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Abstract

In this paper we develop particle learning (PL) methods to perform state filtering,

smoothing and sequential parameter learning for a general class of state space mod-

els. Our approach differs from existing particle methods in that it uses state suffi-

cient statistics as particles. State smoothing with parameter uncertainty is solved in

the process of particle learning. We show that particle learning provides significant

improvements over existing particle filtering algorithms as well as the popular filter-

forward-backwards-sample (FFBS) and MCMC methods in a number of applications.
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1 Introduction

There are two general inference problems in state space models: first, state filtering and

smoothing and secondly, sequential parameter learning. Typically, state filtering and smooth-

ing are accomplished by Kalman filter-type methods and parameter estimation is accom-

plished by other estimation methods (Shumway and Stoffer, 2006). This paper presents a

methodology that performs state filtering and smoothing while simultaneously estimating

parameters. The parameter estimation entails sequential parameter learning. We obtain the

full joint posterior distribution of states and parameters sequentially over time as new data

arrives.

In linear Gaussian models with learning, our approach provides a computationally fast

alternative to the popular filter-forward-backwards-sample (FFBS) algorithm developed in

Carter and Kohn (1994) and Frühwirth-Schnatter (1994). For nonlinear non-Gaussian state

space models, we also provide an alternative to standard MCMC methods developed in

Carlin, Polson and Stoffer (1992). Our approach also includes the mixture Kalman filter

models of Chen and Liu (2000). Specifically, we can seamlessly incorporate nonlinearity

into the state evolution and provide full parameter learning. For mixture Kalman filter

models, we can incorporate full parameter learning. The purpose of the paper is to extend

particle learning methods to a wide class of models and to document the performance of

our methodology against common competing approaches.

The central idea behind particle learning (PL) is the creation of a particle method that

directly samples from the joint posterior distribution of state and parameter sufficient statis-

tics. Our approach differs from existing particle methods in that it uses state sufficient

statistics as particles. The parameters and states can then be generated offline given their

respective sufficient statistics. This is achieved by updating the particles with a resample-

propagate step as opposed to the standard propagate-resample approach. Moreover, we ex-

plicitly treat conditional sufficient statistics as states to improve efficiency. By re-sampling

first it also provides a more efficient algorithm for pure filtering.
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There are a number of advantages to using particle learning. First, it provides opti-

mal filtering distributions in the presence of sequential parameter learning. For Gaussian

DLMs and conditionally Gaussian DLMs (CDLM), particles are defined over both state

and parameter sufficient statistics, such as the Kalman filter’s mean and variance. Our ap-

proach extends Chen and Liu’s (2000) mixture Kalman filter (MKF) method by allowing

for parameter learning. We show how nonlinearity in the state evolution, but linearity in

the observation equation, is straightforward to implement. This dramatically extends the

class of models that MKF methods apply to. In the fully general case, we are no longer

able to marginalize out the state variables and use state sufficient statistics, we can still

utilize parameter sufficient statistics and generate exact samples from the particle poste-

rior. In a comprehensive simulation study, we demonstrate that PL provides a significant

improvement over the current benchmarks in the literature such as Liu and West (2001) for

parameter learning and forward-filtering, backward-sampling (FFBS) for filtering.

Secondly, the full smoothing distribution of states can be achieved by a non-trivial ex-

tension of Godsill, Doucet and West’s (2004) smoothing results for filtering with known

parameters to all models considered above. In doing so, PL also extends Chen and Liu’s

(2000) MKF in computing the sequence of smoothed distributions, p(xt|yt). Posterior in-

ference is typically solved via Markov chain Monte Carlo (MCMC) methods as p (xt|yt) is

a difficult-to-compute marginal from p (xt, θ|yt). Our simulations provide strong evidence

that PL dominates the standard MCMC strategies in computing time and delivers similar

accuracy when computing p (xt|yt). Gains are most remarkable in models with nonlineari-

ties (CNDM), where the common alternative of MCMC with single-states updates are well

known to be inefficient (Papaspiliopoulos and Roberts, 2008). Another advantage of PL

over MCMC in these classes of models is the direct and recursive access to approximations

of predictive distributions a key element in sequential model comparison. Finally, compu-

tational efficiency and speed. The use of state sufficient statistics dramatically reduces the

Monte Carlo error inherent in these simulation methods.
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We therefore build upon existing particle methods by allowing for parameter learn-

ing to accompany the filtering process. To be efficient, our algorithms utilize a resample-

propagate algorithm together with a particle set that includes state sufficient statistics. Until

now most of the literature focuses exclusively on state filtering conditional on parameters

using particle filtering methods. Extending these algorithms to handle parameter learning is

an active area of research with important developments appearing in Liu and West (2001),

Storvik (2002), Fearnhead (2002) and Johannes and Polson (2007) to cite a few.

The paper is outlined as follows. Section 2 presents the general filtering and smoothing

strategy for PL. Section 3 considers the class of conditional dynamic linear models. Sec-

tion 4 discuss the implementation of our methods in nonlinear specifications. Sections 5

compares the performance of PL to MCMC and alternative particle methods.

2 Particle Learning and Smoothing

Sequential learning of states and parameter via their joint posterior distributions is com-

putationally difficult due to their dimensionality and complicated probabilistic relationship

between the parameters, states, and data. The classic example of recursive estimation is the

Kalman filter (Kalman, 1960) in the case of linear Gaussian models with known parame-

ters. For nonlinear and nonGaussian data, MCMC methods have been developed to solve

the filtering, smoothing and learning problem (Carlin, Polson and Stoffer, 1992) but are too

slow for the sequential problem, which requires on-line simulation based on a recursive or

iterative structure.

Consider a general state space model defined by the observation and evolution equations

yt+1 ∼ p (yt+1|xt+1, θ)

xt+1 ∼ p (xt+1|xt, θ) ,

with initial state distribution p (x0|θ) and prior p(θ). The sequential parameter learning

and state filtering problem is characterized by the joint posterior distribution, p (xt, θ|yt)
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whereas smoothing is characterized by p
(
xT , θ|yT

)
, with yt = (y1, . . . , yt), xt = (x1, . . . , xt)

and T denoting the last observation time. In this paper, we use a particle approach to se-

quentially filter states and learn parameters via p (xt, θ|yt) and to obtain p
(
xT |yT

)
by back-

wards propagation. Our approach solves the filtering, learning and smoothing problems for

state space models.

