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VAR at a glance
Del Negro and Schorfheide (2011) says

“VARs appear to be straightforward multivariate generalizations
of univariate autoregressive models. They turn out to be one of
the key empirical tools in modern macroeconomics.

Sims (1980) proposed that VARs should replace large-scale
macroeconometric models inherited from the 1960s, because
the latter imposed incredible restrictions, which were largely
inconsistent with the notion that economic agents take the
effect of todays choices on tomorrows utility into account.

VARs have been used for macroeconomic forecasting and policy
analysis to investigate the sources of business-cycle fluctuations
and to provide a benchmark against which modern dynamic
macroeconomic theories can be evaluated.”
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Model set up

Let y: = (Ve1,- - -, Ytq) contain g (macroeconomic) time series
observed at time t.

The (basic) VAR(p) can be written as

Ye = Biyr—1+ ...+ Bpyr—p + us

where
up ~i.i.d. N(0,X)
and
e Bi,...,B, are (g x q) autoregressive matrices

e Y is an (g x g) variance-covariance matrix



Model set up
Forecasting
Stationarity
VMA

VD

IRF

Examples
Minnesota prior
Other priors
Example
Structural VAR

More compactly,

Yt

where

° B:(Bl,...

o x¢ = (¥{_1,---

Multivariate regression

= BXt + ut ug ~ N(O7Z),

, Bp) is the (g x gp) autoregressive matrix,

. ¥i—p) is gp-dimensional.
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Dimensionality

Let
e Y=0r,...,yn) isnxaq,
o X =(x1,...,xn) is nx gp,

e U=(y1,..-,up) isnxaq.

Then
Y =XB '+ U

Matrix normal

U ~ N(0, I, T).
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Multivariate normal

Let yi = ()1i,---,¥ni) be the n-dimensional vector with the
observations for time series i, for i =1,...,q.

Let y = vec(Y) = (y1,¥2,---»Yq)-
Similarly, 5 = vec(B’) and u = vec(U).

Then
y=Ug@X)8+u u~N0OZ®I).



Model set up
Forecasting
Stationarity
VMA

VD

IRF

Examples
Minnesota prior
Other priors
Example
Structural VAR

h-step ahead forecast

Yt B B - Bp—l Bp Yt—1 u
Yt—1 Iq o - 0 0 Yt—2 Ug—1
0

yt—2 — 0 Iq ce 0 yt-3 + Ug—2

Yt—p+1 o 0 - lq 0 Yt—p Ut—p+1
or
yi = Ayiq + oo

Therefore, the h-step ahead forecast is

yilh) = [ F(AE h)p(B.E|data) (. )
where the forecast function
F(Aryt*v h) = Ah)’:

is a highly nonlinear function of Bx,..., Bp.
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Stationarity

A VAR(p) is covariance-stationary if all values of z satisfying
|l — Biz — Byz? — -+ — BpzP| =0

lie outside the unit circle.

This is equivalent to all eigenvalues of A lying inside the unit
circle.

/A8



Vector MA(o0) representation
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VMA
e If all eigenvalues of A lie inside the unit circle, then
Examples
V\/Imnepsota prior
Other priors o
Example .
Structpura\ VAR Ye = § wiut—ia
i=0
with
vy = I
Ve = BiVs_1+BWVs o+ + Bp\lls_p fors=1,2,...

v, = 0 for s <0

10 / A8



Examples

Minnesota prior
Other priors
Example
Structural VAR

Variance Decomposition

The mean square error (MSE) of the h-step ahead forecast is

>+ \Ulz\U’l + -4 \Uh,lzlllﬂ,fl.

The error uy ~ N(0,X) can be orthogonalized by
e = A tuy ~ N(O, D)

where ¥ = ADA’ and D is diagonal (for instance, via singular
value decomposition or Cholesky decomposition).

The MSE of the h-step ahead forecast can be rewritten as The
conbribution of the jth orthogonalized innovation to the MSE is

dj(aja; + V133V + -+ Vy_12;a V), )

11T / AS
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Impulse-response function
The matrix W, has the interpretation
8yt”Jrs
oul,
that is, the (/, ) element of W, identifies the consequences of a
one-unit increase in the innovation of variable j at time t for

the value of variable i at time t 4 s, holding all other
innovations at all dates constant.

= WSa

A plot of the (i,) element of Vg,

6yt+s,i
8u57,- ’

as a function of s is called the impulse-response function.

Similar to the forecast function, the impulse-response function
is also highly nonlinear on By, ..., B,.

17
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Simulated example?

Simulating 1000 observations from a trivariate VAR(2)

2 0.7 0.1 0.0 —-0.2 0.0 0.0
p=11 Bi=(00 04 0.1 By, = 0.0 0.1 0.1
0 0.9 00 038 0.0 0.0 0.0

0.26 0.03 0.00
> =10.03 0.09 0.00
0.00 0.00 0.81

Posterior summaries based on 1000 draws.

