t , yt);

5. Sample θ(i) ∼ p(θ|s(i)
t ).
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Example ii. Auxiliary particle filter with learning θ

For particle set {(xt−1, st−1, θ)(i)}Ni=1, the algorithm is:

1. Resample (x̃t−1, s̃t−1, θ̃)(i) from the above set with weights

ω
(i)
t ∝ p(yt |g(x

(i)
t−1), θ(i));

2. Sample x̃
(i)
t ∼ p(xt |x̃ (i)

t−1, θ̃
(i));

3. Sample k i ∼ {1, . . . ,M} with

π
(i)
t ∝ p(yt |x̃ (i)

t , θ̃(i))/ω
(k i )
t ;

4. Set x
(i)
t = x̃

(k i )
t ;

5. Update s
(i)
t = S(s̃

(k i )
t−1, x̃

(k i )
t−1 , x

(i)
t , yt);

6. Sample θ(i) ∼ p(θ|s(i)
t ).
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Example ii. Comparison between LWF, SF and PL

T = 200 obs. simulated from θ = (0.0, 0.9, 0.5, 1.0) and x0 = 0.

The prior hyperparameters are m0 = 0, C0 = 10, g0 = (0.0, 0.9)′,
G0 = I2, n0 = ν0 = 10, τ2

0 = 0.5 and σ2
0 = 1.0.

Each N = 1000 particle filter is replicated R = 100 times.

A very long PL (N = 100000) is run to serve as a benchmark for
comparison.
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Let q(γ, α, t) be the 100αth percentile of p(γ|y t), where γ is an
element of θ. We define the root mean squared error as the square
root of

MSE (γ, α, f , t) =
∑
t,r

[q(γ, α, t)− qfr (γ, α, t)]2/R

for filter f in {LW,STORVIK,PL} and replication r = 1, . . . ,R.

All filters are fully adapted.

I LW differs from PL only through the estimation of θ.

I Storvik: sample-resample

I PL: resample-sample
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PL and SF are significantly better than the LWF.
PL is moderately better than SF.
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Example iii. Sample-resample or PL?

Three time series of lengthT = 1000 were simulated from

yt |xt , σ
2 ∼ N(xt , σ

2)

xt |xt−1, τ
2 ∼ N(xt−1, τ

2)

with x0 = 0 and (σ2, τ2) in {(0.1, 0.01), (0.01, 0.01), (0.01, 0.1)}.
Throughout σ2 is kept fixed.

The independent prior distributions for x0 and τ2 are
x0 ∼ N(m0,V0) and τ2 ∼ IG (a, b), for a = 10, b = (a + 1)τ2

0 ,
m0 = 0 and V0 = 1, where τ2

0 is the true value of τ2 for a given
study.

We also include BBF in the comparison, for completion.

In all filters τ2 is sampled offline from p(τ2|St) where St is the
vector of conditional sufficient statistics.
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Example iii. Mean absolute error
The three filters are rerun R = 100 times, all with the same seed
within run, for each one of the three simulated data sets. Five
different number of particles N were considered: 250, 500, 1000,
2000 and 5000.

Mean absolute errors (MAE) taken over the 100 replications are
constructed by comparing percentiles of the true sequential
distributions p(xt |y t) and p(τ2|y t) to percentiles of the estimated
sequential distributions pN(xt |y t) and pN(τ2|y t).

For α = 0.1, 0.5, 0.9, true and estimated values of qx
t,α and qτ

2

t,α

were computed, for Pr(xt < qx
t,α|y t) = Pr(τ2 < qτ

2

t,α|y t) = α.

For a in {x , τ2} and α in {0.01, 0.50, 0.99},

MAE a
t,α =

1

R

R∑
r=1

|qa
t,α − q̂a

t,α,r |
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Example iii. M = 500 and learning τ 2.
BBF,sample-resample,PL.
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Example iii. M = 5000 and learning τ 2.
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Example iii. M = 500 and learning xt .
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Example iii. M = 5000 and learning xt .
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Example iv. Computing sequential Bayes factors

A time series yt is simulated from a AR(1) plus noise model:

(yt+1|xt+1, θ) ∼ N(xt+1, σ
2)

(xt+1|xt , θ) ∼ N(βxt , τ
2)

for t = 1, . . . ,T .