2.1 State Filtering with Learning: Re-sample-Propagate

Generically, we assume that at time t, i.e. conditional on yt, the particle approximation to

p(zt|yt) is given by the particle set {z(i)
t , i = 1, . . . , N}, where zt = (xt, st, θ). We differ

from the current literature in that we track state sufficient statistics sxt as well as parameter

sufficient statistics sθt , such that st = (sxt , s
θ
t ). Once yt+1 is observed, the algorithm has to

update the particles in accordance with

p(zt|yt+1) = p(yt+1|zt)p(zt|yt)/p(yt+1|yt) (1)

p(xt+1|yt+1) =

∫
p(xt+1|zt, yt+1)p(zt|yt+1)dzt. (2)

These are the classic Kalman-type propagation and marginalization rules, although in re-

verse order. This leads to a re-sample-propagate algorithm. Updating sufficient statistics

st+1 is deterministic and drawing a new state and parameter vector (xt+1, θ) given st is

given by the appropriate conditional posterior. A particle approximation to (1) is

pN(zt|yt+1) =
N∑
i=1

w
(i)
t δz(i)t

(zt)

where δz(·) denotes the delta-Dirac mass located in z and normalized weights

w
(i)
t =

p(yt+1|z(i)
t )∑N

j=1 p(yt+1|z(j)
t )

. (3)

This updated approximation of p(zt|yt+1) is used in (2) to generate propagated samples

from the posterior p(xt+1|zt, yt+1), which are, in turn, used to deterministically update sxt+1

by the recursive map

sxt+1 = S(sxt , xt+1, θ, yt+1) (4)
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where we allow a dependence on θ. Similarly for sθt+1. Finally, parameter learning p(θ|yt+1)

will then be performed “offline” by simulating particles from p(θ|st+1). Therefore, after

observing yt+1, we have a particle approximation pN(zt+1|yt+1) given by a set of particles

{z(i)
t+1, i = 1, . . . , N}.

Particle Learning

1. Resample particles zt = (xt, st, θ) with weights

w
(i)
t ∝ p(yt+1|z(i)

t )

2. Propagate new states xt+1 from p(xt+1|zt, yt+1)

3. Update state and parameter sufficient statistics st+1 = S(st, xt+1, yt+1)

4. Sample θ from p(θ|st+1)

Our approach departures from the standard particle filtering literature by inverting the

order in which states are propagated and updated. By re-sampling first we reduce the

compounding of approximation errors as the states are propagated after being “informed”

by yt+1. In addition, borrowing the terminology of Pitt and Shephard (1999), PL is a fully-

adapted filter that starts from a particle approximation pN(zt|yt) and provides direct (or

exact) draws from the particle approximation pN(zt+1|yt). This reduces the accumulation

of Monte Carlo error as there is no need to re-weight or compute importance sampling

weights at the end of the filter.

Since st and xt+1 are random variables, the conditional sufficient statistics st+1 are also

random and are replenished, essentially as a state, in the filtering step. This is the key

insight for handling the learning of θ. The particles for st+1 are sequentially updated and

replenished as a function of xt+1 and updated samples from p(θ|st+1) can be obtained at

the end of the filtering step. We describe this in detail in the next section.
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Finally, updated samples for st+1 are obtained as a function of the samples of xt+1,

with weights 1/N , which prevents particle degeneracies in the estimation of θ. This is

a feature of the “re-sample-propagate” mechanism of PL. Conversely, any “propagate-re-

sample” strategy will lead to decay in the particles of xt+1 with significant negative effects

on the parameter particles. This strategy will only be possible whenever both p(yt+1|zt)

and p(xt+1|zt, yt+1) are analytically tractable which is the case in the classes of models

considered here. The above interpretation provides a clear intuition for the construction of

effective filters as the goal is to come up with proposals that closely match these densities.

2.2 Parameter Learning

For all models considered, we assume that the posterior for the parameter vector θ admits

a conditional sufficient statistics structure given the states and data (xt, yt), so that

p(θ|xt, yt) = p(θ|st),

where st is a recursively defined sufficient statistics, st+1 = S(st, xt+1, yt+1). The use

of sufficient statistics is foreshadowed in Gilks and Berzuini (2001), Storvik (2002) and

Fearnhead (2002). Previous approaches to parameter learning include the addition of θ in

the particle set or the introduction of evolutionary noise, turning θ into an artificial state

(Gordon et al., 1993). The first alternative breaks down quickly as there is no mechanism

for replenishing the particles of θ whereas the second overestimate the uncertainty about

θ by working with a different model. Liu and West (2001) propose a learning scheme

adapted to the auxiliary particle filter that approximates p(θ|yt) by a kernel mixture of

normals. While being a widely used and applicable strategy, it still degenerates fairly

quickly because the propagation mechanism for xt+1 and θ does not take into account

the current information yt+1. This is highlighted in our simulation studies of Section 5.

Another alternative is to consider sampling over (θ, xt) with a Metropolis kernel as in Gilks

and Berzuini (2001) and Polson, Stroud and Müller (2008). The complexity of this strategy
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grows with t and suffers from the curse of dimensionality as discussed in Bengtsson, Bickel,

and Li (2008). Our approach is of fixed dimension as it targets the filtering distribution of

(st, xt).

The introduction of sufficient statistics provides the mechanism to break particle decay

by sequentially targeting (st, xt), where st is automatically replenished as a function of the

current samples for xt and observation yt. One way to interpret this strategy is to think of

st as an additional latent state in the model, with a deterministic evolution determined by

(4). This can be seen by the following factorization of the joint conditional posterior

p(xt, st, θ|yt) = p(θ|st)p(xt, st|yt).

Our algorithm will be based on developing a particle approximation pN(xt, st|yt) to the

joint distribution of states and sufficient statistics.

Example 1. First order DLM. For illustration, let start considering the simple first

order dynamic linear model, also known as the local level model (West and Harrison,

1997), where

(yt+1|xt+1, θ) ∼ N(xt+1, σ
2)

(xt+1|xt, θ) ∼ N(xt, τ
2)

with θ = (σ2, τ 2), x0 ∼ N(m0, C0), σ2 ∼ IG(a0, b0) and τ 2 ∼ IG(c0, d0). The initial

hyperparameters m0, C0, a0, b0, c0 and d0 can be fixed or random. This model implies

(yt+1|xt, θ) ∼ N(xt, σ
2 + τ 2), (xt+1|yt+1, xt, θ) ∼ N(µt, ω

2), where µt = ω2(σ−2yt+1 +

τ−2xt) and ω−2 = σ−2 + τ−2. For the parameter conditionals, (σ2|yt+1, xt+1) ∼ IG(at+1,

bt+1) and (τ 2|yt+1, xt+1) ∼ IG(ct+1, dt+1), where at+1 = at + 1/2, ct+1 = ct + 1/2,

bt+1 = bt + 0.5(yt+1 − xt+1)
2 and dt+1 = dt + 0.5(xt+1 − xt)2. Therefore, one can track

the vector of conditional sufficient statistics st+1 = (y2
t+1, yt+1xt+1, x

2
t+1, x

2
t , xt+1xt).
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2.3 State Sufficient Statistics

The use of state sufficient statistics will lead to an efficient approach in dynamic linear

models. In the predictive, we marginalize states and just track conditional state sufficient

statistics. Here we use the fact that

p(xt|yt) =

∫
p(xt|sxt )p(sxt |yt)dsxt = Ep(sx

t |yt)[p(xt|sxt )].

and we track particles for p(sxt |yt). The filtering recursions linking p(sxt |yt) to p(sxt+1|yt+1)

are given by

p(sxt+1|yt+1) =

∫
p(sxt+1|sxt , xt+1, yt+1)p(s

x
t , xt+1|yt+1)dsxt dxt+1

∝
∫
p(sxt+1|sxt , xt+1, yt+1)p(yt+1|sxt )p(xt+1|sxt , yt+1)p(s

x
t |yt)dsxt dxt+1,

where we use p(yt+1|sxt ) for resampling weights. Instead of marginalizing xt, you now

marginalize over sxt and xt+1. For this to be effective we need the following conditional

posterior

p(xt+1|sxt , yt+1) =

∫
p(xt+1|xt, yt+1)p(xt|sxt )dxt.

