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Bayesian model criticism

Suppose that the competing models can be enumerated and
are represented by the set M = {M1,M2, . . .}, and that the
true model is in M (Bernardo and Smith, 1994).

The posterior model probability of model Mj is given by

Pr(Mj |y) ∝ f (y |Mj)Pr(Mj)

where

f (y |Mj) =

∫
f (y |θj ,Mj)p(θj |Mj)dθj

is the prior predictive density of model Mj and Pr(Mj) is the
prior model probability of model Mj .
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Posterior odds

The posterior odds of model Mj relative to Mk is given by

Pr(Mj |y)

Pr(Mk |y)︸ ︷︷ ︸
posterior odds

=
Pr(Mj)

Pr(Mk)︸ ︷︷ ︸
prior odds

×
f (y |Mj)

f (y |Mk)︸ ︷︷ ︸
Bayes factor

.

The Bayes factor can be viewed as the weighted likelihood ratio
of Mj to Mk .

The main difficulty is the computation of the marginal
likelihood or normalizing constant f (y |Mj).
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Bayes factor

Jeffreys (1961) recommends the use of the following rule of
thumb to decide between models j and k :

Bjk > 100 : decisive evidence against k

10 < Bjk ≤ 100 : strong evidence against k

3 < Bjk ≤ 10 : substantial evidence against k

Therefore, the posterior model probability for model j can be
obtained from

1

Pr(Mj |y)
=
∑

Mk∈M

Bkj
Pr(Mk)

Pr(Mj)
.
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Marginal likelihood
A basic ingredient for model assessment is given by the
predictive density

f (y |M) =

∫
f (y |θ,M)p(θ|M)dθ ,

which is the normalizing constant of the posterior distribution.

The predictive density can now be viewed as the likelihood of
model M.

It is sometimes referred to as predictive likelihood, because it is
obtained after marginalization of model parameters.

The predictive density can be written as the expectation of the
likelihood with respect to the prior:

f (y) = Ep[f (y |θ)].
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Laplace-Metropolis estimator

Let m and V be the posterior mode and the asymptotic
approximation for the posterior covariance matrix.

A normal approximation to f (y) is given by

f̂0(y) = (2π)d/2|V̂ |1/2p(m̂)f (y |m̂)

Sampling-based approximations for m and V can be
constructed from posterior draws θ(1), . . . , θ(N):

• m̂ = arg maxθ(j) π(θ(j))

• V̂ = 1
N

∑N
j=1(θ(j) − θ̄)(θ(j) − θ̄)′, where θ̄ = 1

N

∑N
j=1 θ

(j).
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Simple Monte Carlo

A direct Monte Carlo estimate is

f̂1(y) =
1

N

N∑
j=1

f (y |θ(j))

where θ(1), . . . , θ(N) is a sample from the prior distribution
p(θ).

This estimator does not work well in cases of disagreement
between prior and likelihood (Raftery, 1996, and McCulloch
and Rossi, 1991).

Even for large values of n, this estimate will be influenced by a
few sampled values, making it very unstable.
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Monte Carlo via IS
An alternative is to perform importance sampling with the aim
of boosting sampled values in regions where the integrand is
large.

This approach is based on sampling from the importance
density g(θ), since the predictive density can be rewritten as

f (y) = Eg

[
f (y |θ)p(θ)

g(θ)

]
.

This form motivates a new estimate

f̂2(y) =
1

N

N∑
j=1

f (y |θ(j))p(θ(j))

g(θ(j))

where θ(1), . . . , θ(N) is a sample from g(θ).
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Sometimes g is only known up to a normalizing constant, i.e.
g(θ) = kg∗(θ), and the value of k must be estimated.

Noting that

k =

∫
kp(θ)dθ =

∫
p(θ)

g∗(θ)
g(θ)dθ

leads to the estimator of k given by

k̂ =
1

N

N∑
j=1

p(θ(j))

g∗(θ(j))

where, again, the θ(j) are sampled from g .

Replacing this estimate in f̂2(y) gives

f̂3(y) =

∑N
j=1 f (y |θ(j))p(θ(j))/g∗(θ(j))∑N

j=1 p(θ(j))/g∗(θ(j))
.
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Harmonic mean

The harmonic mean (HM) estimator is obtained when g(θ) is
the posterior π(θ):

f̂4(y) =

 1

N

N∑
j=1

1

f (y |θ(j))

−1

for θ(1), . . . , θ(N) from π(θ).

This is a very appealing estimator for its simplicity.

