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Contributions

1. Efficiently and sequentially learn from general mixture models

f (z) =

∫
k(z ; θ)dG (θ)

where G is almost surely discrete.

2. When we say general, we mean general
I Finite mixture models;
I Dirichlet process mixture models;
I Indian buffet processes;
I Probit stick-breaking models.

3. An alternative to MCMC
I On-line model fitting and marginal likelihood estimation;
I Posterior cluster allocation;
I Handling high dimensional data-sets.



Particle Learning (PL)

1. General framework of sequential parameter learning;

2. Practical alternative to MCMC2;

3. Sequential Monte assessment;

4. Resample-sample is key3;

5. Essential state vector generalizes sufficient statistics4;

6. Connection to Rao-Blackwellization5;

7. PL is not sequential importance sampling;

8. Smoothing offline.

2Chen and Liu (1999).
3Pitt and Shephard (1999).
4Storvik (2002) and Fearnhead (2002)
5Kong, Liu and Wong (1994).



The general PL algorithm

I Posterior at t: Φt ≡
{

(xt , θ)(i)
}N

i=1
∼ p(xt , θ|y t).

I Compute, for i = 1, . . . ,N,

w
(i)
t+1 ∝ p(yt+1|x (i)

t , θ(i))

I Resample from Φt with weights wt+1: Φ̃t ≡
{

(x̃t , θ̃)(i)
}N

i=1
.

I Propagate states

x
(i)
t+1 ∼ p(xt+1|x̃ (i)

t , θ̃(i), yt+1)

I Update sufficient statistics

s
(i)
t+1 = S(s

(i)
t , x

(i)
t+1, yt+1)

I Sample parameters

θ(i) ∼ p(θ|s(i)
t+1)



Example: Nonlinear, nonlinear dynamic model

Heavy-tail observation errors can be introduced as follows:

yt+1 = xt+1 + σ
√
λt+1εt+1

xt+1 = β
xt

1 + x2
t

+ τut+1

where
λt+1 ∼ IG(ν/2, ν/2)

and εt+1 and ut+1 are N(0,1) and ν is known.

The observation error term is non-normal
√
λt+1εt+1 ∼ tν .



Sequential inference



Example: Dynamic multinomial logit model

Let us study the multinomial logit model

P (yt+1 = 1|βt+1) =
eFtβt

1 + eFtβt
and βt+1 = φβt + σxε

β
t+1

where β0 ∼ N(0, σ2/(1− ρ2)). Scott’s (2007) data augmentation
structure leads to a mixture Kalman filter model

yt+1 = I(zt ≥ 0)

zt+1 = Ztβ + εt+1 where εt+1 ∼ −lnE(1)

Here εt is an extreme value distribution of type 1 where E(1) is an
exponential of mean one. The key is that it is easily to simulate
p(zt |β, yt) using

zt+1 = − ln

(
ln Ui

1 + eβiβ
− ln Vi

eβiβ
Iyt+1=0

)



10-component mixture of normals
Frunwirth-Schnatter and Schnatter (2007) uses a 10-component
mixture of normals:

p(εt) = e−εt−e−εt ≈
10∑

j=1

wjN (µj , s
2
j )

Hence conditional on an indicator λt we can analyze

yt = I(zt ≥ 0) and zt = µλt + Ztβ + sλt εt

where εt ∼ N(0, 1) and Pr(λt = j) = wj . Also,

sβt+1 = K
(
sβt , zt+1, λt+1, θ, yt+1

)

p(yt+1|sβt , θ) =
∑

λt+1

p(yt+1|sβt , λt+1, θ)

for re-sampling. Propagation now requires

λt+1 ∼ p
“
λt+1|(sβt , θ)k(i), yt+1

”
zt+1 ∼ p

“
zt+1|(sβt , θ)k(i), λt+1, yt+1

”
βt+1 ∼ p

“
zt+1|(sβt , θ)k(i), λt+1, zt+1

”
where λt+1 comes from a discrete distribution.