We can then proceed with the particle learning algorithm. The weights p(yt+1|sxt ) are flatter

than those of p(yt+1|xt), due to Rao-Blackwellisation, and this will add to the efficiency of

the algorithm.

Example 1. (cont.) Conditional on parameters (xt|θ) ∼ N(mt, Ct) with sxt = (mt, Ct).

It is then straightforward to derive (yt+1|mt, Ct, θ) ∼ N(mt, Ct+σ2 + τ 2). The recursions

for the state sufficient statistics vector sxt are the well known Kalman recursions, mt+1 =

(1−At+1)mt +At+1yt+1 and Ct+1 = At+1σ
2, where At+1 = (Ct + τ 2)/(Ct + τ 2 + σ2) is

the Kalman gain.
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2.4 Smoothing

After one sequential pass through the data, our particle approach computes samples from

pN(xt, st|yt) for all t. However, in many situations, we also require samples from the

full smoothing distribution p(xT |yT ). This is typically carried out by a MCMC scheme.

We now show that our particle learning strategy provides a direct backward sequential

pass to also sample from the smoothing distribution. To compute the marginal smoothing

distribution, we write the joint posterior of (xT , θ) as

p(xT , θ|yT ) =
T−1∏
t=1

p(xt|xt+1, θ, y
t)p(xT , θ|yT ).

By Bayes rule and conditional independence we have

p(xt|xt+1, θ, y
t) ∝ p(xt+1|xt, θ, yt)p(xt|θ, yt). (5)

We can now derive a recursive backward sampling algorithm to sample from p(xT , θ|yT ) by

sequentially sampling from filtered particles with weights proportional to p(xt+1|xt, θ, yt).

In detail, randomly choose at T , (x̃T , s̃T ) from the particle approximation pN(xT , sT |yT )

and sample θ̃ ∼ p(θ|s̃T ). Going backwards, for t = T − 1, . . . , 1, we choose x̃t = x
(i)
t

from the filtered particles {x(i)
t , i = 1, . . . , N} with (unnormalized) weights w(i)

t|t+1 =

p(x̃t+1|x(i)
t , θ̃).

Particle Smoothing

1. Forward filtering (xT , θ)(i) via Particle Learning.

2. Backwards smoothing, for each pair (x
(i)
T , θ

(i)), with weights

w
(j)
t|t+1 ∝ p(x

(i)
t+1|x

(j)
t , θ(i))

for t = T − 1, . . . , 1.
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Our particle smoothing algorithm is an extension of Godsill, Doucet and West (2004)

method to state space models with parameter learning. See also, Briers, Doucet and

Maskell (2009) for an alternative SMC smoother. Both SMC smoothers are O(TN2),

so the computational time to obtain draws from p(xT |yT ) is expected to be much larger

than the computational time to obtain draws from p(xt|yt), for t = 1, . . . , T , from standard

SMC filters. An O(TN) smoothing algorithm has recently been introduced by Fearnhead,

Wyncoll and Tawn (2008).

Example 1. (cont.) For t = T−1, . . . , 2, 1, we can derive (xt|xt+1, y
T , θ) ∼ N(at, Dtτ

2)

and (xt|yT , θ) ∼ N(mT
t , C

T
t ), where at = (1 − Dt)mt + Dtxt+1 m

T
t = (1 − Dt)mt +

Dtm
T
t+1, CT

t = (1 − Dt)Ct + D2
tC

T
t+1, and Dt = Ct/(Ct + τ 2) with terminal conditions

mT
T = mT and CT

T = CT .

2.5 Model Monitoring

The particle output of PL can also be used to for sequential predictive problems and model

assessment in state space models. Specifically, the marginal predictive for a given model

M can be approximated via

pN(yt+1|yt,M) =
1

N

N∑
i=1

p(yt+1|(xt, θ)(i),M).

This then allows the computation of a particle approximation to the Bayes factor Bt or

sequential likelihood ratios for competing models M0 and M1 (see, for example, West,

1986) defined by:

Bt =
p(yt|M1)

p(yt|M0)

where p(yt|Mi) =
∏t

j=1 p(yj|yj−1,Mi), for i = 0, 1. We then simply sequentially approx-

imate each predictive term using our particle method.
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Model Monitoring

Calculate the marginal likelihood using

pN(yt+1|yt) =
1

N

N∑
i=1

p(yt+1|(xt, θ)(i)).

An important advantage of PL over MCMC schemes is that it directly provides the

filtered joint posteriors p(xt, θ|yt) and hence p(yt+1|yt) whereas MCMC would have to be

repeated T times to make that available.

2.6 Discussion

Our approach relies on three main insights to deal with these problems: (i) conditional

sufficient statistics are used to represent the posterior of θ. This allows us to think of the

sufficient statistics as additional states that are sequentially updated. Whenever possible,

sufficient statistics for the latent states are also introduced. This increases the efficiency of

our algorithm by reducing the variance of sampling weights in what can be called a Rao-

Blackwellized filter. (ii) We use a re-sample/propagate framework to provide exact sam-

ples from our particle approximation when moving from pN(xt, θ|yt) to pN(xt+1, θ|yt+1).

This avoids sample importance re-sampling (SIR) (Gordon, Salmond and Smith, 1993)

and the associated “decay” in the particle approximation. Finally, (iii) we extend the back-

ward propagation smoothing algorithm of Godsill, Doucet and West (2004) to incorporate

uncertainty about θ.

Another way to see why the algorithm performs well is as follows. Consider the pure

filtering problem. Traditionally, this is performed via a prediction step and then an updating

step, i.e.

p(xt+1|yt) =

∫
p(xt+1|xt)p(xt|yt)dxt (6)

p(xt+1|yt+1) = p(yt+1|xt+1)p(xt+1|yt)/p(yt+1|yt). (7)
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(see Kalman, 1960). This has lead to numerous particle filtering algorithms that are first

based on propagation (the prediction step) and then on re-sampling (the updating step).

