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Sampling-Based Approaches to Calculating 
Marginal Densities 

ALAN E. GELFAND AND ADRIAN F. M. SMITH* 

Stochastic substitution, the Gibbs sampler, and the sampling-importance-resampling algorithm can be viewed as three alternative 
sampling- (or Monte Carlo- ) based approaches to the calculation of numerical estimates of marginal probability distributions. 
The three approaches will be reviewed, compared, and contrasted in relation to various joint probability structures frequently 
encountered in applications. In particular, the relevance of the approaches to calculating Bayesian posterior densities for a 
variety of structured models will be discussed and illustrated. 

KEY WORDS: Conditional probability structure; Data augmentation; Gibbs sampler; Hierarchical models; Importance sam- 
pling; Missing data; Monte Carlo sampling; Posterior distributions; Stochastic substitution; Variance compo- 
nents. 

1. INTRODUCTION 

In relation to a collection of random variables, U1, U2, 
. . . , Uk, suppose that either (a) for i = 1, . . . , k, the 
conditional distributions U, / U, ( j  # i) are available, per- 
haps having for some i reduced forms Ui I U, (j E SiC (1, 
. . . , k)), or (b) the functional form of the joint density 
of U,, U2, . . . , Uk is known, perhaps modulo the nor- 
malizing constant, and at least one U, I Uj ( j  # i) is avail- 
able, where available means that samples of U, can be 
straightforwardly and efficiently generated, given speci- 
fied values of the appropriate conditioning variables. 

The problem addressed in this article is the exploitation 
of the kind of structural information given by either (a) 
or  (b), to obtain numerical estimates of nonanalytically 
available marginal densities of some or all of the U, (when 
possible) simply by means of simulated samples from avail- 
able conditional distributions, and without recourse to so- 
phisticated numerical analytic methods. We do not claim 
that the sampling methods to be described are necessarily 
computationally efficient compared with expert use of the 
latter. Instead, the attraction of the sampling-based meth- 
ods is their conceptual simplicity and ease of implemen- 
tation for users with available computing resources but 
without numerical analytic expertise. All that the user re- 
quires is insight into the relevant conditional probability 
structure and techniques for the efficient generation of 
appropriate random variates (e.g., as described by De- 
vroye 1986 and Ripley 1987). 

In Section 2, we discuss and extend three alternative 
approaches put forward in the literature for calculating 
marginal densities via sampling algorithms. These are 
(variants of) the data-augmentation algorithm described 
by Tanner and Wong (1987), the Gibbs sampler algorithm 
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introduced by Geman and Geman (1984), and the form 
of importance-sampling algorithm proposed by Rubin 
(1987, 1988). We note that the Gibbs sampler has been 
widely taken up in the image-processing literature and in 
other large-scale models such as neural networks and ex- 
pert systems, but that its general potential for more con- 
ventional statistical problems seems to  have been 
overlooked. As we show, there is a close relationship be- 
tween the Gibbs sampler and the substitution or data- 
augmentation algorithm proposed by Tanner and Wong 
(1987). We generalize the latter and show that it is as least 
as efficient as the Gibbs sampler, and potentially more 
efficient, given the availability of distinct conditional dis- 
tributions in addition to those in (a). We note that as a 
consequence of the relationship between the two algo- 
rithms, the convergence results established by Geman and 
Geman (1984) are applicable to the generalized substitu- 
tion algorithm. The stronger convergence results estab- 
lished by Tanner and Wong (1987) require the availability 
of a particular set of conditional distributions, including 
those in (a). Both the substitution and Gibbs sampler al- 
gorithms are iterative Monte Carlo procedures, applicable 
when the kind of structural information given by (a) is 
available. When the structural information is of the kind 
described by (b), we see that an importance-sampling al- 
gorithm based on that of Rubin (1987, 1988) provides a 
noniterative Monte Carlo integration approach to calcu- 
lating marginal densities. 

In Section 3, we illustrate various model structures oc- 
curring frequently in applications, where one or more of 
these three approaches offers an easily implemented so- 
lution. In particular, we consider the calculation of Bayes- 
ian posterior distributions in incomplete-data problems, 
conjugate hierarchical models, and normal data models. 
In Section 4, we briefly summarize the results of some 
preliminary in cases. 
(Detailed applications to complex, real-data problems will 
be in a paper.) Finaliy, in Section 

We provide a summary discussion. 
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2. SAMPLING APPROACHES 

In the sequel, we assume that we are dealing with real, 
possibly vector-valued random variables having a joint dis- 
tribution whose density function is strictly positive over 
the (product) sample space. This ensures that knowledge 
of all full conditional specifications [such as in (a) of Sec. 
11uniquely defines the full joint density (e.g., see Besag 
1974). Throughout, we assume the existence of densities 
with respect to either Lebesgue or counting measure, as 
appropriate, for all marginal and conditional distributions. 
The terms distribution and density are therefore used in- 
terchangeably. 

Densities are denoted generically by brackets, so joint, 
conditional, and marginal forms, for example, appear as 
[X, Y], [ X  1 Y], and [XI. Multiplication of densities is 
denoted by *; for example, [X, Y] = [ X  / Y] * [Y]. The 
process of marginalization (i.e., integration) is denoted by 
forms such as [ X  I Y] = J" [ X  I Y, 2, W] * [ Z  / W, Y] * 
[W / Y], with the convention that all variables appearing 
in the integrand but not in the resulting density have been 
integrated out. Thus the integration is with respect to Z 
and W. More generally, we use notation such as S h(Z, 
W) * [W] to denote, for given Z,  the expectation of the 
function h(Z, W) with respect to the marginal distribution 
for W. 