Followed by the deterministic updating for conditional sufficient
statistics.



Simulated exercise

0 50 100 150 200
−3

−2

−1

0

1

2

3

β
t

Time

0 50 100 150 200
−1

0

1

2

3

4

5

α

Time

0 50 100 150 200
0

0.1

0.2

0.3

0.4

σ

Time

0 50 100 150 200

0

0.5

1

Y
t

Time

PL based on 30,000 particles.



Example: Sequential Bayesian Lasso
We develop a sequential version of Bayesian Lasso6 for a simple
problem of signal detection. The model takes the form

(yt |θt) ∼ N(θt , 1)

p(θt |τ) = (2τ)−1 exp (−|θt |/τ)

for t = 1, . . . , n and τ2 ∼ IG (a0, b0).

Data augmentation: It is easy to see that

p(θt |τ) =

∫
p(θt |τ, λt)p(λt)dλt

where

λt ∼ Exp(2)

θt |τ, λt ∼ N(0, τ2λt)

6Hans (2008)



Data augmentation

The natural set of latent variables is given by the augmentation
variable λn+1 and conditional sufficient statistics leading to

Zn = (λn+1, an, bn)

The sequence of variables λn+1 are i.i.d. and so can be propagated
directly with p(λn+1).

The conditional sufficient statistics (an+1, bn+1) are
deterministically determined based on parameters (θn+1, λn+1) and
previous values (an, bn).



PL algorithm

1. After n observations:
{

(Zn, τ)(i)
}N

i=1
.

2. Draw λ
(i)
n+1 ∼ Exp(2).

3. Resample old particles with weights

w
(i)
n+1∝ p(yn+1; 0, 1+τ2(i)λ

(i)
n+1).

4. Sample θ
(i)
n+1 ∼ N(m

(i)
n ,C

(i)
n ), where m

(i)
n = C

(i)
n yn+1 and

C−1
n = 1 + τ̃−2(i)λ̃

−1(i)
n+1 .

5. Suff. stats: a
(i)
n+1 = ã

(i)
n + 1/2, b

(i)
n+1 = b̃

(i)
n + θ

2(i)
n+1/(2λ̃

(i)
n+1).

6. Sample (offline) τ2(i) ∼ IG (an+1, bn+1).

7. Let Z
(i)
n+1 = (λ

(i)
n+1, a

(i)
n+1, b

(i)
n+1).

8. After n + 1 observations:
{

(Zn+1, τ)(i)
}N

i=1
.



Sequential Bayes factor

As the Lasso is a model for sparsity we would expect the evidence
for it to increase when we observe yt = 0.

We can sequentially estimate p(yn+1 | yn, lasso) via

p(yn+1 | yn, lasso) =
1

N

N∑

i=1

p(yn+1 | (λn, τ)(i))

with predictive p(yn+1 | λn, τ) ∼ N(0, τ2λn + 1).

This leads to a sequential Bayes factor

BFn+1 =
p(yn+1 | lasso)

p(yn+1 | normal)
.



Simulated data
Data based on θ = (0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1) and priors
τ2 ∼ IG (2, 1) for the double exponential case and τ2 ∼ IG (2, 3) for
the normal case, reflecting the ratio of variances between those
two distributions.
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PL for finite mixture models

1. Resample: Generate an index ζ ∼ MN(ω,N) where

ω(i) =
p
“
yt+1 | (st , nt)

(i)
”

PN
i=1 p (yt+1 | (st , nt)(i))

2. Propagate:

kt+1 ∼ p
“
kt+1 | (st , nt)

ζ(i), yt+1

”
st+1 = S

“
sζ(i)
t , kt+1, yt+1

”
nt+1,kt+1 = n

ζ(i)
t,kt+1

+ 1, nt+1,j = n
ζ(i)
t,j for j 6= kt+1

3. Learn:

p(p,θ? | y t) =
1

N

NX
i=1

p
“
p,θ? | (st , nt)

(i)
”



Finite mixture of Poisson

Model: an m component mixture of Poisson densities

p(yt) =
m∑

i=1

pjPo(yt ; θ?j ).