These algorithms have well known degeneracy problems, most clearly discussed in Pitt

and Shephard (1999). Our strategy uses Bayes rule and reverses the logic with:

p(xt|yt+1) = p(yt+1|xt)p(xt|yt)/p(yt+1|yt) (8)

p(xt+1|yt+1) =

∫
p(xt+1|xt, yt+1)p(xt|yt+1)dxt. (9)

Therefore, our algorithm will first re-sample (smooth) and then propagate. Notice that

this approach first solves a smoothing problem, re-sampling to characterize p(xt|yt+1), and

then propagates these re-sampled states. Since information in yt+1 is used in both steps, the

algorithm will be more efficient. Mathematically, the weights used for re-sampling are

p(yt+1|xt) =

∫
p(yt+1|xt+1)p(xt+1|xt)dxt+1. (10)

Throughout, we note that efficiency improvements can be made by marginalizing out as

many variables from the predictive distribution in the re-sampling step as possible. Most

efficient will be re-sampling with predictive p(yt+1|sxt , st), that is, given just the conditional

sufficient statistics for parameters and states (sxt ) (see Section 3). This point can be casted in

terms of the effective sample size (see Kong, Liu and Wong, 1994) and its relationship to the

re-sampling weights in pure filtering context, conditionally on θ. The weights for standard

approaches are based on blind propagation and are given by w(xt+1) = p(yt+1|xt+1, θ).

Our algorithm reverses this logic and first re-samples and then propagates. This has weights

w(xt) = p(yt+1|xt, θ). The most efficient approach is to marginalize,whenever possible,

over the state vector and condition on sxt leading to weights w(sxt ). This is the case for the

models presented in the next Section.

Convergence properties of the algorithm are straightforward to establish. The choice of

particle size N to achieve a desired level of accuracy depends on the speed of Monte Carlo

accumulation of error. In many cases this will be uniformly bounded. As with MCMC

the larger the signal to noise ratio the more errors propagate. This should not be confused
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with the nature of particle approximations to diffuse distributions which can also lead to

larger particle sizes. At its simplest level the algorithm only requires samples θ(i) from the

prior p(θ). However, a natural class are mixtures of the form p(θ) =
∫
p(θ|z0)p(z0)dz0.

The conditional p(θ|z0) is chosen to be naturally conjugate so as to facilitate conditional

sufficient statistics. If z0 is fixed, then we start all particles out with the same z0 value.

More commonly, we will start with a sample z(i)
0 ∼ p(Z0). PL will first resample these

draws with the marginal likelihood p(y1|z(i)
0 ) providing large efficiency gains over blindly

samples. Mixtures allow for a range of non-conjugate priors such as vague “uninformative”

priors induced by scale mixtures of normals.

3 Conditional Dynamic Linear Models

We now explicitly derive our PL algorithm in a class of conditional dynamic linear models

which are an extension of the models considered in West and Harrison (1997). This consists

of a vast class of models that embeds many of the commonly used dynamic models. MCMC

via Forward-filtering Backwards-sampling or mixture Kalman filtering (MKF) (Liu and

Chen, 2000) are the current methods of use for the estimation of these models. As an

approach for filtering, PL has a number of advantages over MKF. First, our algorithm is

more efficient as it is a perfectly-adapted filter. Second, we extend MKF by including

learning about fixed parameters and smoothing for states.

The conditional DLM defined by the observation and evolution equations takes the form

of a linear system conditional on an auxiliary state λt+1

(yt+1|xt+1, λt+1, θ) ∼ N(Fλt+1xt+1, Vλt+1)

(xt+1|xt, λt+1, θ) ∼ N(Gλt+1xt,Wλt+1)

with θ containing F s, Gs, V s and W s. The marginal distribution of observation error and

state shock distribution are any combination of normal, scale mixture of normals, or dis-

crete mixture of normals depending on the specification of the distribution on the auxiliary
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state variable p(λt+1|θ), so that,

p(yt+1|xt+1, θ) =

∫
fN(yt+1;Fλt+1xt+1, Vλt+1)p(λt+1|θ)dλt+1.

Extensions to hidden Markov specifications where λt+1 evolves according to p(λt+1|λt, θ)

are straightforward and are discussed in Example 3.1 below.

3.1 Particle Learning in CDLM

In CDLMs the state filtering and parameter learning problem is equivalent to a filtering

problem for the joint distribution of their respective sufficient statistics. This is a direct

factorization of the full joint as

p
(
xt+1, θ, λt+1, st+1, s

x
t+1|yt+1

)
= p(θ|st+1)p(xt+1|sxt+1, λt+1)p

(
λt+1, st+1, s

x
t+1|yt+1

)
,

The conditional sufficient statistics for states (sxt ) and parameters (sθt ) satisfy the determin-

istic updating rules

sxt+1 = K (sxt , θ, λt+1, yt+1) (11)

sθt+1 = S
(
sθt , xt+1, λt+1, yt+1

)
(12)

where K(·) denotes the Kalman filter recursions and S(·) the recursive update of the pa-

rameter sufficient statistics. With sxt = (mt, Ct) as Kalman filter first and second moments

at time t we have, conditional on θ,

p
(
xt+1|sxt+1, θ, λt+1

)
∼ N(at+1, Rt+1)

where at+1 = Gλt+1mt and Rt+1 = Gλt+1CtG
′
λt+1

+Wλt+1 Updating state sufficient statis-

tics (mt+1, Ct+1) is achieved by

mt+1 = Gλt+1mt + At+1

(
yt+1 − Fλt+1Gλt+1mt

)
(13)

C−1
t+1 = R−1

t+1 + F ′λt+1
Fλt+1V

−1
λt+1

(14)
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where the Kalman gain matrix is At+1 = Rt+1Fλt+1Q
−1
t+1 and Qt+1 = Fλt+1Rt+1Fλt+1 +

Vλt+1 .

We are now ready to define the PL scheme for the CDLM. First, without loss of gen-

erality, assume that the auxiliary state variable is discrete with λt+1 ∼ p(λt+1|λt, θ). We

start, at time t, with a particle approximation for the joint posterior

pN(xt, θ, λt, st, s
x
t |yt) =

1

N

N∑
i=1

δ(xt,θ,λt,st,sx
t )(i)(xt, θ, λt, st, s

x
t )

that are then propagated to t + 1 by first re-sampling the current particles with weights

proportional to the predictive p(yt+1|(θ, sxt )). This provides a particle approximation to

p(xt, θ, λt, st, s
x
t |yt+1), the smoothing distribution. New states λt+1 and xt+1 are then prop-

agated through the conditional posterior distributions p(λt+1|λt, θ, yt+1) and p(xt+1|λt+1, xt,

θ, yt+1). Finally the conditional sufficient statistics are updated according to (11) and (12)

and new samples for θ are obtained from p(θ|st+1). Notice that in the conditional dy-

namic linear models all the above densities are available for evaluation and sampling. For

instance, the predictive is computed via

p(yt+1|(λt, sxt , θ)(i)) =
∑
λt+1

p(yt+1|λt+1, (s
x
t , θ)

(i))p(λt+1|λt, θ)

where the inner predictive distribution is given by

p (yt+1|λt+1, s
x
t , θ) =

∫
p (yt+1|xt+1, λt+1, θ) p(xt+1|sxt , θ)dxt+1.