2.1 Substitution or Data-Augmentation Algorithm 

The substitution algorithm for finding fixed-point so- 
lutions to certain classes of integral equations is a standard 
mathematical tool that has received considerable attention 
in the literature (e.g., see Rall 1969). Its potential utility 
in statistical problems of the kind we are concerned with 
was observed by Tanner and Wong (1987) (who called it 
a data-augmentation algorithm) and the associated dis- 
cussion. Briefly reviewing the essence of their develop- 
ment using the notation introduced previously, we have 

and 

[Y] = J- [Y I XI * [XI,  (2) 

so substituting (2) into (1) gives 

= j h(X, X ' )  * [X'], (3) 

where h(X, X ' )  = S [X  I Y] * [Y I X ' ] ,  with X '  appearing 
as a dummy argument in (3), and of course [XI = [X']. 
Now, suppose that on the right side of (3), [X'] were 
replaced by [XI,, to be thought of as an estimate of [XI 
= [X'] arising at the ith stage of an iterative process. Then, 
(3) implies that for some [XI,, [XI,,, = S h(X, X ' )  * 

[X']; = I,[X];, in a notation making explicit that I,,is the 
integral operator associated with h. Exploiting standard 
theory of such integral operators, Tanner and Wong (1987) 
showed that under mild regularity conditions this iterative 
process has the following properties (with obviously anal- 
ogous results for [Y]). 

TWl (uniqueness). The true marginal density, [XI, is 
the unique solution to (3). 

TW2 (convergence). For almost any [XIo, the se-
quence [XI,,  [XI2, . . . defined by [XIi+, = Ik[Xli (i = 

0, 1, . . .) converges monotonically in L, to [XI. 
TW3 (rate). S I[X], - [XI1 -+ 0 geometrically in i. 

Extending the substitution algorithm to three random 
variables X, Y, and Z,  we may write [analogous to (1) and 
(211 

and 

Substitution of (6) into (5) and then (5) into (4) produces 
a fixed-point equation analogous to (3). A new h function 
arises with associated integral operator I,,,and hence TW1, 
TW2, and TW3 continue to hold in this extended setting. 
Extension to k variables is straightforward. A noteworthy 
by-product, using TW1, is a simple proof that under weak 
conditions specification of the conditional distributions 
[U,,,,, I U,] (s = 1, 2, . . . , k) uniquely determines the 
joint density. 

Substitution Sampling 

Returning to (1) and (2), suppose that [X / Y] and 
[Y / XI are available in the sense defined at the beginning 
of Section 1. For an arbitrary (possibly degenerate) initial 
density [XI,, draw a single X(O) from [XI,, . Given X@), since 
[Y I XI is available draw Y(') - [Y I X(O)], and hence from 
(2) the marginal distribution of Y('j is [Y], = S [Y I XI * 
[XI,,. Now, complete a cycle by drawing X(l) - [X Y(')]. 
Using (I),  we then have X(') - [XI, = S [X / Y] * [Y], 
= J" h(X, X ' )  * [X'], = I,,[X],,. Repetition of this cycle 
produces Y(*j and X(*), and eventually, after i iterations, 
tae pair (X([j, Y([j) such that X([j 2 X - [XI, and Y(ij 
-+ Y - [Y], by virtue of TW2. Repetition of this sequence 
m times each to the ith iteration generates m iid pairs 

(XjO' y ( i j
, ) ( j = 1, . . . ,m). We call this generation scheme 

substitution sampling. Note that though we have indepen- 
dence across j ,  we have dependence within a given j .  

If we terminate all repetitions at the ith iteration, the 
proposed density estimate of [XI (with an analogous 
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expression for [Y]) is the Monte Carlo integration 

Note that the x,'"are not used in (7) (see Sec. 2.6). 
We note that this version of the substitution-sampling 

algorithm differs slightly from the imputation-posterior 
algorithm of Tanner and Wong (1987). At each iteration 
I ( I  = 1 ,2 ,  . . . , i), they proposed creation of the mixture 
density estimate, [XI,, of the form in (7), with subsequent 
sampling from [XI, to begin the next iteration. This mech- 
anism introduces the additional randomness of equally 
likely selection from the Y:) before obtaining an X('). We 
suspect this sampling with replacement of the Y(') was 
introduced to allow m to vary across iterations, which may 
be useful in reducing computational effort. 

The L,  convergence of [XIi to [XI is most easily studied 
by writing S I[xIi - [XI1 J" /[XIi - [XIi/ + S /[XIi -
[XI\.  The second term on the right side can be made ar- 
bitrarily small as i -,m, as a consequence of TW2. The 
first term on the right can be made arbitrarily small as m 
-$ X, since [x]~ 4 [XIi for almost all X (Glick 1974). 

Extension of the substitution-sampling algorithm to 
more than two random variables is straightforward. We 
illustrate using the three-variable case, assuming the three 
conditional distributions in (4)-(6) are available. Taking 
an arbitrary starting marginal density for X, say [XIo, we 
draw X(O) - [XIo, (Z(O)', Y(O)') - [Z, Y I X(O)], (Y('), X(O)') 
- [Y, X ( Z(O)'], and finally (X('), Z(')) - [X, Z I Y(')]. A 
full cycle of the algorithm (i.e., to generate X(') starting 
from X") thus requires six generated variates, rather than 
the two we saw earlier. Repeating such a cycle i times 
produces (X('), F(l),Z(i)). The afyrementioned theory en- 
sures that X(') -+ X - [XI, Yci) -$ Y - [Y], and Z(') +d Z 
- [Z]. If we repeat the entire process m times we obtain 
iid (x:), Y;", ~ 7 ) )  ( j  = 1, . . . ,m) (independent between, 
but not within, j's). Note that implementation of the sub- 
stitution-sampling algorithm does not require specification 
of the full joint distribution. Rather, what is needed is the 
availability of [X, Z I Y], [Y, X I Z],  and [Z, Y I Z]. Of 
course, in many cases sampling from, say, [X, Z I Y] re- 
quires, for example, [X I Y, Z ]  and [Y I Z ] ,  that is, the 
availability of a full conditional and a reduced conditional 
distribution. Paralleling (7), the density estimator of [XI 
becomes 

with analogous expressions for estimating [Y] and [Z]. L, 
convergence of (8) to [XI again follows. 