Prior:

π(θ?j ) = ga(αj , βj) for j = 1, . . . ,m

π(p) ∼ Dir(γ).

The form of the conditional posterior given y t , given the latent
allocation kt , is completely defined by nt , the number of samples
in each component, and sufficient statistics st = (st,1, . . . , st,m),
where st,j =

∑t
r=1 yr1[kr =j].



Resample-propagate
Resample:

p(yt+1 | st , nt ) =
mX

kt+1=j=1

Z Z
pjp(yt+1 | θ

?
j )p(θ?, p)d(θ?, p)

=
mX

kt+1=j=1

Γ
`
st,j + yt+1 + αj

´
Γ
`
st,j + αj

´ `
βj + nt,j

´st,j +αj`
βj + nt,j + 1

´st,j +yt+1+αj

1

yt+1!

 
γj + nt,jPm
i=1 γi + nt,i

!
.

Propagate:

p(kt+1 = j | st , nt , yt+1) ∝
Γ
`
st,j + yt+1 + αj

´
Γ
`
st,j + αj

´ `
βj + nt,j

´st,j +αj`
βj + nt,j + 1

´st,j +yt+1+αj

 
γj + nt,jPm
i=1 γj + nt,i

!
.

Given kt+1,

st+1,j = st,j + yt+11{kt+1=j}
nt+1,j = nt,j + 1{kt+1=j}

for j = 1, . . . ,m.



PL and MCMC

Left: data from a m = 4 mixture of Poisson.
Central: PL (red), MCMC (Blue), TRUE (green).
Right: MC study of BF(m=3;m=4).

Figure 1: Poisson Mixture Example. Data, Densities, and Bayes Factors.

4.2 The DP Mixture of Multivariate Normals

The d dimensional DP multivariate normal mixture (DP-MVN) model has density function

f(yt;G) =
∫

N(yt|µt,Σt)dG(µt,Σt), and G ∼ DP (α,G0(µ,Σ)), (27)

with conjugate centering distribution G0 = N(µ;λ,Σ/κ) W(Σ−1; ν,Ω), where W(Σ−1; ν,Ω) denotes

a Wishart distribution such that E[Σ−1] = νΩ−1 and E[Σ] = (ν − (d + 1)/2)−1Ω. Conditional

sufficient statistics for each unique mixture component (the st,j) are ȳt,j =
∑

r:kr=j yr/nt,j and

St,j =
∑

r:kr=j(yr−ȳt,j)(yr−ȳt,j)′ =
∑

r:kr=j yry
′
r − nt,j ȳt,j ȳ′t,j . PL for this model is a straightforward

application of Algorithm 2. The initial sufficient statistics are deterministically n1 = 1 and s1 =

{y1, 0}, such that the algorithm is populated with N identical particles. Conditional on existing

particles {(nt, st)i}Ni=1, uncertainty is updated through the familiar resample/propagate approach.

Resample: By an application of (19) the predictive probability function for resampling is

p(yt+1|st,nt,mt + 1) =
α

α+ t
St(yt+1; a0, B0, c0) +

mt∑

j=1

nt,j
α+ t

St (yt+1; at,j , Bt,j , ct,j) (28)

where the Student’s t distributions are parametrized by a0 = λ, B0 = 2(κ+1)
κc0

Ω, c0 = 2ν − d + 1,

at,j = κλ+nt,j ȳt,j

κ+nt,j
, Bt,j = 2(κ+nt,j+1)

(κ+nt,j)ct,j

[
Ω + 1

2Dt,j

]
, ct,j = 2ν+nt,j −d+ 1, and Dt,j = St,j + κnt,j

(κ+nt,j)(λ−

20



Dirichlet Process (DP) mixtures

The DP mixtures is the most commonly used nonparametric prior
for random mixture models.