Starting with particle set {(x0, θ, λ0, s0, s
x
0)(i), i = 1, . . . , N} at time t = 0, the above

discussion can be summarized in the following PL algorithm:
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Algorithm 1: CDLM

For t = 0, . . . , T − 1

For i = 1, . . . , N

Step 1 (Re-sample): Generate an index ki ∼ Multinomial(w(1)
t+1, . . . , w

(N)
t+1) where

w
(j)
t+1 ∝ p(yt+1|(λt, sxt , θ)(j)) j = 1, . . . , N

Step 2 (Propagate): States

λ
(i)
t+1 ∼ p(λt+1|(λt, θ)(ki), yt+1)

x
(i)
t+1 ∼ p(xt+1|(xt, θ)(ki), λ

(i)
t+1, yt+1)

Step 3 (Propagate): Sufficient Statistics

s
x(i)
t+1 = K((sxt , θ)

(ki), λ
(i)
t+1, yt+1)

s
(i)
t+1 = S(sk

i

t , x
(i)
t+1, λ

(i)
t+1, yt+1)

Step 4 (Propagate): Parameters

θ(i) ∼ p(θ|s(i)
t+1)

In the general case where the auxiliary state variable λt is continuous it might not be

possible to integrate out λt+1 form the predictive in step 1. We extend the above scheme by

adding to the current particle set a propagated particle λt+1 ∼ p(λt+1|(λt, θ)(i)) and define

the following PL algorithm:
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Algorithm 2: Auxiliary State CDLM

For t = 0, . . . , T − 1

Step 0 (Propagate) State λt+1

λ
(i)
t+1 ∼ p(λt+1|(λt, θ)(i)) i = 1, . . . , N

For i = 1, . . . , N

Step 1 (Re-sample): Generate an index ki ∼ Multinomial(w(1)
t+1, . . . , w

(N)
t+1)

where

w
(j)
t+1 ∝ p(yt+1|(λt+1, s

x
t , θ)

(j)) j = 1, . . . , N

Step 2 (Propagate): State xt+1

x
(i)
t+1 ∼ p(xt+1|(xt, λt+1, θ)

(ki), yt+1)

Step 3 (Propagate): Sufficient Statistics (same as in Algorithm 1)

Step 4 (Propagate): Parameters (same as in Algorithm 1)

Both of the above algorithms can be combined with the backwards propagation scheme

of Section 2.4 to provide a full draw from the marginal posterior distribution for all the

states given the data, namely p(xT |yT ).

Example 2. Dynamic Factor Model with Time-Varying Loadings. Consider data yt =

(yt1, yt2)
′, t = 1, . . . , T , following a dynamic factor model with time-varying loadings

driven by a discrete latent state λt with possible values {1, 2} . Specifically, we have

(yt+1|xt+1, λt+1, θ) ∼ N(βt+1xt+1, σ
2I2)

(xt+1|xt, λt+1, θ) ∼ N(xt, τ
2)

with time-varying loadings βt+1 = (1, βλt+1)
′ and initial state distribution x0 ∼ N(m0, C0).

The jumps in the factor loadings are driven by a Markov switching process (λt+1|λt, θ),
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whose transition matrix Π has diagonal elements Pr(λt+1 = 1|λt = 1, θ) = p and

Pr(λt+1 = 2|λt = 2, θ) = q. The parameters are θ = (β1, β2, σ
2, τ 2, p, q)′. See Lopes

and Carvalho (2007) and Carvalho and Lopes (2007) for related Markov switching mod-

els.

We are able to develop the algorithm marginalizing over both (xt+1, λt+1) by using state

sufficient statistics sxt = (mt, Ct) as particles. From the Kalman filter recursions we know

that p(xt|λt, θ, yt) ∼ N(mt, Ct). The mapping for state sufficient statistics (mt+1, Ct+1) =

K (mt, Ct, λt+1, θ, yt+1) is given by the one-step Kalman update as in (13) and (14). The

prior distributions are conditionally conjugate where (βi|σ2) ∼ N(bi0, σ
2Bi0) for i = 1, 2,

σ2 ∼ IG(ν00/2, d00/2) and τ 2 ∼ IG(ν10/2, d10/2). For the transition probabilities, we

assume that p ∼ Beta(p1, p2) and q ∼ Beta(q1, q2). Assume that at time t, we have

particles {(xt, θ, λt, sxt , st)(i), i = 1, . . . , N} approximating p(xt, θ, λt, sxt , st|yt). The PL

algorithm can be described through the following steps:

1. Re-sampling: Draw an index ki ∼ Multinomial(w(1)
t , . . . , w

(N)
t ) with weights w(i)

t ∝

p(yt+1|(mt, Ct, λt, θ)
(ki)) where

p(yt+1|mt, Ct, λt, θ)=
2∑

λt+1=1

fN(yt+1; βt+1mt, (Ct+τ
2)βt+1β

′
t+1+σ2I2)p(λt+1|λt, θ),

where fN(x; a, b) denotes the density of the normal distribution with mean a and

variance b and evaluation at the point x.

2. Propagating λ: Draw auxiliary state λ(i)
t+1 from Pr(λt+1|(sxt , λt, θ)(ki), yt+1), where

Pr(λt+1|sxt , λt, θ, yt+1) ∝fN(yt+1; βt+1mt, (Ct + τ 2)βt+1β
′
t+1 + σ2I2)Pr(λt+1|λt, θ).

3. Propagating x: Draw states x(i)
t+1 ∼ p(xt+1|λ(i)

t+1, (s
x
t , θ)

(ki), yt+1)

4. Updating sufficient statistics for states: The Kalman filter recursions yield

mt+1 = mt + At+1(yt+1 − βt+1mt)

Ct+1 = Ct + τ 2 − At+1Q
−1
t+1A

′
t+1
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where Qt+1 = (Ct + τ 2)βt+1βt+1 + σ2I2 and At+1 = (Ct + τ 2)Q−1
t+1βt+1.