However, it is strongly affected by small likelihood values!
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Newton-Raftery estimator

A compromise between f̂1 and f̂4 would lead to

g(θ) = δp(θ) + (1− δ)π(θ)

Problem: f (y) needs to be known!

Solution via an iterative scheme:

f̂
(i)
5 (y) =

∑N
j=1

p(y |θ(j))

δbf (i−1)
5 (y)+(1−δ)p(y |θ(j))∑N

j=1
1

δbf (i−1)
5 (y)+(1−δ)p(y |θ(j))

for i = 1, 2, . . . and, say, f̂
(0)
5 = f̂4.
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Generalized HM

For any given density g(θ) it is easy to see that∫
g(θ)

f (y)π(θ)

f (y |θ)p(θ)
dθ = 1

so,

f (y) =

[∫
g(θ)

f (y |θ)p(θ)
π(θ)dθ

]−1

.

Therefore, sampling θ(1), . . . , θ(1) from π leads to the estimate

f̂6(y) =

 1

N

N∑
j=1

g(θ(j))

f (y |θ(j))p(θ(j))

−1

.
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Bridge sampler

Meng and Wong (1996) introduced the bridge sampling to
estimate ratios of normalizing constants by noticing that

f (y) =
Eg{α(θ)p(θ)p(y |θ)}

Eπ{α(θ)g(θ)}

for any bridge function α(θ) with support encompassing both
supports of the posterior density π and the proposal density g .

If α(θ) = 1/g(θ) then the bridge estimator reduces to the
simple Monte Carlo estimator f̂1.

Similarly, if α(θ) = {p(θ)p(y |θ)g(θ)}−1 then the bridge
estimator is a variation of the harmonic mean estimator.
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Meng and Wong (1996) showed that the optimal mean square
error α function is

α(θ) = {g(θ) + (N2/N1)π(θ)}−1,

which depends on f (y) itself.

By letting

ωj = p(y |θ(j))p(θ(j))/g(θ(j)) θ(1), . . . , θ(N1) ∼ π(θ)

ω̃j = p(y |θ̃(j))p(θ̃(j))/g(θ̃(j)) θ̃(j), . . . , θ̃(N2) ∼ g(θ)

they devised an iterative scheme:

f̂
(i)
7 (y) =

1
N2

∑N2
j=1

ω̃j

s1ω̃j+s2bf (i−1)
7 (y)

1
N1

∑N1
j=1

1

s1ωj+s2bf (i−1)
7 (y)

,

for i = 1, 2, . . ., s1 = N1/(N1 + N2), s2 = N2/(N1 + N2) and,

say, f̂
(0)
7 = f̂4.
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Chib’s estimator
Chib (1995) introduced an estimate of π(θ) when conditionals
are available in closed form:

π̂(θ) = π̂(θ1)
d∏

i=2

π̂(θi |θ1, . . . , θi−1)

with

π̂(θi |θ1, . . . , θi−1) =
1

N

N∑
j=1

π(θi |θ1, . . . , θi−1, θ
(j)
i+1, . . . , θ

(j)
d )

and (θ
(j)
1 , . . . , θ

(j)
d ), j = 1, . . . , n, draws from π(θ). Thus

f̂8(y) =
f (y |θ)p(θ)

π̂(θ)
∀θ

Simple choices of θ are the mode and the mean but any value
in that region should be adequate.
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List of estimators of f (y)

Estimate Proposal density/methodbf0 normal approximationbf1 p(θ)bf2 unnormalized g∗(θ)bf3 unnormalized g(θ)bf4 π(θ)bf5 δp(θ) + (1− δ)π(θ)bf6 generalized harmonic meanbf7 optimal bridge samplingbf8 candidate’s estimator: Gibbs

DiCiccio, Kass, Raftery and Wasserman (1997), Han and Carlin
(2001) and Lopes and West (2004), among others, compared
several of these estimators.
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Example: Cauchy-normal
Model: y1, . . . , yn ∼ N(θ, σ2), σ2 known.
Cauchy prior: p(θ) = π−1(1 + θ2)−1.
Data: ȳ = 7 and σ2/n = 4.5.
Posterior density for θ:

π(θ) ∝ (1 + θ2)−1 exp

{
− 1

2σ2
(θ − ȳ)2

}
.