Constructive definition: a random distribution G generated from
DP(α,G0(ψ)) is almost surely of the form

dG (·) =
∞∑

l=1

pl δϑl
(·) (1)

with ϑl
iid∼ G0(ϑl ;ψ), pl = (1−∑l−1

j=1 pj)vl and vl
iid∼ beta(1, α), for

l = 1, 2, . . ., centering distribution G0(ϑ;ψ) and independent
sequences {ϑl}∞l=1 and {vk}∞k=1.

The discreteness of DP realizations is explicit in this definition.



PL for DP mixture models

1. Resample: Generate an index ζ ∼ MN(ω,N) where

ω(i) =
p
“
yt+1 | (st , nt ,mt)

(i)
”

PN
i=1 p (yt+1 | (st , nt ,mt)(i))

2. Propagate:

I kt+1 ∼ p
(
kt+1 | (st ,nt ,mt)ζ(i), yt+1

)
,

I For j 6= kt+1, nt+1,j = nt,j .
I If kt+1 ≤ mt , nt+1,kt = nt,kt + 1 and mt+1 = mt .

Otherwise, mt+1 = mt + 1 and nt,mt+1 = 1.

3. Estimation:

p
`
E[f (y ; G)] | y t´ =

1

N

NX
i=1

p
“
y | (st , nt ,mt)

(i)
”



DP mixture of multivariate normals

The d-dimensional DP multivariate normal mixture (DP-MVN)
model has density function

f (yt ; G ) =

∫
N(yt |µt ,Σt)dG (µt ,Σt)

and
G ∼ DP(α,G0(µ,Σ)),

with conjugate centering distribution

G0 = N(µ;λ,Σ/κ)W (Σ−1; ν,Ω),

where W (Σ−1; ν,Ω) denotes a Wishart distribution such that

E[Σ−1] = νΩ−1 and E[Σ] = (ν − (d + 1)/2)−1Ω.



Conditional sufficient statistics

For each unique mixture component (the st,j) are

ȳt,j =
∑

r :kr =j

yr/nt,j

and

St,j =
∑

r :kr =j

(yr − ȳt,j)(yr − ȳt,j)
′ =

∑

r :kr =j

yry
′
r − nt,j ȳt,j ȳ

′
t,j .

The initial sufficient statistics are n1 = 1 and s1 = {y1, 0}, such
that the algorithm is populated with N identical particles.

Conditional on existing particles {(nt , st)i}Ni=1, uncertainty is
updated through the familiar resample/propagate approach.



Resample

The predictive probability function for resampling is

p(yt+1|st ,nt ,mt + 1) =
α

α + t
St(yt+1; a0,B0, c0)

+
mt∑

j=1

nt,j

α + t
St (yt+1; at,j ,Bt,j , ct,j)

where the Student’s t distributions are parametrized by a0 = λ,

B0 = 2(κ+1)
κc0

Ω, c0 = 2ν − d + 1, at,j =
κλ+nt,j ȳt,j

κ+nt,j
,

Bt,j =
2(κ+nt,j +1)
(κ+nt,j )ct,j

[
Ω + 1

2Dt,j

]
, ct,j = 2ν + nt,j − d + 1, and

Dt,j = St,j +
κnt,j

(κ+nt,j )
(λ− ȳt,j)(λ− ȳt,j)

′.



Propagate

Sample the component state kt+1 such that,

p(kt+1 = j) ∝ nt,j

α + t
St(yt+1; at,j ,Bt,j , ct,j) j = 1, . . . ,mt

p(kt+1 = mt + 1) ∝ α

α + t
St(yt+1; a0,B0, c0).

If kt+1 = mt + 1, the new sufficient statistics are defined by
mt+1 = mt + 1 and st+1,mt+1 = [yt+1, 0].

If kt+1 = j , nt+1,j = nt,j + 1 and we update st+1,j such that
ȳt+1 = (nt,j ȳt,j + yt+1)/nt+1,j and
St+1,j = St,j + yt+1y

′
t+1 + nt,j ȳt,j ȳ

i ′
t,j − nt+1,j ȳt+1,j ȳ

i ′
t+1,j .



