General covariance

Known Ω Ω diagonal $\omega_i = h(z_i, \alpha)$ t errors Parsimonious Ω

Seemingly unrelated regressions

Linear Regression with General Covariance

Hedibert Freitas Lopes

The University of Chicago Booth School of Business 5807 South Woodlawn Avenue, Chicago, IL 60637 http://faculty.chicagobooth.edu/hedibert.lopes

hlopes@ChicagoBooth.edu

Outline

Known Q $\omega_i = h(z_i, \alpha)$

1 General covariance Known Ω Ω diagonal $\omega_i = h(z_i, \alpha)$ t errors Parsimonious Ω

2 Seemingly unrelated regressions

General covariance

General covariance

Known Ω Ω diagonal $\omega_i = h(z_i, \alpha)$ t errors Parsimonious Ω

Seemingly unrelated regressions

Suppose that

$$y_i = x'_i \beta + \epsilon_i \qquad N(0, \sigma^2 \omega_{ii})$$

and

$$cov(\epsilon_i,\epsilon_j) = \omega_{ij}$$

for i, j = 1, ..., n.

Therefore,

$$y = X\beta + \epsilon \qquad \epsilon \sim N(0, \sigma^2 \Omega)$$

Known Ω

General covariance

Seemingly unrelated regressions

f
$$P\Omega P' = I_n$$
 then

$$\epsilon^* = P\epsilon \sim N(0, \sigma^2 I_n)$$

and

$$y^* = Py = PX\beta + \epsilon^* = X^*\beta + \epsilon^*$$

which is, given Ω , a standard linear regression model.

Posterior inference can be obtained by means of a standard Gibbs sampler when

$$p(\beta, \sigma^2 | \Omega) = p(\beta)p(\sigma^2)$$

and

$$eta \sim \mathit{N}(eta_0, \mathit{V}_0)$$
 and $\sigma^2 \sim \mathit{IG}(\nu_0/2, \nu_0 s_0^2/2)$

Full conditionals

General covariance Known Q

 $\omega_i = h(z_i, \alpha)$

It is easy to see that

$$\sigma^2|eta,\Omega,y\sim IG(
u_1/2,
u_1s_1^2/2)$$

where

$$\nu_{1} = \nu_{0} + n$$

$$\nu_{1}s_{1}^{2} = \nu_{0}s_{0}^{2} + (y - X\beta)'\Omega^{-1}(y - X\beta)$$

It is also easy to see that

$$\beta | \sigma^2, \Omega, y \sim N(\beta_1, V_1)$$

where

$$V_1^{-1} = V_0^{-1} + \sigma^{-2} X' \Omega^{-1} X$$

$$V_1^{-1} \beta_1 = V_0^{-1} \beta_0 + \sigma^{-2} X' \Omega^{-1} X y$$

Ω diagonal

General covariance

Known Ω Ω diagonal $\omega_i = h(z_i, \alpha)$ t errors Parsimonious Ω

Seemingly unrelated regressions

Let us consider two forms of

$$\Omega = \mathsf{diag}(\omega_1, \ldots, \omega_n)$$

Case I: $\omega_i = h(z_i, \alpha)$

Case II: $\omega_i^{-1} \sim IG(\nu/2, \nu/2)$

Case I: $\omega_i = h(z_i, \alpha)$

General covariance

Known Ω Ω diagonal $\omega_i = h(z_i, \alpha)$ t errors Parsimonious Ω

Seemingly unrelated regressions One possible example is

$$h(z_i,\alpha) = (\alpha_1 z_{i1} + \cdots + \alpha_p z_{ip})^2$$

which is a function of p parameters.

Another (perhaps more) common example is

$$h(z_i, \alpha) = \exp\{\alpha_1 z_{i1} + \dots + \alpha_p z_{ip}\}$$

In general, Metropolis-Hastings steps will be required to iteratively sample from

$$p(\alpha|y, X, Z, \beta, \sigma^2)$$

Simulated example

General covariance

Known Ω Ω diagonal $\omega_i = h(z_i, \alpha)$ t errors Parsimonious Ω

Seemingly unrelated regressions We simulated n = 100 observations based on $\beta = (2.0, 4.0)$, $\alpha = (1.0, 1.0)$ and 1's in the first column of x, such that $h(x_i, \alpha) = \exp{\{\alpha_0 + \alpha_1 x_i\}}$, for $x_i \sim N(0, 1)$. Because of the presence of α_0 , we set $\sigma^2 = 1$ for identification purposes.