We set T = 100, x0 = 0, θ = (β, σ2, τ2) = (0.9, 1.0, 0.5).

σ2 and τ2 are kept known and the independent prior distributions
for β and x0 are both N(0, 1).
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Example iv. Simulated data
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Example iv. PL pure filter versus PL

We run two filters:

I PL pure filter - our particle learning algorithm for learning xt

and keeping β fixed;

I PL - our particle learning algorithm for learning xt and β
sequentially.

The filters are based on N = 10, 000 particles.
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Example iv. PL pure filter versus PL

β was fixed at the true value.
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Example iv. PL - learning β
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Example iv. PL - learning β

Comparing pN(β|y t) with true p(β|y t).
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Example iv. Sequential Bayes factor

Bayes factor 
 PL versus PL pure filter
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Example iv. Posterior model probabilities: 4 models
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Example iv. Posterior model probabilities: 31 models
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PL in Conditional Dynamic Linear Models (CDLM)

The model is

yt+1 = Fλt+1xt+1 + εt+1 where εt+1 ∼ N
(
0,Vλt+1

)
xt+1 = Gλt+1xt + εxt+1 where εxt+1 ∼ N

(
0,Wλt+1

)
The error distribution

p (εt+1) =

∫
N
(
0,Vλt+1

)
p (λt+1) dλt+1

The augmented latent state is

λt+1 ∼ p(λt+1|λt)

PL extends Liu and Chen’s (2000) “Mixture of Kalman Filters”.
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Algorithm

Step 1 (Re-sample): Generate an index k(i) ∼ Multi
(
w (i)

)
where

w (i) ∝ p
(
yt+1|(sx

t , θ)(i)
)

Step 2 (Propagate): States

λt+1 ∼ p
(
λt+1| (λt , θ)k(i) , yt+1

)
xt+1 ∼ p(xt+1| (xt , θ)k(i) , λt+1, yt+1)

Step 3 (Propagate): Sufficient Statistics

sx
t+1 = K (sx

t , θ, λt+1, yt+1)

st+1 = S (st , xt+1, λt+1, yt+1)
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Example v. Dynamic factor with switching loadings

For t = 1, . . . ,T , the model is defined as follows:

I Observation equation

yt |zt , θ ∼ N(γtxt , σ
2I2)

I State equations

xt |xt−1, θ ∼ N(xt−1, σ
2
x)

λt |λt−1, θ ∼ Ber((1− p)1−λt−1qλt−1)

where zt = (xt , λt)′.

Factor loadings: γt = (1, βλt )
′.

Parameters: θ = (β1, β2, σ
2, σ2

x , p, q)′.

40 / 62



Example v. Conditionally conjugate prior

(βi |σ2) ∼ N
(
bi0, σ

2Bi0

)
for i = 1, 2,

σ2 ∼ IG

(
ν00

2
,
d00

2

)
σ2

x ∼ IG

(
ν10

2
,
d10

2

)
p ∼ Beta(p1, p2)

q ∼ Beta(q1, q2)

x0 ∼ N(m0,C0)
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Example v. Particle representation

At time t, particles {
(xt , λt , θ, s

x
t , st)(i)

}N

i=1

approximating
p
(
xt , λt , θ, s

x
t , st |y t

)
where

I sx
t = S(sx

t−1, θ) are state sufficient statistics

I st = S(st−1, xt , λt) are fixed parameter sufficient statistics

42 / 62



Example v. Re-sampling (xt , λt , θ, s
x
t , st)

Let us redefine βi = (1, βi )
′ whenever necessary.

Draw an index k(i) ∼ Multi(ω(i)) with weights

ω(i) ∝ p(yt+1|(sx
t , λt , θ)k(i))

with

p(yt+1|mt ,Ct , λt , θ) =
2∑

j=1

fN (yt+1;βjmt ,Vj) Pr (λt+1 = j |λt , θ)

where Vj = (Ct + σ2
x)βjβ

′
j + σ2I2, mt and Ct are components of sx

t

and fN denotes the normal density function.
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Example v. Propagating states

Draw auxiliary state λt+1

λ
(i)
t+1 ∼ p(λt+1|(sx

t , λt , θ)k(i), yt+1)

where

Pr(λt+1 = j |sx
t , λt , θ, yt+1) ∝ fN (yt+1;βjmt ,Vj) p (λt+1 = j |λt , θ) .