5. Updating sufficient statistics for parameters: The conditional posterior p(θ|st) is de-

composed into

p(βi|σ2, st+1) ∼ N(bi,t+1, σ
2Bi,t+1) i = 1, 2

p(σ2|st+1) ∼ IG(ν0,t+1/2, d0,t+1/2)

p(τ 2|st+1) ∼ IG(ν1,t+1/2, d1,t+1/2)

p(p|st+1) ∼ Beta(p1,t+1, p2,t+1)

p(q|st+1) ∼ Beta(q1,t+1, q2,t+1)

withB−1
i,t+1 = B−1

it +x2
t+1Iλt+1=i, bi,t+1 = Bi,t+1

(
B−1
it bit + xtyt2Iλt+1=i

)
and νi,t+1 =

νi,t + 1, for i = 1, 2, d1,t+1 = d1t + (xt+1− xt)2, p1,t+1 = p1t + Iλt=1,λt+1=1, p2,t+1 =

p2t + Iλt=1,λt+1=2, q1,t+1 = q1t + Iλt=2,λt+1=2 q2,t+1 = q2t + Iλt=2,λt+1=1 and d0,t+1 =

d0t +
∑2

j=1

[
(yt+1,2 − bj,t+1xt+1) yt+1,2 + bj,t+1B

−1
j0 + (yt+1,1 − xt+1)

2] Iλt+1=j ,

Figure 1 and 2 illustrates the performance of the PL algorithm. The first panel of

Figure 1 displays the true underlying λ process along with filtered and smoothed estimates

whereas the second panel presents the same information for the common factor. Whilst

filtering doesn’t uncover the true state due to sequential uncertainty the posterior bands

for the smoothed posterior are very close to the truth. Figure 2 provides the sequential

parameter learning plots. The plots clearly illustrate how learning is achieved in these

models. After the regime switches the parameter posteriors learn and converge on the true

values quickly.

4 Nonlinear Filtering and Learning

We now extend our PL filter to a general class of non-linear state space models, namely

conditional Gaussian dynamic model (CGDM). This class generalizes conditional dynamic
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linear models by allowing non-linear evolution equations. In this context we take advantage

of most efficiency gains of PL as we are still able follow the re-sample/propagate logic and

filter sufficient statistics for θ. Consider a conditional Gaussian state space model with

non-linear evolution equation,

(yt+1|xt+1, λt+1, θ) ∼ N(Fλt+1xt+1, Vλt+1) (15)

(xt+1|xt, λt+1, θ) ∼ N(Gλt+1h(xt),Wλt+1) (16)

where h(·) is a given non-linear function and, again, θ contains F s, Gs, V s and W s. Due

to the non-linearity in the evolution we are no longer able to work with state sufficient

statistics sxt but we are still able to evaluate the predictive p (yt+1|xt, λt, θ). In general,

take as the particle set: {(xt, θ, λt, st)(i) , i = 1, . . . , N}. For discrete λ we can define the

following algorithm:

Algorithm 3: CGDM

For t = 0, . . . , T − 1

For i = 1, . . . , N

Step 1 (Re-sample): Generate an index ki ∼ Multinomial(w(1)
t+1, . . . , w

(N)
t+1) where

w
(j)
t ∝ p(yt+1|(xt, λt, θ)(j)) j = 1, . . . , N

Step 2 (Propagate): States

λ
(i)
t+1 ∼ p(λt+1|(λt, θ)(ki), yt+1)

x
(i)
t+1 ∼ p(xt+1|(xt, θ)(ki), λ

(i)
t+1, yt+1)

Step 3 (Propagate): Parameter Sufficient Statistics (same as in Algorithm 1)

Step 4 (Propagate): Parameters (same as in Algorithm 1)
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When λ is continuous we first propagate λ(i)
t+1 ∼ p(λt+1|(λt, θ)(i)), for i = 1, . . . , N ,

then we re-sample the particle (xt, λt+1, θ, st)
(i) with the appropriate predictive distribu-

tion p(yt+1|(xt, λt+1, θ)
(i)) as in Algorithm 2. Finally it is straightforward to extend the

backward smoothing strategy of Section 2.4 to obtain samples from p(xT |yT ).

Example 3. Heavy-tailed nonlinear state space model. Consider the following non-

Gaussian and nonlinear state space model

(yt+1|xt+1, λt+1, θ) ∼ N(xt+1, λt+1σ
2)

(xt+1|xt, λt+1, θ) ∼ N(βh(xt), τ
2)

where θ = (β, σ2, τ 2), h(xt) = xt/(1 + x2
t ) and λt+1 ∼ IG(ν/2, ν/2), for known ν.

Therefore, the distribution of (yt+1|xt+1, θ) ∼ tν(xt+1, σ
2), a t-Student with ν degrees of

freedom. Filtering strategies for this model without parameter learning are described in

DeJong et al. (2007).

The PL algorithm works as follows. First, start with particle set {(xt, θ, λt+1, st)
(i) , i =

1, . . . , N} for p (xt, θ, λt+1, st|yt). Then, at any given time t = 0, . . . , T − 1 and i =

1, . . . , N , we first draw an index ki ∼ Multinomial(w(1)
t , . . . , w

(N)
t ), with weights w(j)

t ∝

p(yt+1|(xt, λt+1, θ)
(j)), j = 1, . . . , N , and p(yt+1|xt, λt+1, θ) = fN(yt+1; βh(xt), λt+1σ

2 +

τ 2). Then, we draw a new state x(i)
t+1 ∼ p(xt+1|(λt+1, xt, θ)

(ki), yt+1) ≡ fN(xt+1;µ
(i)
t+1, V

(i)
t+1),

where µt+1 = Vt+1(λ
−1
t+1σ

−2yt+1 + τ−2βh(xt)) and V −1
t+1 = λ−1

t+1σ
−2 + τ−2.

Finally, similar to example 1, posterior parameter learning for θ = (β, σ2, τ 2) follow

directly from conditionally normal-inverse gamma update. Figure 3 illustrates the above

PL algorithm in a simulated example where β = 0.9, σ2 = 0.04 and τ 2 = 0.01. The

algorithm uncovers the true parameters very efficiently in a sequential fashion. In Section

5 we revisit this example to compare the performances of PL, MCMC (Carlin, Polson and

Stoffer, 1992) and the benchmark particle filter with parameter learning (Liu and West,

2001).
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5 Comparing Particle Learning to Existing Methods

PL combined with the backward smoothing algorithm (as in Section 2.4) is an alternative to

MCMC methods for state space models. In general MCMC methods (see Gamerman and

Lopes, 2006) use Markov chains designed to explore the posterior distribution p
(
xT , θ|yT

)
of states and parameters conditional on all the information available, yT = (y1, . . . , yT ).

For example, an MCMC strategy would have to iterate through

p(θ|xT , yT ) and p(xT |θ, yT ).

However, MCMC relies on the convergence of very high-dimensional Markov chains. In

the purely conditional Gaussian linear models or when states are discrete, p(xT |θ, yT ) can

be sampled in block using FFBS. Even in these ideal cases, achieving convergence is far

from a easy task and the computational complexity is enormous as at each iteration one

would have to filter forward and backward sample for the full state vector xT . The par-

ticle learning algorithm presented here has two advantages: (i) it requires only one for-

ward/backward pass through the data for all N particles and (ii) the approximation accu-

racy does not rely on convergence results that are virtually impossible to access in practice

(see Papaspiliopoulos and Roberts, 2008).