Parameter update
Assuming a W(γΩ,Ψ

−1
Ω ) prior for Ω and a N(γλ,Ψλ) prior for λ,

the sample at time t is augmented with draws for the auxiliary
variables {µ?j ,Σ?

j }, for j = 1, . . . ,mt , from their posterior full
conditionals,

p(µ?j ,Σ
?
j | st ,nt) = N(µ?j ; at,j ,

1

κ+ nt,j
Σ?

j )W(Σ?−1
j ; ν+nt,j ,Ω+Dt,j).

The parameter updates are then

λ ∼ N


R(γλΨ−1

λ + κ

mt∑

j=1

Σ?−1
j µ?j ), R




Ω ∼ W
(
γΩ + mtν,R

−1
)
,

where R−1 =
∑mt

j=1 Σ?−1
j + Ψ−1

Ω .

Similarly, if α is assigned the usual gamma hyperprior, it can be
updated for each particle using the auxiliary variable method from
Escobar and West (1995).



Illustration

Four datasets: d = 2, 5, 10 and d = 25.

Sample size: t = 1, . . . ,T = 500d .

The d-dimensional yt was generated from a N(µt ,AR(0.9))
density, where AR(0.9) denotes the correlation matrix implied by
an autoregressive process of lag one and correlation 0.9.

µt
ind∼ Gµ, where Gµ is the realization of a DP(4,N(0, 4I)) process.

Thus the simulated data is clustered around a set of distinct
means, and highly correlated within each cluster.



Dimension d = 2

Data and density estimates for PL fit with 1000 particles (left) and
each of ten PL fits with 500 particles (right).

A random ordering of the 1000 observations.
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PL and Gibbs sampler
Left: average log posterior predictive score for validation sets of
100 observations.

Right: posterior averages for mT , the total number of allocated
mixture components.

Boxplots of the distribution over ten repetitions of the algorithm.
Red boxplots correspond to PL, and the blue correspond to Gibbs.
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Dimension d = 25
Data and marginal density estimates. Curves are posterior means
of ten PL fits, 500 particles, random ordering of the data.
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Complete class of mixture models

Mixture models:

likelihood : p(yt+1|kt+1, θ)

transition equation : p(kt+1|kt , θ)

parameter prior : p(θ).

with kt states refer to a latent allocation of observations to
mixture components, and kt = {k1, . . . , kt}.

State-space representation:

yt+1 = f(kt+1, θ) (2)

kt+1 = g(kt , θ) (3)

where (2) is the observation equation and (3) is the evolution for
states kt+1.



General class of hidden Markov models

This structure establishes a direct link to the general class of
hidden Markov models, which encompasses a vast number of
widely used models.

Density estimation: yt ∼
∫

k(yt ; θ)dG (θ), the allocation states
break the mixture such that

yt ∼ k(y ; θkt )

and
θkt ∼ G (θ).

Latent feature models: Multivariate kt allows allocation of a single
observation to multiple mixture components.



Essential state vector

In order to describe the PL algorithm, we begin by defining

Zt as an essential state vector

that will be tracked in time.

We also assume that

Zt is sufficient for sequential inference

that is, it allows for the computation of:

(a) Posterior predictive p(yt+1|Zt),

(b) Posterior updating rule p(Zt+1|Zt , yt+1),

(c) Parameter learning via p(θ|Zt+1).



Particle learning (PL)

The posterior density p(Zt |y t) is approximated by the equally
weighted particle set

{Z(i)
t }Ni=1 = {Z(1)

t , . . . ,Z(N)
t }.