The prior hyperparameters are:

$$eta_0=0$$
 $V_0=100 I_2$ $lpha_0=0.0$ and $V_lpha=100$

The initial values for the MCMC scheme are:

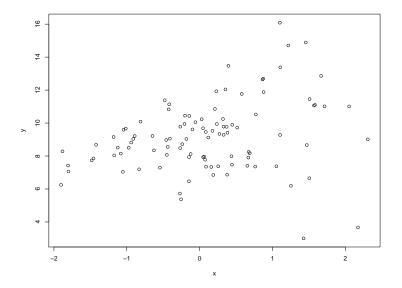
$$eta = \hat{eta}_{ols} = (9.12, 0.62) \quad lpha = (-0.29, 0.99)^1$$

with burn-in of $M_0 = 1000$ and retaining every $k = 20^{th}$ draw <u>until M = 1000 draws are obtained</u> for posterior inference.

¹Regression of $\log(y_i - x'_i \beta_{ols})^2$ on x_i .

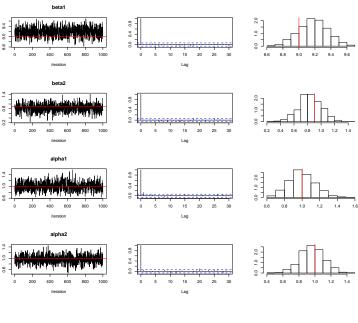
Parsimonious Ω

Seemingly unrelated regressions



A B > A B > A B > B 8/36
 A B > A B > B 8/36
 A B > A B > A B > B 8/36
 A B > A

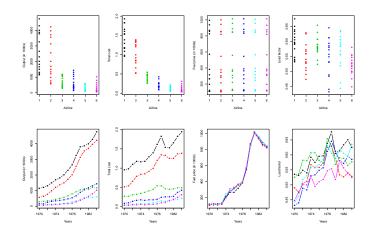
Seemingly unrelated regressions



<ロト < 団 ト < 臣 ト < 臣 ト 三 10/30

Cost data for US Airlines

Example taken from Greene's book on Econometric Analysis (6th edition). The data can be found in http://pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm Cost Data for U.S. Airlines, 90 Oservations On 6 Firms For 15 Years, 1970-1984 Columns are: I = Airline, T = Year, Q = Output, in revenue passenger miles, index number, C = Total cost, in \$1000, PF = Fuel price, LF = Load factor, the average capacity utilization of the fleet.



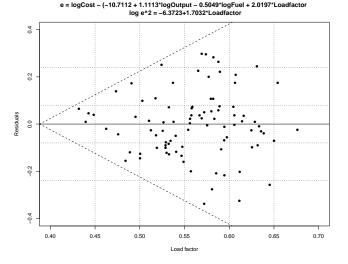
General covariance

Known Ω Ω diagonal $\omega_i = h(z_i, \alpha)$ t errors Parsimonious Ω

Seemingly unrelated regressions

<ロ> <四> <四> <四> <三</td>

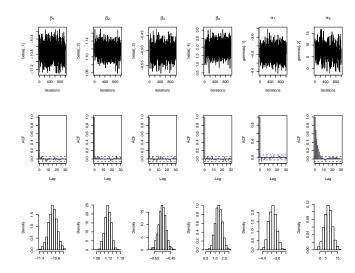
Seemingly unrelated regressions



Prior setup: $\beta_0 = 0_p$, $V_0 = 10000I_p$, $\alpha_0 = 0_q$ and $V_{\alpha} = 10000I_q$.