In the presence of non-linearities, MCMC methods will suffer even further as no FFBS

scheme is available for the full state vector xT . One would have to resort to univariate

updates of p(xt|x(−t), θ, y
T ) as in Carlin, Polson and Stoffer (1992). It is well known that

these methods generate very “sticky” Markov chains, increasing computational complexity

and slowing down convergence. The computational complexity of our approach is only

O(NT ) where N is the number of particles. PL is also attractive given the simple nature

of its implementation (especially if compared to more novel hybrid methods). We now

present three experiments comparing the performance of PL against MCMC alternatives.

Example 4. State Sufficient Statistics. In this first simulation exercise we revisit the

local level model of example 1 in order to compare PL to its version that takes advantage
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of state sufficient statistics, i.e. by marginalizing the latent state. The main goal is to study

the Monte Carlo error of the two filters. We simulated a time series of length T = 100 with

σ2 = 1, τ 2 = 0.1 and x0 = 0p. The prior distributions are σ2 ∼ IG(5, 4) , τ 2 ∼ IG(5, 0.4)

and x0 ∼ N(0, 10). We run two filters: one with sequential learning for xt, σ2 and τ 2 (we

call it simply PL), and the other with sequential learning for state sufficient statistics, σ2

and τ 2 (we call it PLsuff). In both cases, the particle filters are based on either one long

particle set of size N = 100000 (we can it Long) or 20 short particle sets of size N = 5000

(we call it Short). The results are in Figures 4 to 6. Figure 4 shows that the differences

between PL and PLsuff dissipate for fairly large N . However, when N is small PLsuff has

smaller Monte Carlo error and is less biased than PL, particularly when estimating σ2 and

τ 2 (see Figure 5). Similar findings appear in Figure 6 where the mean square errors of the

quantiles from the 20 Short runs are compared to those from the Long PLsuff run.

Example 5. Resample-propagate or propagate-resample? In this second simulation

exercise we revisit the local level model once again in order to compare PL to three other

particle filters. They are the Bayesian bootstrap filter (BBF) of Gordon et. al. (1993), its

fully adapted version (FABBF), and the auxiliary particle filter (APF) of Pitt and Shephard

(1999). BBF and FABBF are propagate-resample filters, while PL and APF are resample-

propagate filters. The main goal is to study the Monte Carlo error of the four filters.

We start with the pure case scenario, i.e. with fixed parameters. We simulated 20 time

series of length T = 100 from the local level model with parameters τ 2 = 0.013, σ2 = 0.13

and x0 = 0. Therefore, the signal to noise ratio σx/σ equals 0.32. Other combinations were

also tried and similar results found. The prior distribution of the initial state x0 was set at

N(0, 10). For each time series, we run 20 times each on of the four filters, all based on

N = 1000 particles. We use five quantiles to compare the various filters. Let qtα be such

that Pr(xt < qαt |yt) = α, for α = (0.05, 0.25, 0.5, 0.75, 0.95). Then, the mean square
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error (MSE) for filter f , at time t and quantile α is

MSEα
t,f =

1

400

20∑
d=1

20∑
r=1

(qαt,d − q̂αt,d,f,r)2

where d and r index the data set and the particle filter run, respectively. We compare PL,

APF and FABBF via logarithm relative MSE (LRMSE), relative to the benchmark BBF.

Results are summarized in Figure 7. PL is uniformly better than all three alternatives.

Notice that the only algorithmic different between PL and FABBF is that PL reverses the

propagate-resample steps.

We now move to the parameter learning scenario, where σ2 is still kept fixed but learn-

ing of τ 2 is performed. Three time series of length T = 1000 were simulated from the

local level model with x0 = 0 and (σ2, τ 2) in {(0.1, 0.01), (0.01, 0.01), (0.01, 0.1)}. The

independent prior distributions for x0 and τ 2 are x0 ∼ N(0, 1) and τ 2 ∼ IG(10, 9τ 2
0 ),

where τ 2
0 is the true value of τ 2 for a given time series. In all filters τ 2 is sampled offline

from p(τ 2|St) where St is the vector of conditional sufficient statistics. We run the filters

100 times, all with the same seed within run, for each one of the three simulated data sets.

Finally, the number of particles was set atN = 5000, with similar results found for smaller

N , ranging from 250 to 2000 particles. Mean absolute errors (MAE) over the 100 replica-

tions are constructed by comparing quantiles of the true sequential distributions p(xt|yt)

and p(τ 2|yt) to quantiles of the estimated sequential distributions pN(xt|yt) and pN(τ 2|yt).

More specifically, for time t, a in {x, τ 2}, α in {0.01, 0.50, 0.99}, true quantiles qαt,a and

PL quantiles q̂αt,a,r,

MAEα
t,a =

1

100

100∑
r=1

|qαt,a − q̂αt,a,r|.

Across different quantiles and combinations of error variances, PL is at least as good as

FABBF and in many cases significantly better than BBF.

Example 6. PL versus FFBS. We revisit the first order dynamic linear model introduced

in example 1 in order to compare our PL smoother and the forward-filtering, backward-
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sampling (FFBS) smoother. Under the pure filter scenario, i.e. assuming θ is known,

Figure 9 compares the true smoothed distributions p(xt|yT ) to approximations based on

PL and on FFBS. Now, when parameter learning is introduced, PL performance is com-

parable to that of the FFBS when approximating p(σ2, τ 2|yT ), as shown in Figure 10. We

argue that, based on these empirical findings, PL and FFBS comparable results, as far

as smoothed distributions is of interest. We now turn to the issue of computational cost,

measured here by the running time in seconds of both schemes. Data was simulated based

on (σ2, τ 2, x0) = (1.0, 0.5, 0.0). The prior distribution of x0 is N(0, 100), while σ2 and τ 2

are kept fixed throughout this exercise. PL was based on N particles and FFBS based on

2N iterations, with the first M discarded. Table 1 summarizes the results. For fixed N , the

(computational) costs of both PL and FFBS increase linearly with T , with FFBS twice as

fast as PL. For fixed T , the cost of FFBS increases linearly with N , while the cost of PL

increases exponentially with N . These findings were anticipated in Section 2.4.

Table 1: Computing time of PL and FFBS for smoothing.

N = 500 T = 100

T PL FFBS N PL FFBS

200 18.8 9.1 500 9.3 4.7

500 47.7 23.4 1000 32.8 9.6

1000 93.9 46.1 2000 127.7 21.7

The previous exercise provides evidence of the ability of PL to effectively solve the

problem of learning and smoothing. We now compare the performance of PL against the

most commonly used filter for situations where θ is unknown, i.e, the filter proposed by

Liu and West (2001) (LW). This is a filtering strategy that adapts the auxiliary particle

filter of Pitt and Shephard (1999) and solves the learning of θ by incorporating a kernel

density approximation for p(θ|yt). We also use this section to discuss the robustness of PL
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when the sample size T grows. In the following two experiments, our focus is to assess the

performance of each filter in properly estimating the sequence of p(θ|yt) for all t.