Then, given {Z(i)
t }Ni=1, the generic particle learning update for a

new observation yt+1 proceeds in two steps:

Step 1: Resample

Z(i)
t ∝ p(yt+1|Z(i)

t )

Step 2: Propagate

Z(i)
t+1 ∼ p(Zt+1|Z(i)

t , yt+1)



Bayes’ theorem

This process can be understood by re-writing Bayes’ theorem as

p(Zt |y t+1) ∝ p(yt+1|Zt)p(Zt |y t) (4)

p(Zt+1|y t+1) =

∫
p(Zt+1|Zt , yt+1)dP(Zt |y t+1), (5)

where P(·) refers to the appropriate measure.

After resampling the initial particles with weights proportional to
p(yt+1|Zt) we have particles from p(Zt |y t+1).

These particles are then propagated through p(Zt+1|Zt , yt+1),

leading to particles {Z(i)
t+1}Ni=1 approximating p(Zt+1|y t+1).



PL algorithm for general mixture models

For t = 1, . . . ,T

Resample: Draw indexes ζ(1), . . . , ζ(N) ∼ Multinomial(ωt ,N),
with unnormalized weights given by

ωt = {p(yt+1|Z(1)
t ), . . . ,p(yt+1|Z(N)

t )},

Propagate:

Z(j)
t+1 ∼ p(Zt+1|Zζ

(j)

t , yt+1) j = 1, . . . ,N.

Learning θ:

θ(j) ∼ p(θ|Z(j)
t+1) j = 1, . . . ,N.



Nature of the essential state vector Zt

In general, Zt does not need to include kt in order to be sufficient
for the distributions listed in (a) to (c).

This, along with moving the propagation step to the end, is what
makes PL distinct from the present state of the art in particle
filtering for mixtures.

However, it is straightforward to obtain smoothed samples of kt

from the full posterior, through an adaptation of the particle
smoothing algorithm of Godsill, Doucet and West (2004).



Allocation

PL provides a vehicle for drawing from the full posterior
distribution of the allocation vector, p(kt |y t), through the
backwards uncertainty update equation

p(kt |y t) =

∫
p(kt |Zt , y

t)dP(Zt |y t)

=

∫ t∏

r=1

p(kr |Zt , yr )dP(Zt |y t).

We can directly approximate p(kt |y t) by sampling, for each

particle Z(i)
t and for r = t, . . . , 1, kr with probability

p(kr = j |Zt , yr ) ∝ p(yr |kr = j ,Zt)p(kr = j |Zt)

leading to an O(N) algorithm for full posterior allocation.



Marginal likelihood
Marginal likelihoods are of key importance in Bayesian model
assessment, particularly when computing Bayes factors.

MCMC: It is known that marginal likelihoods are hard to compute
via MCMC schemes, mainly because most approximations are
based on one of the following identities (or extensions)

p(yn) =

∫
p(yn|θ)p(θ)dθ =

p(yn|θ)p(θ)

p(θ|yn)

SMC: Particle learning, on the other hand, can directly
approximate the product rule of probabilities, i.e.

pN(yn) =
n∏

t=1

pN(yt |y t−1)

with

pN(yt |y t−1) =
1

N

N∑

i=1

p(yt |Z(i)
t−1). (6)



Density Estimation

We consider density functions of the form,

f (y ; G ) =

∫
k(y ; θ)dG (θ).

There are many possibilities for the prior on G :

Finite mixture models: finite dimensional models.
Dirichlet process: stick-breaking (Ferguson, 1973).
Beta two-parameter processes (Ishawaran and Zarepour, 2000).
Kernel stick-breaking processes (Dunson and Park, 2008).

See Walker, Damien, Laud and Smith (1999) or Müller and
Quintana (2004) for more complete overviews of the major
modeling frameworks.



Collapsed state-space model

An informal formulation of the collapsed state-space model is

E [f (yt+1; G) | Zt ] =

Z
k(yt+1; θ)dE [G(θ)] (7)

E [dG(θ) | Zt ] =

Z
dG(θ)dP (dG(θ) | Zt) . (8)

With t observations allocated to mt mixture components

E [dG(θ) | Zt ] = p0dG0(θ) +

mtX
j=1

pjE
h
δθ?j |Zt

i
p (yt+1 | Zt) = p0

Z
k(yt ; θ)dG0(θ) +

mtX
j=1

pj

Z
k(yt ; θ

?
j )dP(θ?j |Zt)

with θ?j the parameters for each of the mt components.