Draw state xt+1 conditionally on λt+1

x
(i)
t+1 ∼ p(xt+1|λ(i)

t+1, (s
x
t , θ)k(i), yt+1)

by a simply Kalman filter update.
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Example v. Updating sufficient statistics for states, sx
t+1

The Kalman filter recursion yield

mt+1 = mt + At+1(yt+1 − βλt+1mt)

Ct+1 = Ct + σ2
x − At+1Q

−1
t+1A

′
t+1

where

Qt+1 = (Ct + σ2
x)γt+1γ

′
t+1 + σ2I2

At+1 = (Ct + σ2
x)γ′t+1Q

−1
t+1
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Example v. Updating suff. statistics for parameters, st+1

Recall that st+1 = S(st , xt+1, λt+1). Then,

(βi |σ2, st+1) ∼ N
(
bi ,t+1, σ

2Bi ,t+1

)
for i = 1, 2,

(σ2|st+1) ∼ IG

(
ν0t

2
,
d0,t+1

2

)
(σ2

x |st+1) ∼ IG

(
ν1t

2
,
d1,t+1

2

)
(p|st+1) ∼ Beta(p1,t+1, p2,t+1)

(q|st+1) ∼ Beta(q1,t+1, q2,t+1)

where Iλt+1=i = Ii , Iλt=i ,λt+1=j = Iij , νit = νi ,t−1 + 1,
B−1

i ,t+1 = B−1
it + x2

t+1, B−1
i ,t+1bi ,t+1 = B−1

it bit + xt+1yt+1,2Ii ,
pi ,t+1 = pit + I1i (similarly for qi ,t+1) for i = 1, 2,
d0,t+1 = d0,t + (yt+1,1 − xt+1)2 +∑2

j=1

[
(yt+1,2 − bj ,t+1xt+1) yt+1,2 + B−1

j ,t+1bj ,t+1

]
Ij , and

d1,t+1 = d1,t + (xt+1 − xt)2.
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Example v. Filtering and smoothing for states
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Example v. Sequential parameter learning
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PL in (state) non-linear normal dynamic models
The model now is

yt+1 = Fλt+1xt+1 + εt+1 where εt+1 ∼ N
(
0,Vλt+1

)
xt+1 = Gλt+1Z (xt) + ωt+1 where ωt+1 ∼ N

(
0,Wλt+1

)
where εt+1 and λt+1 are modeled as before.

Algorithm:

Step 1 (Re-sample): Generate an index k(i) ∼ Multi
(
w (i)

)
where

w (i) ∝ p
(
yt+1|(xt , θ)(i)

)
Step 2 (Propagate):

λt+1 ∼ p
(
λt+1| (λt , θ)k(i) , yt+1

)
xt+1 ∼ p

(
xt+1| (xt , , θ)k(i) , λt+1, yt+1

)
st+1 = S (st , xt+1, λt+1, yt+1)
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Example vi. Fat-tailed nonlinear model

Let

yt+1 = xt+1 + σ
√
λt+1εt+1 where λt+1 ∼ IG

(ν
2
,
ν

2

)
xt+1 = g(xt)β + σxut+1 where g(xt) =

xt

1 + x2
t

where εt+1 and ut+1 are independent standard normals and ν is
known.

The observation error term is non-normal
√
λt+1εt+1 ∼ tν .
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Example vi. Sequential inference
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Example vii. Dynamic multinomial logit model

Let us study the multinomial logit model

P (yt+1 = 1|βt+1) =
eFtβt

1 + eFtβt
and βt+1 = φβt + σxε

β
t+1

where β0 ∼ N(0, σ2/(1− ρ2)). Scott’s (2007) data augmentation
structure leads to a mixture Kalman filter model

yt+1 = I(zt ≥ 0)

zt+1 = Ztβ + εt+1 where εt+1 ∼ −lnE(1)

Here εt is an extreme value distribution of type 1 where E(1) is an
exponential of mean one. The key is that it is easily to simulate
p(zt |β, yt) using

zt+1 = − ln

(
ln Ui

1 + eβiβ
− ln Vi

eβiβ
Iyt+1=0

)
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Example vii. 10-component mixture of normals
Frunwirth-Schnatter and Schnatter (2007) uses a 10-component mixture of normals:

p(εt) = e−εt−e−εt ≈
10X
j=1

wjN (µj , s
2
j )

