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Bayesian Statistics Without Tears: 
A Sampling-Resampling Perspective 

A. F. M. SMITH and A. E. GELFAND* 

Even to the initiated, statistical calculations based on 
Bayes's Theorem can be daunting because of the nu- 
merical integrations required in all but the simplest ap- 
plications. Moreover, from a teaching perspective, in- 
troductions to Bayesian statistics-if they are given at 
all-are circumscribed by these apparent calculational 
difficulties. Here we offer a straightforward sampling- 
resampling perspective on Bayesian inference, which 
has both pedagogic appeal and suggests easily imple- 
mented calculation strategies. 

KEY WORDS: Bayesian inference; Exploratory data 
analysis; Graphical methods; Influence; Posterior dis- 
tribution; Prediction; Prior distribution; Random var- 
iate generation; Sampling-resampling techniques; Sen- 
sitivity analysis; Weighted bootstrap. 

1. INTRODUCTION 

Given data x obtained under a parametric model in- 
dexed by finite-dimensional 0, the Bayesian learning 
process is based on 

p(0Jx) = 1(0; X)P(0) (1.1) 
f 1(0; x)p(0) dO 

the familiar form of Bayes's Theorem, relating the pos- 
terior distribution p(0lx) to the likelihood 1(0; x), and 
the prior distribution isp(0). If 0 = (/, tf), with interest 
centering on /, the joint posterior distribution is mar- 
ginalized to give the posterior distribution for /, 

p(OJX) = p(o, tfrx) dtf. (1.2) 
If summary inferences in the form of posterior expec- 
tations are required (e.g., posterior means and vari- 
ances), these are based on 

E[m(0)Jx] = f m(0)p(0Jx) dO, (1.3) 

for suitable choices of m(Q). 
Thus, in the continuous case, the integration oper- 

ation plays a fundamental role in Bayesian statistics, 
whether it is for calculating the normalizing constant in 

(1.1), the marginal distribution in (1.2), or the expec- 
tation in (1.3). However, except in simple cases, explicit 
evaluation of such integrals will rarely be possible, and 
realistic choices of likelihood and prior will necessitate 
the use of sophisticated numerical integration or ana- 
lytic approximation techniques (see, for example, Smith 
et al. 1985, 1987; Tierney and Kadane, 1986). This can 
pose problems for the applied practitioner seeking rou- 
tine, easily implemented procedures. For the student, 
who may already be puzzled and discomforted by the 
intrusion of too much calculus into what ought surely 
to be a simple, intuitive, statistical learning process, this 
can be totally off-putting. 

In the following sections, we address this problem by 
taking a new look at Bayes's Theorem from a sampling- 
resampling perspective. This will open the way to both 
easily implemented calculations and essentially calculus- 
free insight into the mechanics and uses of Bayes's 
Theorem. 

2. FROM DENSITIES TO SAMPLES 

As a first step, we note the essential duality between 
a sample and the density (distribution) from-which it is 
generated. Clearly, the density generates the sample; 
conversely, given a sample we can approximately re- 
create the density (as a histogram, a kernel density 
estimate, an empirical cdf, or whatever). 

Suppose we now shift the focus in (1.1) from densities 
to samples. In terms of densities, the inference process 
is encapsulated in the updating of the prior density p(0) 
to the posterior density p(OJx) through the medium of 
the likelihood function 1(0; x). Shifting to samples, this 
corresponds to the updating of a sample from p(O) to 
a sample from p(Olx) through the likelihood function 
1(0; x). 

In Section 3, we examine two resampling ideas that 
provide techniques whereby samples from one distri- 
bution may be modified to form samples from another 
distribution. In Section 4, we illustrate how these ideas 
may be utilized to modify prior samples to posterior 
samples, as well as to modify posterior samples arising 
under one model specification to posterior samples aris- 
ing under another. An illustrative example is provided 
in Section 5. 