Random walk MH sampler

 $\begin{array}{l} (M0, LAG, M) = (1000, 100, 100) \\ \beta^{(0)} = \hat{\beta} = (x'x)^{-1}x'y \text{ and } \alpha^{(0)} = (z'z)^{-1}z' \log(y - x'\hat{\beta})^2 \\ \text{Random Walk variances: } (0.5, 0.5) \end{array}$



General covariance

Known Ω Ω diagonal $\omega_i = h(z_i, \alpha)$ t errors Parsimonious Ω

Seemingly unrelated regressions

◆□> ◆圖> ◆国> ◆国>

13/35

Posterior summary

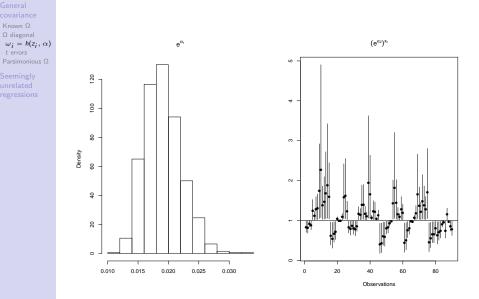
General covariance

Known Ω Ω diagonal $\omega_i = h(z_i, \alpha)$ t errors Parsimonious Ω

Seemingly unrelated regressions

			Percentiles		
θ	$E(\theta)$	$\sqrt{V(\theta)}$	2.5th	50th	97.5th
β_1	-10.733	0.211	-11.146	-10.730	-10.317
β_2	1.117	0.016	1.086	1.117	1.148
β_3	-0.504	0.023	-0.549	-0.503	-0.460
β_4	1.895	0.374	1.178	1.887	2.626
α_1	-3.968	0.157	-4.256	-3.964	-3.667
α_2	7.085	3.293	0.572	7.077	13.731

Variance components



15/32

General covariance

Known Ω Ω diagonal $\omega_i = h(z_i, \alpha)$ *t* errors Parsimonious Ω

Seemingly unrelated regressions

Recall that

Case II:
$$\omega_i \sim IG(\nu/2, \nu/2)$$

$$\epsilon_i | \omega_i \sim N(0, \sigma^2 \omega_i)$$

If, in addition,

$$\omega_i \sim IG(\nu/2, \nu/2),$$

it follows that

$$\epsilon_i \sim t_{\nu}(0,\sigma^2).$$

In other words, the Student t distribution is a scale mixture of normal distributions².

²See, amongst others, West (1987) On Scale Mixture of Normal Distributions. Biometrika, 74(3), 646-648, Geweke (1993) Bayesian Treatment of the Independent Student-t Linear Model. Journal of Applied Econometrics, 8, S19-S40, and Fernández and Steel (2000) Bayesian Regression Analysis with Scale Mixtures of Normals. Econometric Theory, 16(1), 80-101.

Prior of ν

A common choice is the exponential

$$u \sim G(1, 1/
u^0) \equiv Exp(1/
u^0)$$

such that $E(\nu) = \sqrt{V(\nu)} = \nu^0$.

For instance, $\nu^0 = 25$ allocates substantial prior on $\nu \le 10$ (fat-tailed) and $\nu \ge 40$ (normality).

Note: Geweke (1993) showed that if $p(\beta) \propto 1$ then

 $E(\beta|y,X)$ does not exist unless $Pr\{\nu \in (0,2]\} = 0$

and

 $\omega_i = h(z_i, \alpha)$

t errors

 $V(\beta|y,X)$ does not exist unless $Pr\{\nu \in (0,4]\} = 0.$

Medians and other quantiles will still exist.

General covariance

Known Ω Ω diagonal $\omega_i = h(z_i, \alpha)$ *t* errors Parsimonious Ω

Seemingly unrelated regressions The full conditional for ω_i , $i = 1, \ldots, n$ is

$$\omega_i | y, X, \beta, \sigma^2, \nu \sim IG\left(\frac{\nu+1}{2}, \frac{\nu+\epsilon_i^2/\sigma^2}{2}\right)$$

The full conditional for ν is

$$p(\nu|\omega) \propto \left[\frac{\left(\frac{\nu}{2}\right)^{\frac{\nu}{2}}}{\Gamma\left(\frac{\nu}{2}\right)}\right]^n \exp\left\{-\left[\frac{1}{\nu^0} + \frac{1}{2}\sum_{i=1}^n(\ln\omega_i + \omega_i^{-1})\right]\nu\right\}.$$

Sampling ν requires a Metropolis-Hastings step.