For k variables, U,, . . . , U,, the substitution-sampling 
algorithm requires k(k - 1) random variate generations 
to complete a cycle. If we run m sequences out to the ith 
iteration [mik(k - 1) random generations] we obtain m 
iid k tuples (uY), . . . k j  ( j  =u'") 1 , .  . . , m), with the 
density estimator for [Us] (s = 1, . . . , k) being 

[ a ] ,  = -
1 2''. [Us I U, = u;'; t # s]. 
m 

2.3 Glbbs Sampllng 

Suppose that we write (4)-(6) in the form 

[XI = I[XI Z, Yl * [Z  1 Yl * [Yl 

Implementation of substitution sampling requires the 
availability of all six conditional distributions on the right 
side of (lo), rarely the case in our applications. As noted 
at the beginning of Section 2, the full conditional distri- 
butions alone, [X I Y, Z], [Y I Z,  XI, and [Z  I X, Y], 
uniquely determine the joint distribution (and hence the 
marginal distributions) in the situations under study. An 
algorithm for extracting the marginal distributions from 
these full conditional distributions was formally introduced 
by Geman and Geman (1984) and is known as the Gibbs 
sampler. An earlier article by Hastings (1970) developed 
essentially the same idea and suggested its potential for 
numerical problems arising in statistics. 

The Gibbs sampler was developed and has mainly been 
applied in the context of complex stochastic models in- 
volving very large numbers of variables, such as image 
reconstruction, neural networks, and expert systems. In 
these cases, direct specification of a joint distribution is 
typically not feasible. Instead, the set of full conditionals 
is specified, usually by assuming that an individual full 
conditional distribution only depends on some "neigh- 
borhood" subset of the variables [a reduced form, in the 
terminology of (a) in Sec. 11. More precisely, for the set 
of variables U,, U2, . . . , Uk, 

where Si is a small neighborhood subset of (1, 2, . . . ,k). 
A crucial question is under what circumstances the spec- 
ification (11) uniquely determines the joint distribution. 
The answer is taken up in great detail by Geman and 
Geman (1984), involving concepts such as graphs, neigh- 
borhood systems, cliques, Markov random fields, and 
Gibbs distributions. In all of the examples we consider, 
the joint distribution is uniquely defined. Our k's will be 
small to moderate, and the available set of full conditional 
distributions will, in fact, be calculated from specification 
of the joint density. 

Gibbs sampling is a Markovian updating scheme that 
proceeds as follows. Given an arbitrary starting set of val- 
ues u?), UP), . . . ,Uf), we draw u(,')- [U, ( UP), . . . , 
u p ] ,  ~ ( 1 )- [ u 2 1 u y ) , u p  [U, I2 , . . . ,  up'], ul" -
u(')u:), UY), . . . , UP)], and so on, up to u:) - [Uk I 
u t,", . . . ,u:! ,I. Thus each variable is visited in the nat- 
ural order and a cycle in this scheme requires K random 
variate generations. After i such iterations we would arrive 
at (u(:), . . . , u!)). Under mild conditions, Geman and 
Geman showed that the following results hold. 
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GGl (convergence). ( U i  . . , U )  [ U  , . . . , Uk]
and hence for each s, + U, - [Us] as i + .a. In 
fact, a slightly stronger result is proven. Rather than re- 
quiring that each variable be visited in repetitions of the 
natural order, convergence still follows under any visiting 
scheme, provided that each variable is visited infinitely 
often (io). 

GG2 (rate). Using the sup norm, rather than the L, 
norm, the joint density of (Uf),  . . . , u!)) converges to 
the true joint density at a geometric rate in i, under visiting 
in the natural order. A minor adjustment to the rate is 
required for an arbitrary io visiting scheme. 

GGS (ergodic theorem). For any measurable function 
T of U1, . . . , Uk whose expectation exists, 

1 ' 
lim T T(u(,'), . . . , u!)) 2 E(T(Ul,  . . . , Uk)). 
i-r 1 / = I  

As in Section 2.3, Gibbs sampling through m replica- 
tions of the aforementioned i iterations (mik random vari- 
ate generations) produces m iid k tuples (uY~, . . . , u:]) 
( j  = 1, . . . , m), with the proposed density estimate for 
[Us] having form (9). 

2.4 	 Relationship Between Gibbs Sampling and 
Substitution Sampling 

It is apparent that in the case of two random variables 
Gibbs sampling and substitution sampling are identical. 
For more than two variables, using (10) and its obvious 
generalization to k variables, we see that Gibbs sampling 
assumes the availability of the set of k full conditional 
distributions (the minimal set needed to determine the 
joint density uniquely). The substitution-sampling algo- 
rithm requires the availability of k(k - 1) conditional 
distributions, including all of the full conditionals. 

Gibbs sampling is known to converge slowly in appli- 
cations with k very large. Regardless, fair comparison with 
substitution sampling, in the sense of the total amount of 
random variate generation, requires that we allow the 
Gibbs sampling algorithm i(k - 1) iterations if the sub- 
stitution-sampling algorithm is allowed i. Even so, there 
is clearly scope for accelerated convergence from the sub- 
stitution-sampling algorithm, since it samples from the cor- 
rect distribution each time, whereas Gibbs sampling only 
samples from the full conditional distributions. To amplify, 
we describe how the substitution-sampling algorithm 
might be carried out under availability of just the set of 
full conditional distributions. We see that it can be viewed 
as the Gibbs sampler, but under an io visiting scheme 
different from the natural one. We present the argument 
in the three-variable case for simplicity. Returning to (lo), 
if [Y I X ]  is unavailable we can create a sub-substitution 
loop to obtain it by means of 

Similar subloops are clearly available to create [X I Z]  

and [ Z  I Y]. In fact, for k variables this idea can be straight- 
forwardly extended to the estimation of an arbitrary re- 
duced conditional distribution, given the full conditionals. 
We omit the details. 

The previous analysis suggests that we could view the 
reduced conditional densities such as [Y I XI as available, 
and that we could thus carry out the substitution algorithm 
as if all needed conditional distributions were available; 
however, [Y 1x1is not available in our earlier sense. Under 
the subloop in (12), we can always obtain a density esti- 
mate for [Y I XI ,  given any specified X, say X("). At the 
next cycle of the iteration, however, we would need a 
brand-new density estimate for [Y I XI at X = X('). None- 
theless, suppose we persevered in this manner, making 
our way through one cycle of (10). The reader may verify 
that the only distributions actually sampled from are, of 
course, the available full conditionals, that at the end of 
the cycle each full conditional will have been sampled from 
at least once, and thus that under repeated iterations each 
variable will be visited io. Therefore, this version of the 
substitution-sampling algorithm is merely Gibbs sampling 
with a different but still io visiting order. As a result, GG1, 
GG2, and GG3 still hold (TW1, TW2, and TW3 apply 
directly only when all required conditional distributions 
are available). Moreover, there is no gain in implementing 
the Gibbs sampler in this complicated order; the natural 
order is simpler and equally good. 