3. TWO RESAMPLING METHODS 

Suppose that a sample of random variates is easily 
generated, or has already been generated, from a con- 
tinuous density g(0), but that what is really required is 
a sample from a density h(0) absolutely continuous with 
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respect to g(O). Can we somehow utilize the sample 
from g(O) to form a sample from h(O)? Slightly more 
generally, given a positive function f(O) which is nor- 
malizable to such a density h(O) = f(O)lff(O) dO, can 
we form a sample from the latter given only a sample 
from g(O) and the functional form of f(O)? 

3.1 Random Variates via the Rejection Method 

In the case where there exists an identifiable constant 
M > 0 such that f(O)lg(O) < M, for all 0, the answer is 
yes to both questions, and the procedure is as follows: 

1. Generate 0 from g(0). 
2. Generate u from uniform (0, 1). 
3. If u c f(O)/Mg(O), accept 0; otherwise, repeat Steps 

1-3. 

Any accepted 0 is then a random variate from 

h(0) = f(O) f(o) do. 

The proof (see also Ripley 1986, p. 60) is straight- 
forward. 

Let 

SO = [(0, u): 0 c 00, u c f(O)/Mg(O)], 

and let 

S = [(0, u): U < f(0)/Mg(0)]. 

Then the cdf of accepted 0, according to the preceding 
procedure, is 

Pr(0 c O, 0 accepted) 

fIs(i g(0) du dO 

f Is g(O) du dO 

f f(O) dO 

ff(o) dO 

It follows that accepted 0 have density h(0) -c f(0). 
Hence, for a sample Oi, i = 1, . . , n, from g(0), in 

resampling to obtain a sample from h(0) we will tend 
to retain those Oi for which the ratio of f relative to g 
is large, in agreement with intuition. The resulting sam- 
ple size is, of course, random, and the probability that 
an individual item is accepted is given by 

Pr(0 accepted) = fIs g(0) du dO 

= M-1 ff(x) dx. 

The expected sample size for the resampled 0i's is there- 
fore M1ln f> xf(x) dx. 

3.2 Random Variates via a Weighted Bootstrap 

In cases where the bound M required in the preceding 
procedure is not readily available, we may still approx- 
imately resample from h(0) = f(0)/ff(0) dO as follows. 
Given Oi, i = 1, . . ., n, a sample from g, calculate 
Ci = f(01)lg(01) and then 

/ I qi = (oi / EC). 

Draw 0* from the discrete distribution over {0l, . 

0,1} placing mass qi on Oi. Then 0* is approximately 
distributed according to h with the approximation "im- 
proving" as n increases. We provide a justification for 
this claim in a moment. However, first note that this 
procedure is a variant of the by now familiar bootstrap 
resampling procedure (Efron 1982). The usual boot- 
strap provides equally likely resampling of the Oi, while 
here we have weighted resampling with weights deter- 
mined by the ratio of f:g, again in agreement with in- 
tuition. See also Rubin (1988), who referred to this 
procedure as SIR (sampling/importance resampling). 

Returning to our claim, suppose for convenience that 
0 is univariate. Under the customary bootstrap, 0* has 
cdf 

Pr(0* < a) - l(r a)( i) , Eg1(_ -,a)(0) 

g(0) dO 

so that 0* is approximately distributed as an observation 
from g(0). Similarly, under the weighted bootstrap, 0* 
has cdf 

Pr( 0* ca) =Eqil ( - -a) (0O) 
i = 1 

1 ~~~~~~~7f(0) 
n 1 ()il(--,)(0) l 2 f -,a(0) 

n go 

f(O) dO a 
= fah(O)dO 

ff(0) dO 

so that 0 is approximately distributed as an observation 
from h. Note that the sample size under such resampling 
can be as large as desired. We mention one important 
caveat. The less h resembles g, the larger the sample 
size n will need to be in order that the distribution of 
0* well approximates h. 

Finally, the fact that either resampling method allows 
h to be known only up to proportionality constant (i.e., 
only through f) is crucial, since in our Bayesian appli- 
cations we wish to avoid the integration required to 
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standardize f. (Although, from the preceding, we can 
see that 

1 
7 

i = 1 

provides a consistent estimator of the normalizing 
constant 

ff(0) dO 

if such be required.) 