Example 7. PL versus LW. We revisit a variation of the first order dynamic linear model

introduced in example 1 in order to compare our PL algorithm to Liu and West’s filter for

a situation where θ is unknown. More precisely, we simulate data from

(yt+1|xt+1, β) ∼ N(xt, σ
2)

(xt+1|xt, β) ∼ N(βxt, τ
2)

for t = 1, . . . , T = 100, σ2 = 1, x1 = 0.0 and three possible values for the parameter

τ 2 = (0.01, 0.25, 1.00). So, the signal to noise ratio τ/σ = 0.1, 0.5, 1.0. Only β and xt

are sequentially estimated and their independent prior distributions are N(1.0, 1.0) and

N(0.0, 1.0), respectively. The particle set has length N = 2000 and both filters were run

50 times to study the size of the Monte Carlo error. The shrinkage/smoothing parameter

δ of Liu and West’s filter was set at δ = 0.95, but fairly similar results were found for

δ ranging from 0.8 to 0.99. Our findings, summarized in Figure 11, favor PL over LW

uniformly across all scenarios. The discrepancy is higher when σx/σ is small, which is

usually the case in state space applications.

6 Final Remarks

In this paper we provide particle learning tools (PL) for a large class of state space models.

Our methodology incorporates sequential parameter learning, state filtering and smooth-

ing. This provides an alternative to the popular FFBS/MCMC (Carter and Kohn, 1994)

approach for conditional dynamic linear models (DLMs) and also to MCMC approaches

to nonlinear non-Gaussian models. It is also a generalization of the mixture Kalman filter

(MKF) approach of Liu and Chen (2000) that includes parameter learning and smoothing.
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The key assumption is the existence of a conditional sufficient statistic structure for the

parameters which is commonly available in many commonly used models.

We provide extensive simulation evidence and theoretical Monte Carlo convergence

bounds to address the efficiency of PL versus standard methods. Computational time and

accuracy are used to assess the performance. Our approach compares very favorably with

these existing strategies and is robust to particle degeneracies as the sample size grows.

Finally PL has the additional advantage of being an intuitive and easy-to-implement com-

putational scheme and should, therefore, become a default choice for posterior inference in

this very general class of models.
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Figure 1: Dynamic factor model (state learning). Top panel: True value of λt (red line),

Pr(λt = 1|yt) (black line) and Pr(λt = 1|yT ) (blue line) Bottom panel: True value of xt

(red line), E(xt|yt) (black line) and E(xt|yT ) (blue line).
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Figure 2: Dynamic factor model (parameter learning). Sequential posterior median (black

line) and posterior 95% credibility intervals (blue lines) for model parameters β1, β2, σ2,

τ 2, p and q. True values are the red lines.
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Figure 3: Heavy-tailed non-Gaussian, nonlinear model. Sequential posterior median and

posterior 95% credibility intervals (black lines) for model parameters β, σ2 and τ 2. True

values are the red lines. The bottom right panel the true value of xt against E(xt|yt).
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Figure 4: PL and PL with state sufficient statistics (Long runs). Left panel - p(xt|yt) - PL

(black), PLsuff (red); Middle panel - p(σ2|yt) - PL (solid line), PLsuff (dotted line); Right

panel - p(τ 2|yt) - PL (solid line), PLsuff (dotted line).
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Figure 5: PL and PL with state sufficient statistics (20 short runs). PL runs (left columns)

and PLsuff runs (right columns). One long run (black) and 20 short runs (gray); p(xt|yt)

(top row), p(σ2|yt) (middle row) and p(τ 2|yt) (bottom row).
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Figure 6: PL and PL with state sufficient statistics (mean square errors). Logarithm of

the relative mean square error for three quantiles of pN(xt|yt), pN(σ2|yt) and pN(τ 2|yt),

averaged across the 20 N = 5000 runs. PL relative to PLsuff.
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Figure 7: PL, APF and FABBF pure filter. Logarithm of the relative mean square error for

five quantiles of pN(xt|yt). Boxplots on the second row are based on the time series plots

on the first row.

36



200 400 600 800 1000

0.
00
04

0.
00
08

0.
00
12

time

M
A
E

(tau2,sig2,q)=(0.01,0.1,10%)

200 400 600 800 1000

0.
00
04

0.
00
08

0.
00
12

time

M
A
E

(tau2,sig2,q)=(0.01,0.1,50%)

200 400 600 800 1000

0.
00
04

0.
00
08

0.
00
12

time

M
A
E

(tau2,sig2,q)=(0.01,0.1,90%)

200 400 600 800 1000

2e
-0
4

3e
-0
4

4e
-0
4

5e
-0
4

6e
-0
4

time

M
A
E

(tau2,sig2,q)=(0.01,0.01,10%)

200 400 600 800 1000

2e
-0
4

3e
-0
4

4e
-0
4

5e
-0
4

6e
-0
4

time

M
A
E

(tau2,sig2,q)=(0.01,0.01,50%)

200 400 600 800 1000

2e
-0
4

3e
-0
4

4e
-0
4

5e
-0
4

6e
-0
4

time

M
A
E

(tau2,sig2,q)=(0.01,0.01,90%)

200 400 600 800 1000

0.
00
05

0.
00
15

0.
00
25

time

M
A
E

(tau2,sig2,q)=(0.1,0.01,10%)

200 400 600 800 1000

0.
00
05

0.
00
15

0.
00
25

time

M
A
E

(tau2,sig2,q)=(0.1,0.01,50%)

200 400 600 800 1000

0.
00
05

0.
00
15

0.
00
25

time

M
A
E

(tau2,sig2,q)=(0.1,0.01,90%)

Figure 8: PL, BBF and FABBF learning τ 2. Mean absolute errors. PL (blue), FABBF

(red) and BBF (black).
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Figure 9: PL and FFBS (smoothed distributions). T = 100 simulated from a local level

model with σ2 = 1, τ 2 = 0.5, x0 = 0 and x0 ∼ N(0, 100). PL is based on N = 1000

particles, while FFBS is based on 2N draws with the first N discarded.
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Figure 10: PL and FFBS (parameter learning). Contour plots for the true posterior

p(σ2, τ 2|yT ) (red contours) and posterior draws form PL, panels (a) and (c), and FFBS,

panels (b) and (d). The blue dots represent the true value of the pair (σ2, τ 2). The sample

size is T = 50 (top row) and T = 500 (bottom row).
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Figure 11: PL and LW (parameter learning). Posterior mean and 95% credibility in-

terval from p(β|yt). Medians across the 50 runs appear in red. N = 2000 particles.

signal-to-noise stands for σx/σ. In all cases, σ = 1.
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