This discussion may be readily extended to the case of 
k variables. As a result, we conclude that when only the 
set of k full conditionals is available the substitution-sam- 
pling algorithm and the Gibbs sampler are equivalent. 
Furthermore, we can now see when substitution sampling 
offers the possibility of acceleration relative to Gibbs sam- 
pling. This occurs when some reduced conditional distri- 
butions, distinct from the full conditional distributions, are 
available. Suppose that we write the substitution algorithm 
with appropriate conditioning to capture these available 
reduced conditionals. As we traverse a cycle, we would 
sample from these distributions as we come to them, oth- 
erwise sampling from the full conditional distributions. 

An example will help clarify this idea. One way to carry 
out the Gibbs sampler in (10) is to follow the substitution 
order rather than the natural order. That is, given an initial 
X(O), Y("), and Z(O), we start at the bottom line of (lo), for 
example, drawing (a) Y(")' from [Y I X("), Z(")], (b) Z(")' 
from [Z I Y(")', X(")], (c) X(")' from [X I Z(")', Y(")'], (d) 
Y(l) from [Y I X(")', Z(")'], (e) Z(') from [Z I Y"), X(")'], 
and (f) X(')  from [Z I Y"), Z(')]. Thus, in this case, one 
cycle using the substitution order corresponds to two cycles 
using the natural order. Suppose, however, that in addi- 
tion to the full conditional distributions, [Z  I Y], say, is 
available and distinct from [Z I X, Y]. Following the sub- 
stitution order, at step (e) we would instead draw Z(') from 
the correct distribution, [Z  I Y")]. 

In Section 3, we provide classes of examples where dis- 
tinct reduced conditional distributions are available and 
classes where they generally are not. Our computaticnal 
experience shows that the acceleration in convergence that 
arises from having available distributions in addition to 
the full conditionals is inconsequential (see Sec. 4). 
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2.5 The Rubin Importance-Sampling Algorithm 

Rubin (1987) suggested a noniterative Monte Carlo 
method for generating marginal distributions using im- 
portance-sampling ideas. We first present the basic idea 
in the two-variable case. Suppose that we seek the mar- 
ginal distribution of X, given only the functional form 
(modulo the normalizing constant) of the joint density [X, 
Y] and the availability of the conditional distribution [X 
I Y] [a special case of the conditions described in (b) of 
Sec. 11. 

Suppose further (as is typically the case in applications) 
that the marginal distribution of Y is not known. Choose 
an importance-sampling distribution for Y that has positive 
support wherever [Y] does and that has density [Y],, say. 
Then, [X I Y] * [Y], provides an importance-sampling 
distribution for (X, Y). Suppose that we draw iid pairs 
(XI, Yl) (I = 1, . . . , N)  from this joint distribution, for 
example, by drawing Y, from [Y], and XI from [X I Yl]. 
Rubin's idea is to calculate r, = [XI, Y,]/[Xl I Yl] * [Y,], (I 
= 1, . . . , N)  and then estimate the marginal density for 
[XI by 

(13) 
i =  l 

Note the important fact that [X, Y] need only be specified 
up to a constant, since the latter cancels in (13). In other 
words, we do not need to evaluate the normalizing con- 
stant for [X, y ] .  This feature is exploited in the examples 
of Section 3. By dividing the numerator and denominator 
of (13) by N and using the law of large numbers, we im- 
mediately have the following. 

Rl  (convergence,). [XI -, [XI with probability 1 as N 
-,w for almost every X. 

In addition, if [Y I XI is available we immediately have 
an estimate for the marginal distribution of Y: [f'J= 

NC:=l [Y I X[]r1IC,=, r,. 
The successful performance of (13) typically depends 

strongly on the choice of [Y], and its closeness to [Y]. 
Thus the suggestion of Tanner and Wong (1987) in their 
rejoinder to Rubin, to perhaps use for [Y], the density 
estimate created after i iterations of the substitution al- 
gorithm, merits further investigation. In fact, the whole 
problem of general strategies for synthesizing both the 
iterative and noniterative approaches under a fixed-budget 
(total number of random generations) criterion needs con- 
siderable further study. 

The extension of the Rubin importance-sampling idea 
to the case of k variables is clear. For instance, when k 
= 3, suppose that we seek the marginal distribution of X, 
given the functional form of [X, Y, Z ]  up to a constant 
and the availability of the full conditional [X I Y, Z]. In 
this case, the pair (Y, Z )  plays the role of Y in the two- 
variable case discussed before, and in general we need to 
specify an importance-sampling distribution [Y, Z],. 
Nevertheless, if [Y I Z ]  is available, for example, we only 
need to specify [Z],. In any case, we draw iid triples (X,, 
Yl, ZI) (I = 1, . . . , N)  and calculate rl = [XI, Yl, Z,]/ 
([XI I Y,, ZI] * [Y,, Z,],). The marginal density estimate 

for [XI then becomes [analogous to (13)] 

We note that in the k-variable case the Rubin impor- 
tance-sampling algorithm requires Nk random variate gen- 
erations, whereas Gibbs sampling stopped at iteration i 
requires mik generations. For fair comparison of the two 
algorithms, we should therefore set N = mi. The rela- 
tionship between the estimators (7) and (13) may be clar- 
ified if we resample Y,*, Y:, . . . , YG from the 
distribution that places mass rllCr, at Y, (I = 1, . . . , N).  
We could then replace (13) with 

so (7) and (15) are of the same form. Relative performance 
on average depends on whether the distribution of Yci) or 
Y* is closer to [Y]. Empirical work described in Section 
4 suggests that under fair comparison (7) performs better 
than (14) or (15). It seems preferable to iterate through a 
learning process with small samples rather than to draw a 
one-off large sample at the beginning [an idea that un- 
derlies much modern work in adaptive Monte Carlo; e.g., 
see Smith, Skene, Shaw, and Naylor (1987)l. 