!Based on Liitkepohl’s (2007) Problem 2.3 and wsing Sims’ code (later slides) . ¢
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p(p|data)

mu(y) muz) mu(s)
i



p(B;|data)
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Sigma(1.1)

Dersiy

p(X|data)

Sigmal1.2) Sigmal1.3)

Sigma(z21)

ey

Densiy

Sigma(a.1)

0 5 w1 W N N

| ﬁ—
Signa22) Sigma(z)
— sgma)
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Resporseorv1

[——

Resporse ot v1

Impulse

response

P Lﬁt '
2 s
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Real data example?
VAR Monthly real stock returns, real interest rates, real industrial

Model set up
e production growth and the inflation rate (1947.1 — 1987.12)
VMA

VD Real Return on Market Real Interest Rate

IRF Iy I
Examples

Minnesota prior | 3 “l
Other priors | | AN, W il

0.3

0.005
|

Example
Structural VAR E

0.1 0.1
‘
0.005

=
s
-3

VAR-GARCH
\ 0 |
VAR-SV p 3
<
TVP-VAR-SV 1930 1950 1970 1990 1930 1950 1970 1990
Dimensionality
Industrial Production Growth Inflation
0
S
° 5
S
I I |
| 8
g Ny " W) =} 1IN
25 W i
1] 3 ) |
e YE i |
S e e
1930 1950 1970 1990 1930 1950 1970 1990

?Section 11.5 of Zivot and Wang (2003).
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Posterior means
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VMA /
VD E(pldata) = (0.0074 0.0002 0.0010 0.0019)
IRF

Examples

Minnesota prior

Ot
Example
Structural VAR

0.24 081 -150 0.00
0.00 0.88 —0.71  0.00

E(Bildata) = | 101 006 046 —0.01
0.03 038 —0.07 0.35
—0.05 —0.35 —0.06 —0.19

E(Byjdata) = 000 004 00l 0.0

—-0.01 -059 025 0.02
0.04 -0.33 —-0.04 0.09

10 / ASQ
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Impulse-response functions
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Variance decomposition
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Prior shrinkage
Recall that 8 = vec(B’).

Model set up
Forecasting
Stationarity
VMA

e Let 3; be column i of B": B’ = (f4,. .., 3q)-

Examples
Minnesota prior
Otbher priors
Example

Structural VAR Therefore,
B=(01--,0q)

with (; a vector of dimension gp corresponding to all
autoregressive coefficients from equation J.

Example: g =3, p=2

/

bi11 b2 b1z | b211 b2 bo13 B1

B=| bipi b2 bioz|boo1 b2 bopz | = 5
/

bi31 b1z b133 | b3 ba32 bo33 B3

297 /A8
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Minnesota prior
Litterman's (1980,1986) Minnesota prior advocates that

Bi ~ N(Bio, Vio)

with Vjg chosen to “center” the individual equations around
the random walk with drift:

Yii = Wi + Ye—1,i + Usi.

This amounts to:
e Shrinking the diagonal elements of B; toward one,
e Shrinking the remaining coefficients of By, ..., B, toward
zero,
In addition:
e Shrinking the number of lags p towards one,
e Own lags should explain more of the variation than the
lags of other variables in the equation.

bl
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Specifying Vg

Vio is diagonal with elements

2)\2 o2
74 i
k2 af

A2
k2

for coefficients on own lags.

for coefficients on lags of variable j # /, and

The error matrix ¥ is assumed to be diagonal, fixed and known

Y = diag(o3,...,0

2).

24 / A8



Other priors on (5, %)
Vot et o Kadiyala and Karlsson (1993,1997) extend the Minnesota prior:

Statiof
VMA

VD e Normal-Wishart prior

IRF

Examples

N(Go, Z @ Q)IW(Zo, )

Example
Structural VAR

o Jeffreys' prior

p(B, T) o [Z| 7o+
e Normal-Diffuse prior
B~ N(Bo, Vo) p(X) o< ||~ (a1

o Extended Natural Conjugate (ENC) prior

Kadiyala and Karlsson (1993) use MC integration.
Kadiyala and Karlsson (1997) use Gibbs sampler.