Simulated example

General covariance

Known Ω Ω diagonal $\omega_i = h(z_i, \alpha)$ *t* errors Parsimonious Ω

Seemingly unrelated regressions Here we simulated n = 100 observations based on: $\nu = 10$, $\sigma^2 = 1.0$ and $\beta = (0.5, 1.0, 2.0)$.

The prior hyperparameters are:

$$eta_0 = 0$$
 $V_0 = 10 I_3$ $u_0 = 5$ $s_0^2 = 1$ and $u^0 = 25$

The initial values for the MCMC scheme are:

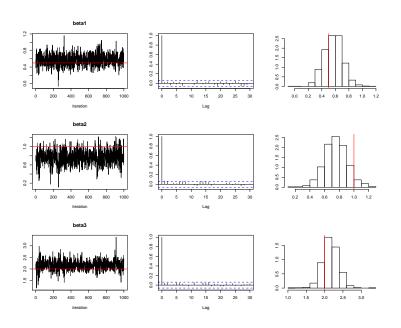
$$eta=\hat{eta}_{o\textit{ls}}$$
 $\sigma^2=\hat{\sigma}^2_{o\textit{ls}}$ $u=10$ and $\omega_i=1$ $orall i$

with

$$q(\nu|\nu^{(j-1)}) = N(\nu^{(j-1)}, 0.25^2),$$

burn-in of $M_0 = 10000$ and retaining every $k = 100^{th}$ draw until M = 1000 draws are obtained for posterior inference.

Seemingly unrelated regressions

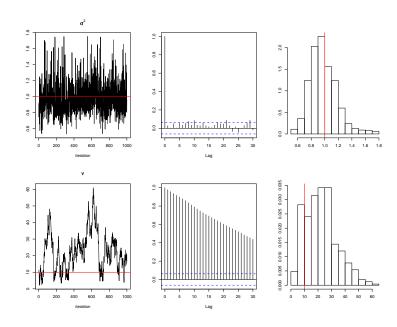


- ・ロト ・個ト ・ヨト ・ヨト 三日

22/22

Known Ω Ω diagonal $\omega_i = h(z_i, \alpha)$ *t* errors Parsimonious Ω

Seemingly unrelated regressions



< □ > < @ > < E > < E > E

 ?

Parsimonious Ω

General covariance

Known Ω Ω diagonal $\omega_i = h(z_i, \alpha)$ t errors Parsimonious Ω

Seemingly unrelated regressions Let y_t follow a linear regression with autocorrelated errors, i.e.

$$y_t = x_t'\beta + \epsilon_t$$

where

$$\epsilon_t | \epsilon_{t-1} \sim N(\rho \epsilon_{t-1}, \sigma^2).$$

If $|\rho| < 1$, then

$$E(\epsilon_t) = 0 \qquad \forall t$$

$$Cov(\epsilon_t, \epsilon_{t+k}) = \rho^k \left(\frac{\sigma^2}{1-\rho^2}\right) \qquad \forall t, k.$$

In this case

where

$$\epsilon | \sigma^2,
ho \sim N(0, \sigma^2 \Omega_{
ho}),$$

General covariance

Known Ω Ω diagonal $\omega_i = h(z_i, \alpha)$ t errors Parsimonious Ω

Seemingly unrelated regressions

$$\Omega_{\rho} = \frac{1}{1 - \rho^2} \begin{pmatrix} 1 & \rho & \rho^2 & \cdots & \rho^{n-2} & \rho^{n-1} \\ \rho & 1 & \rho & \cdots & \rho^{n-3} & \rho^{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \rho^{n-1} & \rho^{n-2} & \rho^{n-3} & \cdots & \rho & 1 \end{pmatrix}$$

and

$$\mathbf{y}|\mathbf{X},eta,\sigma^2,
ho\sim \mathcal{N}(\mathbf{X}eta,\sigma^2\Omega_
ho)$$

The full conditional distributions of β and σ^2 are as before: $\beta | \sigma^2, \Omega, y \sim N(\beta_1, V_1)$ and $\sigma^2 | \beta, \Omega, y \sim IG(\nu_1/2, \nu_1 s_1^2/2)$, where $V_1^{-1} = V_0^{-1} + \sigma^{-2} X' \Omega^{-1} X$ and $V_1^{-1} \beta_1 = V_0^{-1} \beta_0 + \sigma^{-2} X' \Omega^{-1} X y$, $\nu_1 = \nu_0 + n$ and $\nu_1 s_1^2 = \nu_0 s_0^2 + (y - X\beta)' \Omega^{-1} (y - X\beta)$,

.