2.6 Density Estimation 

In this section, we consider the problem of calculating 
a final form of marginal density from the final sample 
produced by either the substitution- or Gibbs sampling 
algorithms. Since for any estimated marginal the corre- 
sponding full conditional has been assumed available, ef- 
ficient inference about the marginal should clearly be 
based on using this full conditional distribution. In the 
simplest case of two variables, this implies that [X I Y] 
and the Y:' ( j  = 1, . . . , m) should be used to niake 
inferences about [XI, rather than imputing x/"( j  = 1, 
. . . , m) and basing inference on these X?)'S. Intuitively, 
this follows, because to estimate [XI using the x:) requires 
a kernel density estimate. Such an estimate ignores the 
known form [XI Y] that is mixed to obtain [XI. The formal 
argument is essentially based on the Rao-Blackwell theo- 
rem. We sketch a proof in the context of the density es- 
timator itself. If X is a continuous p-dimensional random 
variable, consider any kernel density estimator of [XI 
based on the x:) (e.g., see Devroye and Gyorfi 1985) 
evaluated at Xo: A$: = (llmhk) I;,?, K[(Xo - ~( ' )) lh,] ,  
say, where K is a bounded density on RP and the sequence 
{h,} is such that as m + w, h, -, 0, whereas mhp, -z m. 

To simplify notation, set Qm,xo(X) = (lIh$)K[(X0 - X)/ 
h,] so that A$) = ( l lm)  XI':, Q,,,,(x:'). Define Yz= 

( l lm)  XI:, E(Q.,~~(X) 1 YY). By our earlier theory, 
both A$: and y: have the same expectation. By the Rao- 
Blackwell theorem, var E(Qm,xo(X I Y)) S var Q,,,,(X), 
and hence MSE(~$:) S MSE(A$:), where MSE denotes 
the mean squared error of the estimate of [Xo]. 

Now, for fixed Y, as m -, w, E(Qm,xo(X I Y)) -, [Xo I 
Y] for almost every Xo, by the Lebesgue density theorem 
(see Devroye and Gyorfi 1985, p. 3). Thug in terms of 
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random variables we have E(Qm,xo(X 1 Y)) 5 [Xo 1 Y], so 
for largeAm, y i i  A [&Ii and MSE(~$;) = MSE([&],), and 
hence [Xo], is preferred to A:;. 

The argument is simpler for estimation of q = E(T(X)) 
= S T(X) * [XI, say. Here, 4, = ( l lm)  Elm=,T(x;") is 
immediately seen to be dominated by 4, = ( l lm)  
E(T(X) I ~ j " ) .  

3. EXAMPLES 

A major area of potential application of the method- 
ology we have been discussing is in the calculation of mar- 
ginal posterior densities within a Bayesian inference 
framework. In recent years, there have been many ad- 
vances in numerical and analytic approximation tech- 
niques for such calculations (e.g., see Geweke 1988; 
Naylor and Smith 1982, 1988; Shaw 1988; Smith et al. 
1987; Smith, Skene, Shaw, Naylor, and Dransfield 1985; 
Tierney and Kadane 1986), but implementation of these 
approaches typically requires sophisticated numerical an- 
alytic expertise, and possibly specialist software. By con- 
trast, the sampling approaches we have discussed are 
straightforward to implement. For many practitioners, this 
feature will more than compensate for any relative com- 
putational inefficiency. To provide a flavor of the kinds 
of areas of application for which the methodology is suited, 
we present six illustrative examples. 

3.1 A Class of Multinomial Models 

We extend the one-parameter genetic-linkage example 
described by Tanner and Wong (1987, p. 530), which in 
its most general form involves multinomial sampling, 
where some observations are not assigned to individual 
cells but to aggregates of cells (see Dempster, Laird, and 
Rubin 1977; Hartley 1958). We give the model and dis- 
tribution theory in detail for a two-parameter version, 
from which the extension to k parameters should be clear. 
Let the vector Y = (Y,, . . . , Y,) have a multinomial 
distribution mult(n, a l e  + bl, a28 + b2, a3q + b3, a4q + 
b4, c(1 - 8 - q)), where a,, bi a 0 are known and 0 < c 
= 1 -

4 bi = a l  + a2 = a, + a4 < 1. Thus 8 and q 
range over 8 2 0, q a 0, and 8 + q G 1, so a three- 
parameter Dirichlet distribution, Dirichlet(al, a 2 ,  a3), 
may be a natural choice of prior density for (0, q )  From 
the form of [Y 1 8, q] * [8, q], note that obtaining the exact 
marginals [O I Y] and [q I Y] is somewhat messy (involving 
a two-dimensional numerical integral). Nevertheless, all 
three sampling approaches we have described are readily 
applicable here by considering the unobservable nine-cell 
multinomial model for X = (XI, X2, . . . ,X9), given by 
mult(n, ale, b,, a20, b2, a,q, b3, a4q, b4, ~ ( 1  - 6' - 7)). 
From the form of [X 1 8, q] * [0, q] we see that [8, q I XI 
- Dirichlet(Xl + X3 + a l ,  X, + X7 + a 2 ,  X9 + a3), and 
hence [8 1 XI and [q I XI are available as beta distributions 
for sampling. Furthermore, [8 1 X, q] and [q I X, 01 are 
available as scaled beta distributions, scaled to the inter- 
vals [0, 1 - q] and [O, 1 - 81, respectively. If we let Y1 
= XI + x , ,  Y2 = x3+ x , ,  Y3 = x, + x, ,  Y4 = x, + 
X,, and Y, = X9 and define Z = (XI, X3, X,, X7), we 
see that specification of X i s  equivalent to specification of 

(Y, 2 ) .  In addition, [Z  I Y, 8, q] is the product of four 
independent binomials for XI ,  X3, X,, and X7, given by 
[Xi I Y, 8, q] = binomial(Y,, ai81(aj6' + b,)) (i = 1, 3, 5, 
7), which are therefore readily available for sampling. 

In the context of Section 2, we have a three-variable 
case, (8, q, Z) ,  with interest in the marginal distributions 
[B I Y], [q I Y], and [Z  I Y]. Gibbs sampling requires [8 1 
Y, Z,  71, [q I Y, Z,  81, and [Z  I Y, 8, q], all of which are 
available. But in this case the reduced distributions [8 1 Y, 
Z]  and [q I Y, Z ]  are available as well, enabling study of 
accelerated convergence. These reduced distributions sub- 
stantially simplify the Rubin importance-sampling algo- 
rithm in obtaining [8 1 Y] and [q I Y]; only an importance- 
sampling distribution [Z  I Y], need be specified (e.g., a 
default choice might be binomials with chance equal to 4). 
Detailed comparison of the performance of the three al- 
gorithms for a specific case of this multinomial class is 
given in Section 4. 