Error = 100|f̂ (y)− f (y)|/f (y). For f̂5, δ = 0.1.

f (y) 0.00963235
Estimator Estimate Error (%)
f (y) 0.00963235

f̂0 0.00932328 3.21

f̂1 0.00960189 0.32

f̂4 0.01055301 9.56

f̂5 0.00957345 0.61

f̂6 0.00962871 0.04

f̂7 0.01044794 8.47
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Savage-Dickey Density Ratio
Suppose that M2 is described by

p(y |ω, ψ,M2)

and M1 is a restricted verison of M2, ie.

p(y |ψ,M1) ≡ p(y |ω = ω0, ψ,M2)

Suppose also that

π(ψ|ω = ω0,M2) = π(ψ|M1)

Therefore, it can be proved that the Bayes factor is

B12 =
π(ω = ω0|y ,M2)

π(ω = ω0|M2)

≈
N−1

∑N
n=1 π(ω = ω0|ψ(n), y ,M2)

π(ω = ω0|M2)

where {ψ(1), . . . , ψ(N)} ∼ π(ψ|y ,M2).
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Example: Normality x Student-t
From Verdinelli-Wasserman (1995). Suppose that we have
observations x1, . . . , xn and we would like to entertain two
models:

M1 : xi ∼ N(µ, σ2) and M2 : xi ∼ tλ(µ, σ2)

Letting ω = 1/λ, M1 is a particular case of M2 when
ω = ω0 = 0.0, with ψ = (µ, σ2).

Let us also assume that ω ∼ U(0, 1), with ω = 1 corresponding
to a Cauchy distribution, and that

π(µ, σ2|M1) = π(µ, σ2, ω|M2) ∝ σ−2

the Savage-Dickey formula holds and the Bayes factor is

B12 = π(ω0|x ,M2),

i.e., the marginal posterior of ω evaluated at 0.
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Because π(µ, σ2, ω|x ,M2) has no closed form solution, they
use a Metropolis algorithm and sample (µ, σ2, ω) from
q(µ, σ2, ω),

q(µ, σ2, ω) = π(ω)π(σ2|x ,M1)π(µ|σ2, x ,M1)

ie.

ω ∼ U(0, 1)

σ2 ∼ IG

(
n − 1

2
,

(n − 1)s2

2

)
µ|σ2 ∼ N(x̄ , σ2/n)

When n = 100 from N(0, 1), then B12 = 3.79 (standard
error=0.145)

When n = 100 from Cauchy(0, 1), then B12 = 0.000405
(standard error=0.000240)

21 / 40



Bayesian
model
criticism

Posterior odds

Bayes factor

Marginal
likelihood

Approximating
p(y)

Laplace-
Metropolis
estimator

Simple Monte
Carlo

Monte Carlo via
IS

Harmonic mean

Newton-Raftery
estimator

Generalized HM

Bridge sampler

Chib’s estimator

Savage-Dickey
Density Ratio

Reversible
jump MCMC

Bayesian
Model
Averaging

Posterior
predictive
criterion

Deviance
Information
Criterion

Reversible jump MCMC

Suppose that the competing models can be enumerable and are
represented by the set M = {M1,M2, . . .}. Under model
Mk , the posterior distribution is

p(θk |y , k) ∝ p(y |θk , k)p(θk |k)

where p(y |θk , k) and p(θk |k) represent the probability model
and the prior distribution of the parameters of model Mk ,
respectively. Then,

p(θk , k|y) ∝ p(k)p(θk |k , y)
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The RJMCMC methods involve MH-type algorithms that move
a simulation analysis between models defined by (k , θk) to
(k ′, θk ′) with different defining dimensions k and k ′.

The resulting Markov chain simulations jump between such
distinct models and form samples from the joint distribution
p(θk , k).

The algorithm are designed to be reversible so as to maintain
detailed balance of a irreducible and aperiodic chain that
converges to the correct target measure (See Green, 1995, and
Gamerman and Lopes, 2006, chapter 7).
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The RJMCMC algorithm

Step 0. Current state: (k, θk)

Step 1. Sample Mk ′ from J(k → k ′).

Step 2. Sample u from q(u|θk , k , k ′).

Step 3. Set (θk ′ , u
′) = gk,k ′(θk , u), where gk,k ′(·) is a bijection

between (θk , u) and (θk ′ , u
′), where u and u′ play the role of

matching the dimensions of both vectors.

Step 4. The acceptance probability of the new model, (θk ′ , k
′)

can be calculated as the minimum between one and

p(y |θk′ , k ′)p(θk′)p(k ′)

p(y |θk , k)p(θk)p(k)| {z }
model ratio

J(k ′ → k)q(u′|θk′ , k ′, k)

J(k → k ′)q(u|θk , k, k ′)

˛̨̨̨
∂gk,k′(θk , u)

∂(θk , u)

˛̨̨̨
| {z }

proposal ratio
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p̂(k |y)

Looping through steps 1-4 above L times produces a sample
{kl , l = 1, . . . , L} for the model indicators and Pr(k |y) can be
estimated by

P̂r(k |y) =
1

L

L∑
l=1

1k(kl)

where 1k(kl) = 1 if k = kl and zero otherwise.
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Choice of q(u|k , θk , k
′)

The choice of the model proposal probabilities, J(k → k ′), and
the proposal densities, q(u|k , θk , k ′), must be cautiously made,
especially in highly parameterized problems.