Prior of ρ

<ロ > < 回 > < 国 > < 国 > < 国 > 三 24/32

General covariance Known Ω

 Ω diagonal $\omega_i = h(z_i, \alpha)$ t errors Parsimonious Ω

Seemingly unrelated regressions By assuming that the prior of $\boldsymbol{\rho}$ is a truncated normal

$$\rho \sim N_{[-1,1]}(\rho_0, V_{\rho}),$$

then, its full conditional becomes

$$egin{aligned} & p(
ho|\epsilon) & \propto & |\Omega_
ho|^{-1/2} \exp\left\{-0.5\epsilon'\Omega_
ho^{-1}\epsilon
ight\} \ & imes & \exp\{-0.5(
ho^2-2
ho
ho_0)/V_
ho\} \ & imes & I(|
ho|<1) \end{aligned}$$

Sampling ρ requires a Metropolis-Hastings step.

A small sin

◆□ → < □ → < 三 → < 三 → < 三 → 25/32</p>

Recall that

$$\epsilon_t = \rho \epsilon_{t-1} + u_t$$
 $u_t \sim N(0, \sigma^2).$

If we pretend that ϵ_0 is given and is equal to ϵ_1 , and if we also let $\tilde{\epsilon} = (\epsilon_1, \ldots, \epsilon_{n-1})'$ and $\epsilon = (\epsilon_2, \ldots, \epsilon_n)'$, then

$$ho|\mathbf{y}, \mathbf{X}, eta, \sigma^2 \sim N_{[-1,1]}(
ho_1, ar{V}_{
ho})$$

where

$$\bar{V}_{\rho} = (V_{\rho}^{-1} + \sigma^{-2} \tilde{\epsilon}' \tilde{\epsilon})^{-1} \rho_{1} = \bar{V}_{\rho}^{-1} (V_{\rho}^{-1} \rho_{0} + \sigma^{-2} \tilde{\epsilon}' \epsilon)$$

General covariance

Seemingly unrelated regressions

Sampling from
$$Y \sim N_{[a,b]}(\mu, \sigma^2)$$

Known Ω Ω diagonal $\omega_i = h(z_i, \alpha)$ t errors Parsimonious Ω

Seemingly unrelated regressions

Let
$$X \sim N(\mu, \sigma^2)$$
. Then, for $y \in [a, b]$, if follows that

$$u = P(Y \le y) = \frac{P(X \le \frac{y-\mu}{\sigma}) - P(X \le \frac{a-\mu}{\sigma})}{P(X \le \frac{b-\mu}{\sigma}) - P(X \le \frac{a-\mu}{\sigma})}$$

$$= \frac{\Phi(\frac{y-\mu}{\sigma}) - A}{B - A}.$$

Hence, y can be sampled from $N_{[a,b]}(\mu, \sigma^2)$ as a function of u sampled from U(0,1):

$$y = \mu + \sigma \Phi^{-1} \left(u \Phi \left(\frac{b - \mu}{\sigma} \right) + (1 - u) \Phi \left(\frac{a - \mu}{\sigma} \right) \right).$$

Simulated example

<ロ > < 回 > < 目 > < 目 > < 目 > 目 27/32

Here we simulated n = 200 observations based on: $\rho = 0.9$, $\sigma^2 = 1.0$ and $\beta = (2.0, 4.0)$.

 $\omega_i = h(z_i, \alpha)$ Parsimonious O

The prior hyperparameters are:

$$eta_0=0$$
 $V_0=100I_2$ $u_0=5$ $s_0^2=1$ $ho_0=0.9$ and $V_
ho=100$

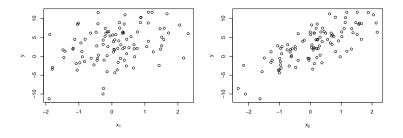
The initial values for the MCMC scheme are:

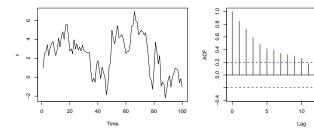
$$\beta = \hat{\beta}_{gls} = (1.94, 3.93) \quad \sigma^2 = \hat{\sigma}_{gls}^2 = 1.12 \quad \rho = \rho_{gls} = 0.94$$

with burn-in of $M_0 = 1000$ and retaining every draw until M = 2000 draws are obtained for posterior inference.