3.2 Hierarchical Models Under Conjugacy 

Consider a general Bayesian hierarchical model having 
k stages. In an obvious notation, we write the joint dis- 
tribution of the data and parameters as 

where we assume all components of prior specification to 
be available for sampling. Primary interest is usually in 
the marginal posterior [8, 1 Y]. The hierarchical structure 
implies that 

Suppose that we assume proper conjugate distributions 
at each stage. This is common practice in the formulation 
of such models, except perhaps for [Ok], which is often 
assumed vague. Nevertheless, conjugate priors can gen- 
erally be made arbitrarily diffuse by appropriate choices 
of hyperparameters, so this case is implicitly subsumed 
within the conjugate framework. In fact, [Ok] can be vague, 
provided [Ok I Ok-]] is still proper and available (see Secs. 
3.4 and 3.5). Conjugacy implies that the densities in (17) 
will be available as updated versions of the respective 
priors (e.g., see Morris 1983a). Typically, no distinct re- 
duced conditional distributions are available, and Gibbs 
sampling would be used to estimate the desired marginal 
posterior densities. To clarify this latter point, consider 
the case k = 3. The six conditional distributions in (10) 
would be [a1 I y, 927 031, [82 I y, 01, 031, [03 I y 2 01 021, [03 2 

I y, e2], [el I y,  831, and [Q2 1 y, dl]. The first three are 
available as in (17), the fourth is available but not distinct 
from the third, and the last two are usually unavailable. 

As a concrete illustration, consider an exchangeable 
Poisson model, which is illustrated further in Section 4 
with the reanalysis of a published data set. Suppose that 
we observe independent counts, si, over differing lengths 
of time, t, (with resultant rate p, = silt,) (i = 1, . . . ,p). 
Assume [si I A,] = P,,(,?,t,) and that the A, are iid from G(a ,  
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P), with density Ap-'e-"'PIP"I'(a). The parameter a is as- 
sumed known (in practice, we might treat a as a tuning 
parameter, or perhaps, in an empirical Bayes spirit, esti- 
mate it from the marginal distribution of the s,'s), and p 
is assumed to arise from an inverse gamma distribution 
IG(y, 6) with density 6j'e-s1fiIPj'+1T(y). (A diffuse version 
of this final-stage distribution is obtained by taking 6 and 
y to be very small, perhaps 0.) 

Letting Y = (s,, . . . ,s,), the conditional distributions 
[A, I Y] are sought. The full conditional distribution of A, 
is given by 

whereas the full conditional distribution for P is given by 

I Y, A,, . . . ,A,] = IG(y + p a ,  ZAi + 6). (19) 

No distinct reduced conditional distributions are available. 
The conditional distribution of Aj, given Y and P, is (18), 
regardless of which or how many Ai (i Z j) are given. The 
conditional distribution of P, given Y and any subset of 
the Ai's, is unavailable. Given (A?), A?), . . . , A:), p(O)), 
the Gibbs sampler draws 1;')- G(a + s,, (tj + l/P(O))-') 
( j  = IG(y + a p , x ~ = , A ~ ' )1 , .  . . , p )  andP(l) - + 6) to 
complete one cycle. If we carry out in repetitions each of 
i iterations, generating (Arj, . . . , Aff), pj')) (1 = 1, . . . , 
m), the marginal density estimate for /Zi is 

whereas 

[P 1 Y] = ;1 "2 1G(y + a p ,  Z$' + 6). (21) 
I= 1 

Rubin's importance-sampling algorithm is applicable in 
the setting (16) as well, taking a particularly simple form 
in the cases k = 2, 3. For k = 3, suppose that we seek 
[O, I y]. The joint density [O,, 02, O3 1 Y] = [Y, O,,02, 03]/ 
[Y], where the functional form of the numerator is given 
in (16). An importance-sampling density for [dl, 02, O3 1 
Y] could be sampled as [el I Y, 02] * [03 1 02]* [02 1 YIs for 
some [02 1 Y],. As remarked in Section 2.5, a good choice 
for [02 I YIs might be obtained through a few iterations of 
the substitution-sampling algorithm. In any case, for 1 = 
1, . . . , N we would generate 02/ from [02 1 Y],, from 
[03 1 021], and Oll from [O, I Y, 02,]. Calculating 

we obtain the density estimator [01 Y] = Z[O, I Y, 021]rIl 
Zr,. Note that (in the terminology of Rubin) the algorithm 
in this case can be streamlined by writing the joint density 
in the numerator of rl as [011 1 Y, 02/] * [Y 1 02,] * [OzII 031] 
* [03/] and noting that rl does not involve Oil, so we need 
not actually generate the Oil. 

Returning to the exchangeable Poisson model, the es- 
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timator of the marginal density of A, under Rubin's im- 
portance-sampling algorithm is 

Here rl = [Y I PI] * [PI]I[PI I YIs, where [Y I Dl] is the 
product of negative binomial densities; that is, 

and [PI] is the IG prior evaluated at PI. If [P I Y], is not 
obtained from the substitution-sampling algorithm, as in 
(21), an alternative choice is IG( y + ap ,  x;=,pi + 1). 
This arises because iP I Y] = E,;. ,;.,lyl[P 1 Y, A,, . . . ,A,] 
= [P I Y, A,, . . . , A,], using Aj  = pi in (19). 