Independent sampler: If all parameters of the proposed model
are generated from the proposal distribution, then
(θk ′ , u

′) = (u, θk) and the Jacobian is one.

Standard Metropolis-Hastings: When the proposed model k ′

equals the current model k , the loop through steps 1-4
corresponds to the traditional Metropolis-Hastings algorithm.
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Optimal choice
If p(θk |y , k) is available in close form for each model Mk , then
q(u′|θk ′ , k ′, k) = p(θk |y , k) and the acceptance probability
reduces to the minimum between one and

p(k ′)p(y |k ′)
p(k)p(y |k)

J(k ′ → k)

J(k → k ′)

since p(y |θk , k)p(θk)p(k) = p(θk , k |y)p(y |k).

The Jacobian equals one and p(y |k) is available in close form.

If J(k ′ → k) = J(k → k ′), then the acceptance probability is
the posterior odds ratio from model Mk ′ to model Mk .

In this case, the move is automatically accepted when model
Mk ′ has higher posterior probability than model Mk ;
otherwise the posterior odds ratio determines how likely is to
move to a lower posterior probability model.
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Metropolized Carlin-Chib

Let Θ = (θk , θ−k) be the vector containing the parameters of
all competing models. Then the joint posterior of (Θ, k) is

p(Θ, k |y) ∝ p(k)p(y |θk , k)p(θk |k)p(θ−k |θk , k)

where p(θ−k |θk , k) are pseudo-prior densities.

Carlin and Chib (1995) proposed a Gibbs sampler where the full
posterior conditional distributions are

p(θk |y , k , θ−k) ∝
{

p(y |θk , k)p(θk |k) if k = k ′

p(θk |k ′) if k = k ′

and
p(k |Θ, y) ∝ p(y |θk , k)p(k)

∏
m∈M

p(θm|k)
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Notice that the pseudo-prior densities and the RJMCMC’s
proposal densities have similar functions.

As a matter of fact, Carlin and Chib (1995) suggest using
pseudo-prior distributions that are close to the posterior
distributions within each competing model.

The main problem with Carlin and Chib’s Gibbs sampler is the
need of evaluating and drawing from the pseudo-prior
distributions at each iteration of the MCMC scheme.

This problem can be overwhelmingly exacerbated in large
situations where the number of competing models is relatively
large.
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Dellaportas, Forster and Ntzoufras (1998) and Godsill (1998)
proposed “Metropolizing” Carlin and Chib’s Gibbs sampler:

Step 0. Current state: (θk , k)

Step 1. Sample Mk ′ from J(k → k ′);

Step 2. Sample θk ′ from p(θk ′ |k);

Step 3. The acceptance probability is min(1,A)

A =
p(y |θk ′ , k ′)p(k ′)J(k ′ → k)

∏
m∈M p(θm|k ′)

p(y |θk , k)p(k)J(k → k ′)
∏

m∈M p(θm|k)

=
p(y |θk ′ , k ′)p(k ′)J(k ′ → k)p(θk ′ |k ′)p(θk |k ′)

p(y |θk , k)p(k)J(k → k ′)p(θk |k)p(θk ′ |k)
.

Pseudo-priors and RJMCMC’s proposals play similar roles and
the closer their are to the competing models’ posterior
probabilities the better the sampler mixing.
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Bayesian Model Averaging
See Hoeting, Madigan, Raftery and Volinsky (1999), Statistical
Science, 14, 382-401.

Let M denote the set that indexes all entertained models.

Assume that ∆ is an outcome of interest, such as the future
value yt+k , or an elasticity well defined across models, etc.
The posterior distribution for ∆ is

p(∆|y) =
∑

m∈M
p(∆|m, y)Pr(m|y)

for data y and posterior model probability

Pr(m|y) =
p(y |m)Pr(m)

p(y)

where Pr(m) is the prior probability model.
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Posterior predictive criterion

Gelfand and Ghosh (1998) introduced a posterior predictive
criterion that, under squared error loss, favors the model Mj

which minimizes
DG

j = PG
j + GG

j

where

PG
j =

n∑
t=1

V (ỹt |y ,Mj)

GG
j =

n∑
t=1

[yt − E (ỹt |y ,Mj)]2

and (ỹ1, . . . , ỹn) are predictions/replicates of y .