General covariance Known Ω Ω diagonal $\omega_i = h(z_i, \alpha)$ t errors Parsimonious Ω

Seemingly unrelated regressions

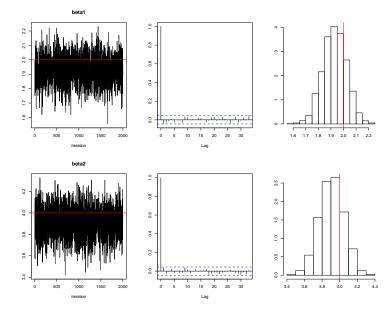




15

20

Seemingly unrelated regressions

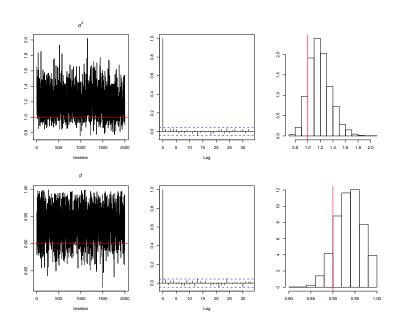


· • □ > • @ > • ≧ > • ≧ > · ≧ - 20

General covariance Known Ω

Ω diagonalω_i = h(z_i, α)t errorsParsimonious Ω

Seemingly unrelated regressions



Seemingly unrelated regressions

Assume that

$$y_{mi} = x'_{mi}\beta_m + \epsilon_{mi}$$

for $m = 1, \ldots, M$ equations and $i = 1, \ldots, n$ observations.

Error structure: $\epsilon_{mi} \sim N(0, \sigma_i^2)$ and $Cov(\epsilon_{mi}, \epsilon_{mi}) = \sigma_{ij}$.

Let $y_i = (y_{1i}, \dots, y_{Mi})'$, $\epsilon_i = (\epsilon_{1i}, \dots, y_{Mi})'$, $\beta = (\beta'_1, \dots, \beta'_M)'$, and $X_i = \text{diag}(x'_{1i}, \dots, x'_{Mi})$. Therefore

$$y_i = X_i \beta + \epsilon_i \qquad \epsilon_i \sim N(0, \Sigma)$$

and

$$y = X\beta + \epsilon \qquad \epsilon \sim N(0, I_n \otimes \Sigma)$$

<ロト < 回 > < 目 > < 目 > < 目 > 目 31/32

General covariance

Known Ω Ω diagonal $\omega_i = h(z_i, \alpha)$ t errors Parsimonious Ω

Seemingly unrelated regressions

Prior and full conditionals

General covariance

Known Ω Ω diagonal $\omega_i = h(z_i, \alpha)$ t errors Parsimonious Ω

Seemingly unrelated regressions The standard conditionally conjugate prior for (β, Σ) is given by $p(\beta, \Sigma) = p(\beta)p(\sigma)$, where

 $eta \sim \textit{N}(eta_0,\textit{V}_0)$ and $\Sigma \sim \textit{IW}(
u_0,\Sigma_0)$

The full conditional distributions are

$$\begin{array}{lll} \beta | y, X, \Sigma & \sim & \mathcal{N}(\beta_1, V_1) \\ \Sigma | y, X, \beta & \sim & \mathcal{IW}(\nu_1, \Sigma_1) \end{array}$$

where $\nu_1 = n + \nu_0$,

$$V_1^{-1} = V_0^{-1} + \sum_{i=1}^n X_i' \Sigma X_i$$

$$V_1^{-1}\beta_1 = V_0^{-1}\beta_0 + \sum_{i=1}^{''} X_i' \Sigma^{-1} y_i$$

$$\Sigma_1^{-1} = \Sigma_0^{-1} + \sum_{i=1}^n (y_i - X_i \beta) (y_i - X_i \beta)'$$

n