3.3 Multivariate Normal Sampling 

A commonly occurring problem in combining continu- 
ous multivariate data is that often not all variables are 
observed for each experimental unit (e.g., see Dempster 
et al. 1977). If the data are sampled from multivariate 
normal populations with conjugate priors for the mean 
and covariance matrix, we have a general class of models 
where all full conditional distributions and at least some 
reduced conditional distributions are available. We illus- 
trate in the simplest case, where we assume that (i;) (i = 
1, . . . ,n )  ( )  ( j  = 1 (k 1: . . . ,. . . ,n2), and (2;)= 

n3) are all iid N(O, A) with O - N(p, Z), where O = (:I) 
is not observable but p = (i:;),A, and 2, are assumed 
known. Let U = (;I) = (:;;::::;::;), with similar notation for 
V and W. Finally, iet X = (U, V, W) and 2 x N, with 
X = N-'XI, where 1is a column vector of N Is and N = 
n, + n2 + n3. Standard calculations show that [O 1 X ]  is 
N(q, a ) ,  where q = + z - ~ ) - ~ ( N A - ~ X(NA-I + Z-lp) 
and R = (NA-' + C-')-l. With the obvious partitioning, 
I? = (:I;), Q = (:;I if;;), the marginals [01 I XI = N(q,, a l l ) ,  
and [02 I X] = N(q2, R22) are available. Suppose, however, 
that V2 and W,, say, are unobserved. Let Y = ( U ,  V,, 
W2) and Z = (V2, W1) SO that X = (Y, 2 ) .  As in Section 
3.1, we have a three-variable problem, here involving O,, 
82, and Z.  The full conditional distributions are all normal 
and hence available. For O1 and 02, [01 I Y, Z,  $21 = N(ql 
+ .n12Qz1(02 - ~21,  fil l  - fl12Qz1Q21) and [02 I Y, 2, $11 

= N(q2 + R21Rfi1(01- ql), R22 - R21Rfi1R12).Letting-
U1 = n;lU1l, with similar notation for B 2 ,  v l ,  v 2 ,  W1, 
and W2, we note by sufficiency - that- with regard to Z we 
only need the full posterior [ Z  I Y, O,, 02], where Z T  = 

(v2 ,  W,) and Y = (U1, U2, vl,W2). Since 

the conditional distribution [Z  I Y, $1, 02] is clearly normal. 
With the full conditionals and the reduced conditionals [01 
I Y, Z ]  and [02 I Y, Z ]  available, the accelerated substi- 
tution algorithm can be used to obtain [01 1 Y] and [02 1 
YI 
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The Rubin importance-sampling algorithm is straight- 
forward in this case. Simqlifying notation by working with 
the sufficient statistic (Y, F ) ,  suppose that we seek the 
density estimator - of [O, 1 Y] for instance. We have [01 Y]- T 
= C[O1 I Y, Z,, B21]r1/Crl, where 

with TI= (Y, ZI)  and [y I 71, a specified importance- 

-sampling density. Thus for I = 1, . . . , N we generate 
ZI - [Z 171,  - [OzlY,L/], and 811 - [0, I 0,/].Y,Z/,

Again, the choice of [Z  I Y], could be made using a few 
iterations of substitution sampling, or perhaps based on 
the intuitively appealing estimated conditional form, [p 1-
Y, d l ,  dl], where 8, = (nlU1+ n2Vl)/(n,+ n?) and 8, = 

(n lg2  + n3w3)/(n, + n3). 

3.4 Variance Component Models 

Bayesian inference for variance components has typi- 
cally required subtle numerical analysis or intricate ana- 
lytic approximation (e.g., as evidenced by Box and Tiao 
1973, chaps. 5 and 6). In marked contrast to such sophis- 
tication, marginal posterior densities for variance com-
ponents are readily obtained through simple Gibbs 
sampling. 

We illustrate this for the simplest variance components 
model defined by Ylj = 8, + ci, (i = 1, . . . , K, j = 1, 
. . . , J ) ,  where, assuming conditional independence 
throughout, [Oi I p, a;] = N(p, a;) and [E,, I of ]  = N(0, 
a:), so [Yjj I ei, a:] = N(e,, 0:). 

Let O = (el ,  . . . , OK) and Y = (Y,,, . . . , YKJ) and 
assume that p, a;, and at are independent, with priors 
specified by [p] - N(p,, a:), [a;] - IG(al,  bl), and [a;] 
- IG[a2, b,], where po, a;, a l ,  b l ,  a2 ,  and b2 are assumed 
known (possibly chosen to correspond to diffuse priors). 

The joint distribution [Y, 8, p, a$, a:] can be written as 

[Y I 0, of] * [O 1 p, a;] * [p] * [of * [at], (22) 

and we follow Box and Tiao (1973, chap. 5) in focusing 
interest on [a$ I Y] and [a f  ( Y]. 

From the Gibbs sampling perspective, we have a four- 
variable system, (0, p, a;, a t ) ,  with the following full 
conditional distributions: 

and 

[O I Y, p ,  a;, d l  

where T T= (T I ,  . . . ,T I ) ,  7,.= (1IJ) Xi,, Y,, 1 is a 
K x 1 column vector of Is, and I is a K x K identity 
matrix. 

Since all of these full conditionals are available, imple- 
mentation of the Gibbs sampler is straightforward. More- 
over, extensions to more elaborate variance component 
models follow precisely the same pattern, since the full 
conditional distributions for p and /3 continue to be normal, 
and those for the variance components continue to be IG. 

3.5 Normal Means Model 

The exchangeable k-group normal means model with 
different, unknown measurement variances in each group 
provides a simple example of an unbalanced class of 
models that has proved difficult to handle using empirical 
Bayes approaches to estimating posterior distributions 
(e.g., see Morris 1983b, 1987). Such models are straight- 
forwardly handled by iterative sampling approaches, as we 
saw with the Poisson example of Section 3.2 and further 
illustrate here for this classical normal means example. 

Suppose, then, assuming conditional independence 
throughout, that Y,,-N(B,, a:), 0, -N(p, t2) ,  o f  - IG(a,, 
b ~ )  (i = 1, . . . , I ,  j = 1, . . . , J,), p - N(po, a;), and 
zL IG(a2, b2), wherep,,, a;, a , ,  b, ,  a,, and b, are assumed 
known (possibly chosen to reflect diffuse prior informa- 
tion). By sufficiency, we can confine attention to Y = 
{(Ti.,Sf); i = 1, . . . , I ) ,  where 7,.= (l/J,)CY,, and Sf 
= (lIJ,)C(Yij - Ti,)'. Then, if we write 6 = (O,, . . . ,0,) 
and a2= (a:, . . . ,a:), the joint distribution of Y, 8, a ? ,  
p, and z2 takes the form 

where 

Of course, there is an obvious similarity between (22) and 
(23), but here we focus on [Ri ( Y] (i = 1,  . . . , I).From 
the Gibbs sampling perspective, this is a (21 + 2)-variable 
problem: (O,, o f )  (i = 1, . . . , I ) ,  together with p and r?. 
To identify the forms of the full conditionals, we first note 
that 