4. BAYESIAN CALCULATIONS VIA 
SAMPLING-RESAMPLING 

Both methods of the previous section may be used 
to resample the posterior (h) from the prior (g) and 
also to resample a second posterior (h) from a first (g). 
In this section we give details of both applications. 

4.1 Prior to Posterior 

How does Bayes's Theorem generate a posterior sam- 
ple from a prior sample? For fixed x, define fv(0) = 
1(0; x)p(0). If 0 maximizes 1(0; x), let M = 1(0; x). Then 
with g(0) = p(O), we may immediately apply the re- 
jection method of Section 3.1 to obtain samples from 
the density corresponding to the standardized f, which, 
from (1.1), is precisely the posterior density p(Olx). Thus, 
we see that Bayes's Theorem, as a mechanism for gen- 
erating a posterior sample from a prior sample, takes 
the following simple form: for each 0 in the prior sample 
accept 0 into the posterior sample with probability 

fl(0) 1(0; x) 
Mp(0) 40; x) 

otherwise reject it. 
The likelihood therefore acts as a resampling prob- 

ability; those 0 in the prior sample having high likeli- 
hood are more likely to be retained in the posterior 
sample. Of course, since p(Olx) oc 1(0, x)p(0), we can 
also straightforwardly resample using the weighted 
bootstrap with 

qi = I(0i; X)/ E4I0; x). 

Several obvious uses of this sampling-resampling 
perspective are immediate. Using large prior samples 
and iterating the resampling process for successive in- 
dividual data elements for two-dimensional 0, say 
provides a simple pedagogic tool for illustrating the 
sequential Bayesian learning process, as well as the in- 
creasing concentration of the posterior as the amount 
of data increases. In addition, the approach provides 
natural links with elementary graphical displays (e.g., 
histograms, stem-and-leaf displays, boxplots to sum- 
marize univariate marginal posterior distributions, scat- 
terplots to summarize bivariate posteriors). In general, 
the translation from functions to samples provides a 

wealth of opportunities for creative exploration of 
Bayesian ideas and calculations in the setting of com- 
puter graphical and exploratory data analysis (EDA) 
tools. 

4.2 Posterior to Posterior 

An important issue in Bayesian inference is sensitivity 
of inferences to model specification. In particular, we 
might ask: 

1. How does the posterior change if we change the 
prior? 

2. How does the posterior change if we change the 
likelihood? 

In the density function/numerical integration setting, 
such sensitivity studies are rather off-putting, in that 
each change of a functional input typically requires one 
to carry out new calculations from scratch. This is not 
the case with the sampling-resampling approach, as we 
now illustrate in relation to the questions posed above. 

In comparing two models in relation to the second 
question, we note that change in likelihood may arise 
in terms of: 

1. change in distributional specification with 0 re- 
taining the same interpretation, for example, a location 

2. change in data to a larger data set (prediction), a 
smaller data set (diagnostics), or a different data set 
(validation) 

To unify notation, we shall in either case denote two 
likelihoods by ll(O) and 12(0). We denote two different 
priors to be compared in relation to the first question 
by pl(O) and P2(O). For complete generality, we shall 
consider changes to both / and p, although in any par- 
ticular application we would not typically change both. 
Denoting the corresponding posterior densities by i1(0), 
I52(O),we easily see that 

,02(0) X OC 2 PI(O). (4.1) 
li(O)Pi(O) 

Letting v(O) = 12(0)P2(0)l11(0)p1(O), we note that to 
implement the rejection method for (4.1) requires 

sup v(O). 
0 

In many examples this will simplify to an easy calcu- 
lation. Alternatively, we may directly apply the weighted 
bootstrap method taking g = I1(0), f = v(0)131(0), and 

)i = V(Oi). Resampled 0* will then be approximately 
distributed according to f standardized, which is pre- 
cisely P2(0). 

Again, different aspects of the sensitivity of the pos- 
teriors to changes in inputs are easily studied by graph- 
ical examination of the posterior samples. 