Hence conditional on an indicator λt we can analyze

yt = I(zt ≥ 0) and zt = µλt + Ztβ + sλt εt

where εt ∼ N(0, 1) and Pr(λt = j) = wj . Also,

sβ
t+1 = K

“
sβ
t , zt+1, λt+1, θ, yt+1

”
p(yt+1|sβ

t , θ) =
X
λt+1

p(yt+1|sβ
t , λt+1, θ)

for re-sampling. Propagation now requires

λt+1 ∼ p
“
λt+1|(sβ

t , θ)k(i), yt+1

”
zt+1 ∼ p

“
zt+1|(sβ

t , θ)k(i), λt+1, yt+1

”
βt+1 ∼ p

“
zt+1|(sβ

t , θ)k(i), λt+1, zt+1

”
where λt+1 comes from a discrete distribution.

Followed by the deterministic updating for conditional sufficient statistics.
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Example vii. Simulated exercise
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Example viii. Sequential Bayesian Lasso
We develop a sequential version of Bayesian Lasso2 for a simple
problem of signal detection. The model takes the form

(yt |θt) ∼ N(θt , 1)

p(θt |τ) = (2τ)−1 exp (−|θt |/τ)

for t = 1, . . . , n and τ2 ∼ IG (a0, b0).

Data augmentation: It is easy to see that

p(θt |τ) =

∫
p(θt |τ, λt)p(λt)dλt

where

λt ∼ Exp(2)

θt |τ, λt ∼ N(0, τ2λt)

2Carlin and Polson (1991) and Hans (2009)
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Example viii. Data augmentation

The natural set of latent variables is given by the augmentation
variable λn+1 and conditional sufficient statistics leading to

Zn = (λn+1, an, bn)

The sequence of variables λn+1 are i.i.d. and so can be propagated
directly with p(λn+1).

The conditional sufficient statistics (an+1, bn+1) are
deterministically determined based on parameters (θn+1, λn+1) and
previous values (an, bn).
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Example viii. PL algorithm

1. After n observations:
{

(Zn, τ)(i)
}N

i=1
.

2. Draw λ
(i)
n+1 ∼ Exp(2).

3. Resample old particles with weights

w
(i)
n+1∝ p(yn+1; 0, 1+τ2(i)λ

(i)
n+1).

4. Sample θ
(i)
n+1 ∼ N(m

(i)
n ,C

(i)
n ), where m

(i)
n = C

(i)
n yn+1 and

C−1
n = 1 + τ̃−2(i)λ̃

−1(i)
n+1 .

5. Suff. stats: a
(i)
n+1 = ã

(i)
n + 1/2, b

(i)
n+1 = b̃

(i)
n + θ

2(i)
n+1/(2λ̃

(i)
n+1).

6. Sample (offline) τ2(i) ∼ IG (an+1, bn+1).

7. Let Z
(i)
n+1 = (λ

(i)
n+1, a

(i)
n+1, b

(i)
n+1).

8. After n + 1 observations:
{

(Zn+1, τ)(i)
}N

i=1
.
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Example viii. Sequential Bayes factor

As the Lasso is a model for sparsity we would expect the evidence
for it to increase when we observe yt = 0.

We can sequentially estimate p(yn+1 | yn, lasso) via

p(yn+1 | yn, lasso) =
1

N

N∑
i=1

p(yn+1 | (λn, τ)(i))

with predictive p(yn+1 | λn, τ) ∼ N(0, τ2λn + 1).

This leads to a sequential Bayes factor

BFn+1 =
p(yn+1 | lasso)

p(yn+1 | normal)
.
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Example viii. Simulated data
Data based on θ = (0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1) and priors
τ2 ∼ IG (2, 1) for the double exponential case and τ2 ∼ IG (2, 3) for
the normal case, reflecting the ratio of variances between those
two distributions.
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Final remarks

PL is a general framework for sequential Bayesian inference in
dynamic and static models.

PL is able to deal with filtering and learning and reduce the
accumulation of error.

The loose definition of sufficient statistics and the flexibility to
freely augment xt makes PL a competitive alternative to MCMC in
highly structured models.

A powerful by-product of PL (and SMC in general) over MCMC
schemes, is its ability to sequentially produce model comparison,
assessment indicators.
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