[O ( Y, a 2 ,  p, r2] = N(O*, D*), (24) 

where 0: = + poz)/(Jiz2+ a:), D; ( J ~ T ~ , ~ ~  = afz2/(J , r2
+ a:), and D,T = 0 (i # j). Thus the full conditional 
distributions [O, I Y, O, j  # i, a 2 ,  p, z2] (i = 1, . . . , I )  are 
just the normal marginals of (24) and therefore available 
for sampling. From (23), we easily see that [a2 ( Y, 0, p, 

I
z2] = [a2 1 Y, O] = ITi=! [of)1 Ti , ,  S:, Oil, where [a?  I T I , ,  
S f ,  O,] = IG(al + iJ,, b, + iZj(Yij - OJ2). Finally, and 
closely resembling the forms obtained in Section 3.4, 
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The noniterative Rubin importance-sampling algorithm Table 3. Pump-Failure Data 

(Sec. 2.5) requires us to choose a sampling density, [Z  ( 
Pump system s, t, P, f x  lo2)Y],, and then to proceed as follows, for 1 = 1, . . . , m: 

Draw Zl from [ Z  / Y],, ql from [lit ( Z, Y], and $1 from [8 
/ lit, Z ,  Y], with the latter two distributions as detailed 
previously, thus creating a triple (a,, litl, Zl). Then, cal- 
culate 

and ['I T Y] = C.;"=1 [q ( 81, 21, Y]riiE;"= 1 ri. 
Table 2 shows the average cumulative posterior prob- 

ability estimates from this approach, based on 2,500 rep- 
licates of m = 40 and m = 200 and taking [Z  ( Y], to be 
the product of XI - binomial(Y,, 4) and XS- binomial(Y4, 
1). Despite the much larger number of drawings compared 
with the iterative samplers, the estimation is rather poor. 
In general, experience suggests that the algorithm is highly 
sensitive to the choice of [Z  / Y], and that the larger one- 
off simulation is no match for iterative adaptation via small 
simulations. 

4.2 A Conjugate Hierarchical Model 

We apply the exchangeable Poisson model discussed in 
Section 3.2 to data on pump failures previously analyzed 
by Gaver and OIMuircheartaigh (1987) (reproduced here 
in Table 3), where s, is the number of failures and t, is the 
length of time in thousands of hours. 

Recalling the model structure of Section 3.2 and the 
forms of conditional distribution given by (18) and (19), 
we illustrate the use of the Gibbs sampler for this data 
set, with p = 10, 6 = 1, 7 )  = 0.1, and, for the purposes 
of illustration, cr = P21(Sz - p-Ip E:=, t;'), with the latter 
derived by a method-of-moments empirical Bayes argu- 

-
ment based on E(p,) = EE(p, I I.,) = crib - p :  

Figure 1 shows a selection of four marginal posterior 
densities (for I., , IL4,i.,, I.,) calculated from (20) following 
a run of 10 cycles of the algorithm. In fact, three densities 
are superposed: One corresponds to m = 10, one to m 
= 100, and the third is the exact density calculated using 
techniques described by Smith et al. (1985, 1987). Even 

and form estimates [8 T Y] = EL, [ O  1 litl, Zl, ~ ] r ~ l C ~ ,  rl 

markable convergence from such a small number of draw- 
ings. 

5. DISCUSSION 

We have emphasized providing a comparative review 
and explication of three possible sampling approaches to 
the calculation of intractable marginal densities. The sub- 
stitution-, Gibbs, and importance-sampling algorithms are 
all straightforward to implement in several frequently oc- 
curring practical situations, thus avoiding complicated nu- 
merical or  analytic approximation exercises (of ten 
necessitating intricate attention to reparameterization and 
other subtleties requiring case-by-case consideration). For 
this latter reason if for no other the techniques deserve to 
be better known and experimented with for a wide range 
of problems. We hope that the unified exposition at- 
tempted here will provide a general, clarifying perspective 
within which to view the work of Geman and Geman 
(1984), Rubin (1987,1988), and Tanner and Wong (1987), 
and to evaluate its potential for other structured problems. 
For example, in addition to the model structures given in 
Section 3, the methods find immediate and powerful ap- 
plication to problems involving ordered parameters or 
change points. In future work we shall provide detailed 
and extensive numerical illustration of many such prob- 
lems. 

The preliminary computational experience reported 
here illustrates the following points. Iterative, adaptive 
sampling (substitution or Gibbs) invariably provides better 
value, in terms of efficient use of generated variates, than 
an equivalent sample-size, noniterative, one-off approach 
(Rubin), provided a suitable structure for iterative sam- 
pling exists. In problems where certain reduced condi- 
tionals are available, there is scope for accelerating the 
substitution algorithm so that it becomes more efficient in the cases of j., and I.9 (chosen as worst cases from i,, 

. . . , ilo), re- (particularly in early cycles) than the Gibbs algorithm; the densities are hardly distinguishable-a 

Table 2.  Estimates From the ~ u b ; n  Importance-Sampling Algorithm 

Estimates: m = 40 (200) 

cdf value o 
.05 ,105 (.150) 
.25 ,311 (.351) 
.50 ,521 (.537) 
.75 ,739 (.734) 
.95 ,939 (.932) 

n 

,049 (.049) 
,244 (.241) 
,485 (.477) 
.729 (.714) 
,934 (.921) 

however, the gain in efficiency is only likely to be of con- 
sequence when the number of reduced conditionals is a 
relatively large fraction of the total number of conditionals 
involved in a cycle. There are important practical problems 
in tuning monitoring and stopping-rules procedures for 
iterative sampling in large-scale complex problems; we 
shall report on these in future work as well. Finally, we 
note that even in cases where ultimate convergence of the 
iterative sampling procedures proves slow, moment or 
other information provided by a few initial cycles can be 
used to provide highly effective starting values for more 
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Figure 1. Density Estimates for Pump-Failure Data: . .., m = 10; - - -,m = 100; -, Exact. 
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sophisticated numerical or analytic approximation tech- 
niques. 

[Received November 1988. Revised October 1989.1 
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