5. AN ILLUSTRATIVE EXAMPLE 

To illustrate the passage, via Bayes's Theorem, from 
a prior sample to a posterior sample, we consider a two- 
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parameter problem first considered by McCullagh and 
Nelder (1989, sec. 9.3.3). 

For i 1, 2, 3, suppose that Xi1, Binomial(ni1, 01) 
and Xi2 Binomial(ni2, 02), conditionally independent 
given 01, 02, with nil, ni2 specified. Suppose further that 
the observed random variables are Yi = X1, + Xi2, i = 

1, 2, 3, so that the likelihood for 01, 02 given Y1 = yl, 
Y2 = Y2 and Y3 = y3 takes the form: 

I1[I (n!l) ni2) 

X 0j(1 - 01)nii -yio0i-ji(1 - 02)) i +ji 

where maxtO, yi - ni2} <j ii 'mintni1, yi. 
The data considered by McCullagh and Nelder are 

the following: 

1 2 3 

ni1 5 6 4 
ni2 5 4 6 
Yi 7 5 6 

For purposes of illustration, we take the joint prior 
distribution for 01, 02 to be uniform over the unit square. 
In accordance with the shift to a sampling perspective 
that constitutes our fundamental message in this article, 
Figure 1 presents a scatterplot of points uniformly drawn 
from the unit square, together with summary histo- 
grams confirming the uniform "shape" of the prior mar- 
ginals for 0, and 02. 

We now proceed to generate a posterior sample by 
resampling from the prior sample. For this illustration, 
the weighted bootstrap procedure was used and resulted 
in the posterior sample scatterplot shown in Figure 2, 
together with summary histograms of the posterior mar- 
ginals for 0, and 02. General features of the posterior 
are easily identified from this picture for example, 

0.22 04 0. . 

Figure 1. Sample from Prior. 
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e 

Figure 2. Sample from Posterior. 

the marginal locations and spreads of inferences for the 
two parameters, together with the negative correlation 
and slight bimodality, which reflects the ambiguity re- 
sulting from observations in the form of sums of bi- 
nomial outcomes. 

Numerical summaries in the form of posterior mo- 
ments, quantiles, or whatever are trivially obtained, 
if required, by forming corresponding sample quantities 
in the obvious way. 

A further flexible and straightforwardly implemented 
feature of the sample-based approach is that posterior 
inferences can be trivially reexpressed in terms of any 
reparameterization of interest. For example, the logit 
(log-odds) reparameterization is often of interest in 
problems involving binomial data, so that, in the above, 
it might be of interest to recalculate the joint and mar- 

10- 

5- 

0 

I II 

log [GX/(I -Gi)] 

Figure 3. Sample from Transformed Posterior. 
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ginal posteriors for the parameters log [0i/(1 - 0)], i = 
1, 2. The sample for 01, 02 translates directly into a 
sample from the logit transformed parameters and re- 
sults in the summary picture given in Figure 3. We note 
that the forms of joint posterior revealed in Figures 2 
and 3 are far from "nice" and would require subtle 
numerical handling by the nonsampling approaches cited 
in the Introduction. 

So far as choice of sample sizes for initial and resam- 
ples is concerned, this will typically be a matter of ex- 
perimentation with particular applications, having in 
mind the level of "precision" required from pictorial or 
numerical summaries. For example, in Figure 1 we dis- 
play 1,000 sample points as an effective pictorial rep- 
resentation. However, the resampling ratio needs to be 
at least 1 in 10, with some 2,000 points plotted in Figures 
2 and 3 to convey adequately these awkward posterior 
forms. The actual generated sample from the prior thus 
needed to be in excess of 20,000 points. 

Clearly, there is considerable scope for more refined 
graphical outputs in terms of joint density contours, 
kernel density curves, and so on. We encourage readers 
to be creative in fusing EDA and graphical techniques 

with the sample-based approach to formal inference 
presented here. 

[Received May 1990. Revised Januiary 1991.] 
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