275 / AS
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Prior

Posterior

Minnesota

Diffuse

Normal-Wishart

Normal-Diffuse

Extended
Natural
Conjugate

7~ NG 2),
¥ fix and diagonal

P W) o [~

¥~ NG YR Q),
Y~ iW(P, %)

7~ NG.2).
p(qj) 1% ‘qu —(m+1)/2

p(A) o ¥ + (A — Ay
xM(A — A)|~%/2

or independent multivariate
t’s for each equation,
WA~ iW(¥ + (A — AY
xM(A — A), )

7ly ~ NG, Z))

Ty ~MT@Z'Z,(Y — ZT)
x(Y — 2D), T, T — k)

Cly~MTQ " ¥, T, T +a)

p(yly) o< exp {—(y — 7):271 A
x(y — ‘I‘)A/2} x (Y _AZr)’(Y _ 7
+@T —IYZZ(I —T)~ 1>

PAlY) o ¥ + (A — AY

XM(A _ A)l—(T-w)/z

YA, y ~ iW

P+ (A =AMA-A), T +a)

279G / AS



Example
e Kadiyala and Karlsson (1997) revisited Litterman (1986):
e Annual growth rates of real GNP (RGNPG),

Static
VMA

VD

IRF e Annual inflation rates (INFLA),

Examples

S e Unemployment rate (UNEMP)

Example

ST e Logarithm of nominal money supply (M1)

e Logarithm of gross private domestic investment (INVEST),
e Interest rate on four- to six-month commercial paper (CPRATE)

e Change in business inventories (CBI).

Quarterly data from 1948:1 to 1981:1 (133 observations).

Out-of-sample forecast: 1980:2 to 1986:4

g=7,p=6 = 7+6(7%) =301 parameters.

27 / AS
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Time series

RGNPG INFLA
Annual Growth Rate in Real GNP Annual Inflation Rate

1.._

3 12 +

10 + s

5 ) iR

3 “4 J\MM |
5+ 0

-10 A 4 .HHHHIHHHHHHHHHHHHHH
1948 1954 1960 1966 1972 1978 1984 1948 1954 1960 1966 1972 1978 1984
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Root mean square error

RGNPG

4 Lead Time 5
INFLA

-

25 g — —&—OLS ———— Minnesota ——A—— Normal-Wishart]
— —1— Diffuse —&—— Normal-Diffuse —— —ENC

1.5+ + + + -+ t — + {

1 2 3 4 Lead Time 5 6 7 8

20
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They argue that

... our preferred choice is the Normal-Wishart when
the prior beliefs are of the Litterman type.

and
For more general prior beliefs . .. the Normal-Diffuse
and EN priors are strong alternatives to the
Normal-Wishart.

20 / AS
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Structural VAR

Rubio-Ramirez, Waggoner and Zha (2010) say that

“Since the seminal work by Sims (1980),
identification of structural vector autoregressions
(SVARs) has been an unresolved theoretical issue.

Filling this theoretical gap is of vital importance
because impulse responses based on SVARs have
been widely used for policy analysis and to provide
stylized facts for dynamic stochastic general
equilibrium (DSGE) models.”

27T / AS



Example

Model set up

Forecasting Let

Stationarity

o e P.: is the price index of commodities.
IRF ;

— e Y, is output.

Minnesota prior

Other prl()r:

e R; is the nominal short-term interest rate.

Example
Structural VAR

Trivariate SVAR(1) representation:

aj1Alog Pe ¢ +0.0log Ye + a31Re = 1 + briAlog Pe 1 + by Alog Ye—1 + byt Re—1 + €1,
a1pAlog Pe,t + ax log Yt + 0.0R: = c + bipAlog Pcy—1 + bppAlog Vi1 + b3oRe—1 + €2t
a13Alog Pc,t + ap3log Y + a33Rt = c3 + bisAlog Pe t 1 + bosAlog Yi_1 + b3zsRe—1 + €3+

1st eq. monetary policy equation.
2nd eq. characterizes behaviour of finished-goods producers.
3rd eq. commodity prices are set in active competitive markets.

25 /a8
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Model set up
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Stationarity

VMA The (basic) SVAR(p) can be written as

VD
IRF
Examples

Mimesors prir Aoye =Arye 1+ ...+ Apyep+ur  up~iid N(O,I),

Other priors
Example
Structural VAR
where

o A=(A1,...,A)

o Bi=AytA i=1,...,p
e B=A'A

o ¥ = (AgAy)!

Much of the SVAR literature involves exactly identified models.

27 /AR
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Exact identification

Define g such that g(Ag, A) = (Ay A, (AoAp) ™).

Consider an SVAR with restrictions represented by R.
Definition: The SVAR is exactly identified if and only if, for
almost any reduced-form parameter point (B, X), there exists a

unique structural parameter point (Ag, A) € R such that
g(Ao, A) = (B, X).

Waggoner and Zha (2003) developed an efficient MCMC
algorithm to generate draws from a restricted Ay matrix.

