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Likelihood, prior and predictive

The standard Bayesian approach to multiple linear regression is

(y|X,β, σ2) ∼ N(Xβ, σ2In)

where y = (y1, . . . , yn), X = (x1, . . . , xn)′ is the (n× q), design matrix and q = p+ 1.
The prior distribution of (β, σ2) is NIG(b0, B0, n0, S0), i.e.

β|σ2 N(b0, σ2B0) and σ2 IG(n0/2, n0S0/2)

for known hyperparameters b0, B0, n0 and S0.

Conditional and marginal posterior distributions

It can be shown that
(β|σ2, y,X) ∼ N(b1, σ2B1) and (β|y,X) ∼ tn1(b1, S1B1)

and
(σ2|β, y,X) ∼ IG(n1/2, n1S11/2) and (σ2|y,X) ∼ IG(n1/2, n1S1/2)

where n1 = n0 + n, B−1
1 = B−1

0 +X ′X, B−1
1 b1 = B−1

0 b0 +X ′y,

n1S1 = n0S0 + (y −Xb1)′y + (b0 − b1)′B−1
0 b0

n1S11 = n0S0 + (y −Xβ)′(y −Xβ)

Ordinary least square analysis

It is well known that
β̂ = (X ′X)−1X ′y and σ̂2 = Se/(n− q)

where Se = e′e and e = y −Xβ̂. The conditional and unconditional sampling distributions of β̂ are

(β̂|σ2, y,X) ∼ N(β, σ2(X ′X)−1) and (β̂|y,X) ∼ tn−q(β, Se)

since (σ̂2|β, σ2) ∼ IG((n− q)/2, ((n− q)σ2/2).
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Marginal likelihood or predictive or normalizing constant

The predictive density p(y|X) can be seen as the marginal likelihood, i.e.

p(y|X) =
∫
p(y|X,β, σ2)p(β|σ2)p(σ2)dβdσ2 (1)

or, by Bayes’ theorem, as the normalizing constant, i.e.

p(y|X) =
p(y|X,β, σ2)p(β|σ2)p(σ2)
p(β|σ2, y,X)p(σ2|y,X)

(2)

which is valid for all (β, σ2). Closed form solutions are

(y|X) ∼ tn0(Xb0, S0(In +XB0X
′))

and

p(y|X) =
fN (y;Xβ, σ2In)fN (β; b0, σ2B0)fIG(σ2;n0/2, n0S0/2)

fN (β; b1, σ2B1)fIG(σ2;n1/2, n1S1/2)

where fN (x;µ, σ2) is the density of a normal distribution with mean µ and variance σ2 evaluated at x and
fIG(x; a, b) is the density of an inverse gamma distribution with parameters a and b evaluated at x.

Approximating p(y|X)

Let
{
(βi, σ

2
i )
}M

i=1
and

{
(β̃i, σ̃

2
i )
}M

i=1
be draws from the prior p(β, σ2) and from the posterior p(β, σ2|y,X),

respectively. Then the Monte Carlo and harmonic mean estimators of p(y|X) are, respectively,

pmc(y|X) =
1
M

M∑
i=1

p(y|X,βi, σ
2
i ) and phm(y|X) =

(
1
M

M∑
i=1

p−1(y|X,βi, σ
2
i )

)−1

.

Chib’s method approximates p(σ2|y,X) from equation (2) by

1
M

M∑
i=1

fIG(σ2;n1/2, n1S11(β(i))/2)

where n1S11(β) = n0S0 + (y −Xβ)′(y −Xβ).
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