Inference about the random mixing distribution

All of the inference so far is based on the marginal posterior
predictive, thus avoiding direct simulation of the infinite
dimensional random mixing distribution.

In some situations, however, it is necessary to obtain inference
about the actual posterior for the random density f (y ; G ), and
hence about G itself, rather than about E[f (y ; G )].

For example, functionals of the conditional density
f (x , y ; G )/f (x ; G ) are the objects of inference in implied
conditional regression (e.g., Taddy and Kottas, 2009).



Truncation

The standard approach to sampling G is to apply a truncated
version of the constructive definition to draw from

DP
(
α + t,G t

0 (θ; nt ,θ
?
t )
)
,

the conjugate posterior for G given θ?t and nt (Gelfand and
Kottas, 2002).

The approximate posterior draw GL ≡ {pl , ϑl}Ll=1 is built from i.i.d.
point mass locations ϑl∼G t

0 (ϑl ; nt ,θ
?
t ) and the probability vector

p = (p1, . . . , pL) from the finite stick- breaking process
pl = vl(1−∑l−1

j=1) for l = 1, . . . , L, with vl ∼ beta(1, α + t) and
vL = 1.



Illustration

Data was simulated from

yt ∼ N(0.3 + 0.4xt + 0.5 sin(2.7xt) + 1.1(1 + x2
t )−1, σ2

t )

where xt ∼ N(0, 1) and

σt =

{
0.5 w .p. Φ(xt)

0.25 w .p. 1− Φ(xt)

The joint distribution of x and y is modeled as arising from
DP-MVN with parameter learning and α = 2, ν = 3, κ = 0.1,
γλ = 0, Ψλ = 1.5I, γΩ = 3, and ΨΩ = 0.1I.



Conditional densities

After applying PL with N = 1000 particles to filter the posterior,
truncated approximations GL with L = 300 were drawn (Taddy and
Kottas, 2009).

In particular, the conditional density is available at any location
(x , y) as ∑L

l=1 plN (x , y ;µl ,Σl)∑L
l=1 plN(x ;µx

l , σ
x
l )

,

and the conditional mean at x is

E [Y | x ; GL] =

∑L
l=1 plN(x ;µx

l , σ
x
l )
[
µy

l + ρxy
l (σx

l )−1(x − µx
l )
]

∑L
l=1 plN(x ;µx

l , σ
x
l )

.



Regression

Left: filtered posterior mean estimate for the conditional density
f (x , y ; GL)/f (x ; GL),

Right: posterior mean and 90% interval for the mean E[y |x ; GL].
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Conclusion

We have proposed a new estimation method for general mixture
models.

The approach is easy to understand, simple to implement, and
computationally fast.

A vast body of empirical and theoretical evidence of the robust
behavior of the resample/propagate PL procedure in states space
models appear in Carvalho, Johannes, Lopes and Polson (2009).

Conditioning on sufficient statistics for states and parameters
whenever possible creates a Rao-Blackwellized filter with more
uniformly distributed resampling weights.



PL does not attempt to approximate the ever increasing joint
posterior distribution for kt .

It is self evident that any importance sampling approximation to
the entire vector of allocations will eventually fail, due to the curse
of dimensionality, as t grows.

But we show that this is an irrelevant target, since the allocation
problem can be effectively solved after filtering relevant sufficient
information.

Finally, we include an efficient framework for marginal likelihood
estimation, providing a valuable tool for real-time sequential model
selection.



The framework is especially appealing in the large class of
nonparametric mixture priors where the predictive probability
function is either available analytically or possible to approximate.

To enable understanding, we have focused on a limited set of
concrete models, while pointing to a more general applicability
available with little change to the algorithm.

It is thus hoped that this article will facilitate a wider adoption of
sequential particle methods in nonparametric mixture model
applications.