22U
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where

[llustration 1

PS PS MP

|Og Y aill aie 0

Ag — |0g P 0 an?2 0
o R 0 0 a3
|Og M 0 0 aa3

logP. O 0 0

log Y: log gross domestic product (GDP)
log P: log GDP deflator

R: nominal short-term interest rate

log M: log M3

log P.: log commodity prices

MP: monetary policy (central bank’s contemporaneous behavior)

Inf: commodity (information) market
MD: money demand equation

PS: production sector

MD
di4
di4
ass

das
0

Inf
ais
azs
ass
das
ais
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where
[ ]

Inform
MP
MD

Prod
Prod
Prod

Ay =

B}
ooooo><8

cooXxXXxS

[llustration 2

R Y CPI U
X X X X
X 0 0 0
X X X 0
0 X O 0
0 X X 0
0o X X X

PCOM: Price index for industrial commodities

M2: Real money

R: Federal funds rate (R)

CPI: Consumer price index (CPI)
U: Unemployment rate (U)

Inform: Information market

MP: Monetary policy rule

MD: Money demand

Y: real GDP interpolated to monthly frequency

Prod: Production sector of the economy

2/
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Monetary Policy Shock

Inflation

0.5

0.0

-1.0

Interest Rate Real Money
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VAR-GARCH

VAR-GARCH

Pelloni and Polasek (2003) introduce the VAR model with
GARCH errors as

p
Ye = Z Biyi—i + ug
i=1

where
Uy ~ N(O, Zt)
and

r S
vech(X;) = ap + Z Ajvech(X;_;) + Z O;vech(us_;u;_;)
i=1 i=1

2d’ /AR



Example

German, U.S., and U.K. quarterly data sets over the period
1968-1998. Variables are logs of aggregate employment and of

Model set up
F

Static
VMA

e the employment shares of the manufacturing, finance, trade,
S and construction sectors for U.S. and U.K.
Minnesota prior
e Table IVa. Bayes factors for model selection using posterior
Structural VAR . . .
log-marginal likelihoods.
VAR-GARCH
log B I Country
Germany UK. U.S.
VAR 239.04 353.67 100.09
EC-VARCH 3.15 2.83 4.39
CEC-VARCH 11.79 6.71 4.79
COIN-VARCH 1 241 9.70 2.36

COIN-VARCH 2 6.76 1.31 10.11

20
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VAR-SV

Model set up
Forecasting

Stationarty Uhlig (1997) introduced stochastic volatility (SV) for the error
w term in BVARs:
Examples P
s ve =D Biveitut,
Sl VAR =1

where
VAR-SV us ~ N(0,X:) and Zt_l = L¢L3,

and dynamics

c1 Lo
t+1 b\

v+ 1
O ~ Bq<2pq’z>'

A0 / A8
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TVP-VAR-SV

TVP-VAR-SV

Primiceri (2005) discusses VARs with time varying coefficients
and stochastic volatility

p
Yr = Z Bity:—i + ut ug ~ N(0, X¢)
i=1

with
Te = (A) T De(AYD) T
and
1 0 0 o3, O 0
o 042.1,t 1 0 b, 0 J§7t 0
Qqit 0 Qgg-1t 1 0 0 Ug,t

AT / A8
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TVP-VAR-SV

VAR coefficients:

B: = Bi—1 + vt

Cholesky coefficients:

o = -1 + ft

Stochastic volatility:

logo: = logor_1 +nt

Dynamics

Vi~ N(07 Q)

&~ N(0,5)

Nt~ N(Oa W)

A7 /A8
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VAR-GARCH
VAR-SV
TVP-VAR-SV

Dimensionality

0-8

0-6

o

Posterior mean, 16-th and 84-th percentiles of the standard deviation of (a) residuals of the inflation equation, (b) residuals

(b)

I I L L 1 I I
1965 1970 1975 1980 1985 1990 1995 2000

/
N -~ R

= I =
1965 1970 1975 1980 1985 1990 1995 2000

FIGURE 1

of the unemployment equation and (c) residuals of the interest rate equation or monetary policy shocks
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TVP-VAR-SV

-3 1970 1980 1990 2000 -3 1970 1980 1990 2000
(©) (d)
1 1
0
=1
-2
AR ! ) ! h
_3 | Ll J _3 L 1 !
h 1970 1980 1990 2000 - 1970 1980 1990 2000
FIGURE 6

Interest rate response fo a 1% permanent increase of unemployment with 16-th and 84-th percentiles. (a) Simultaneous

response, (b) response after 10 quarters, (c) response after 20 quarters, (d) response after 60 quarters

See Nakajima, Kasuya and Watanabe (2011) for an application

to the Japanese economy.



Model set up
Forecasting
Stationarity
VMA

VD

IRF

Examples
Minnesota prior
Other priors
Example
Structural VAR

Dimensionality

Curse of dimensionality

VAR(1) case?
Small: ¢ =3 = 15 parameters
Medium: ¢ =20 = 610 parameters

Large: g = 131 = 25,807 parameters

3Small, Medium and Large are based on the VAR specifications of
Bariura, Giannone and Reichlin (2010).

A5 /8
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Dimensionality
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