The first term, Pj , is a penalty term for model complexity.

The second term, Gj , accounts for goodness of fit.
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More general losses

Gelfand and Ghosh (1998) also derived the criteria for more
general error loss functions.

Expectations E (ỹt |y ,Mj) and variances V (ỹt |y ,Mj) are
computed under posterior predictive densities, ie.

E [h(ỹt)|y ,Mj ] =

∫ ∫
h(ỹt)f (ỹt |y , θj ,Mj)π(θj |Mj)dθjdỹt

for h(ỹt) = ỹt and h(ỹt) = ỹ2
t .

The above integral can be approximated via Monte Carlo.
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Deviance Information Criterion

See Spiegelhalter, Best, Carlin and van der Linde (2002),
JRSS-B, 64, 583-616.

If θ∗ = E (θ|y) and D(θ) = −2 log p(y |θ) is the deviance, then
the DIC generalizes the AIC

DIC = D̄ + pD

= goodness of fit + model complexity

where D̄ = Eθ|y (D(θ)) and pD = D̄ − D(θ∗).

The pD is the effective number of parameters.

Small values of DIC suggests a better-fitting model.
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DIC is computationally attractive criterion since its two terms
can be easily computed during an MCMC run.

Let θ(1), . . . , θ(M) be an MCMC sample from p(θ|y).

Then,

D̄ ≈ 1

M

M∑
i=1

D
(
θ(i)
)

= −2M−1
M∑
i=1

log p
(

y |θ(i)
)

and

D(θ∗) ≈ D(θ̄) = −2 log p(y |θ̄)

where θ̄ = M−1
∑M

i=1 θ
(i).
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Example: cycles-to-failure times
Cycles-to-failure times for airplane yarns.

86 146 251 653 98 249 400 292 131
169 175 176 76 264 15 364 195 262
88 264 157 220 42 321 180 198 38
20 61 121 282 224 149 180 325 250

196 90 229 166 38 337 65 151 341
40 40 135 597 246 211 180 93 315

353 571 124 279 81 186 497 182 423
185 229 400 338 290 398 71 246 185
188 568 55 55 61 244 20 284 393
396 203 829 239 236 286 194 277 143
198 264 105 203 124 137 135 350 193
188

Gamma, log-normal and Weibull models:

M1 : yi ∼ G (α, β), α, β > 0

M2 : yi ∼ LN(µ, σ2), µ ∈ R, σ2 > 0

M3 : yi ∼Weibull(γ, δ) γ, δ > 0,

for i = 1, . . . , n.
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Under model M2, µ and σ2 are the mean and the variance of
log yi , respectively.

Under model M3, p(yi |γ, δ) = γyγ−1
i δ−γe−(yi/δ)

γ
.

Flat priors were considered for

θ1 = (logα, log β)

θ2 = (µ, log σ2)

θ3 = (log γ, log δ)

It is also easy to see that,

E (y |θ1,M1) = α/β

V (y |θ1,M1) = α/β2

E (y |θ2,M2) = exp{µ+ 0.5σ2}
V (y |θ2,M2) = exp{2µ+ σ2}(eσ

2 − 1)

E (y |θ3,M3) = δΓ(1/γ)/γ

V (y |θ3,M3) = δ2
[
2Γ(2/γ)− Γ(1/γ)2/γ

]
/γ
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Weighted resampling schemes, with bivariate normal
importance functions, were used to sample from the posterior
distributions.

Proposals: qi (θi ) = fN(θi ; θ̃i ,Vi )

θ̃1 = (0.15, 0.2)′

θ̃2 = (5.16,−0.26)′

θ̃3 = (0.47, 5.51)′

V1 = diag (0.15, 0.2)

V2 = diag (0.087, 0.085)

V3 = diag (0.087, 0.101)
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Posterior means, standard deviations and 95% credibility
intervals:

M1

• α: 2.24, 0.21, (1.84, 2.68)

• β: 0.01, 0.001, (0.008, 0.012)

M2

• α: 5.16, 0.06, (5.05, 5.27)

• β: 0.77, 0.04, (0.69, 0.86)

M3

• α: 1.60, 0.09, (1.42, 1.79)

• β: 248.71, 13.88, (222.47, 276.62)
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DIC indicates that both the Gamma and the Weibull models
are relatively similar with the Weibull model performing slightly
better.

Model DIC

M1 Gamma 1253.445
M2 Log-normal 1265.842
M3 Weibull 1253.051
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