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The Calculation of Posterior Distributions by 


MARTIN A. TANNER and WING HUNG WONG* 

The idea of data augmentation arises naturally in missing value prob- 
lems, as exemplified by the standard ways of filling in missing cells in 
balanced two-way tables. Thus data augmentation refers to a scheme of 
augmenting the observed data so as to make it more easy to analyze. 
This device is used to great advantage by the EM algorithm (Dempster, 
Laird, and Rubin 1977) in solving maximum likelihood problems. In 
situations when the likelihood cannot be approximated closely by the 
normal likelihood, maximum likelihood estimates and the associated 
standard errors cannot be relied upon to make valid inferential state- 
ments. From the Bayesian point of view, one must now calculate the 
posterior distribution of parameters of interest. If data augmentation can 
be used in the calculation of the maximum likelihood estimate, then in 
the same cases one ought to be able to use it in the computation of the 
posterior distribution. It is the purpose of this article to explain how this 
can be done. 

The basic idea is quite simple. The observed data y is augmented by 
the quantity z, which is referred to as the latent data. It is assumed that 
if y and z are both known, then the problem is straightforward to analyze, 
that is, the augmented data posterior p(8 1 y, z) can be calculated. But 
the posterior density that we want is p(0 I y), which may be difficult to 
calculate directly. If, however, one can generate multiple values of z 
from the predictive distributionp(z I y) (i.e., multiple imputations of z), 
then p(8 1 y) can be approximately obtained as the average of p(8 I y, 
z) over the imputed 2's. However, p(z I y) depends, in turn, onp(8 I y). 
Hence if p(8 1 y) was known, it could be used to calculate p(z I y). This 
mutual dependency between p(8 I y) and p(z I y) leads to an iterative 
algorithm to calculate p(8 1 y). Analytically, this algorithm is essentially 
the method of successive substitution for solving an operator fixed point 
equation. We exploit this fact to prove convergence under mild regularity 
conditions. 

Typically, to implement the algorithm, one must be able to sample 
from two distributions, namely p(8  I y, z) andp(z I 8, y). In many cases, 
it is straightforward to sample from either distribution. In general, 
though, either sampling can be difficult, just as either the E or the M 
step can be difficult to implement in the EM algorithm. For p(8 I y, z) 
arising from parametric submodels of the multinomial, we develop a 
primitive but generally applicable way to approximately sample 8. The 
idea is first to sample from the posterior distribution of the cell proba- 
bilities and then to project to the parametric surface that is specified by 
the submodel, giving more weight to those observations lying closer to 
the surface. This procedure should cover many of the common models 
for categorical data. 

There are several examples given in this article. First, the algorithm 
is introduced and motivated in the context of a genetic linkage example. 
Second, we apply this algorithm to an example of inference from incom- 
plete data regarding the correlation coefficient of the bivariate normal 
distribution. It is seen that the algorithm recovers the bimodal nature of 
the posterior distribution. Finally, the algorithm is used in the analysis 
of the traditional latent-class model as applied to data from the General 
Social Survey. 

KEY WORDS: Bayesian inference; Monte Carlo sampling; Imputation; 
Correlation coefficient; Latent class analysis; Convergence results; 
Dirichlet sampling. 

* Martin A. Tanner is Assistant Professor, Departments of Statistics 
and Human Oncology, University of Wisconsin, Madison, WI 53706. 
Wing Hung Wong is Associate Professor, Department of Statistics, Uni- 
versity of Chicago, Chicago, IL 60637. This work was supported by 
National Science Foundation Research Grant MCS-8301459 and Na- 
tional Institutes of Health Grant R23 CA35464. The authors thank David 
Wallace for suggesting the covariance matrix example and Stephen Stigler 
for his helpful comments. 

Data Augmentation 


1. INTRODUCTION 

This article introduces an iterative method for the com- 
putation of posterior distributions. The method applies 
whenever the data can be augmented in such a way that 
(a) it becomes easy to analyze the augmented data and 
(b) it is easy to generate the augmented data given the 
parameter. Let y denote the observed data whose distri- 
bution depends on a parameter vector 0. Suppose that 
there is a way to augment y with latent data z (unobserved) 
so that the augmented data, x = (y, z ) , is straightforward 
to analyze [i.e., the augmented data posterior density, 
p(0 ( x), is of known form]. The method consists of iterating 
the following two steps: (a) Given the current guess of the 
posterior distribution of 0 given y, generate a sample of 
m > 0 latent data patterns from the predictive distribution 
of z given y. (b) Update the posterior of 0, given y, to be 
the mixture of the m augmented data posteriors. 

The sample size m can change from iteration to itera: 
tion. If m is always taken to be very large, then the al- 
gorithm can be interpreted as the method of successive 
substitution for solving a fixed point problem character- 
izing the true posterior distribution. The updated posterior 
at the end of the iterations can then be taken to be a close 
approximation of the true posterior distribution. When m 
is small, however, we will need to pool over the latent 
data patterns generated near the end of the iterations to 
get a reasonable approximation to the true posterior dis- 
tribution. 

The plan of the article is as follows. In the remaining 
part of this introduction, we discuss data augmentation as 
a general tool for the analysis of data in complex models. 
At the same time, we will review relevant literature. In 
Section 2, we motivate and present the basic algorithm 
and illustrate the steps of the algorithm in the context of 
a simple example. In Section 3, we apply the method to 
the problem of inference on the covariance matrix of the 
multivariate normal distribution with missing values. In 
Section 4, we introduce the Dirichlet sampling procedure 
as a way to facilitate the approximate sampling from the 
posterior distribution in complex models of multinomial 
data. In Section 5, this procedure is applied to the study 
of social survey data modeled by a log-linear model with 
a latent variable. We also use this example to illustrate 
and discuss issues of identifiability in Bayesian modeling. 
In Section 6, we return to the study of the basic algorithm. 
We will discuss the uniqueness of the fixed point charac- 
terization that motivates the basic algorithmAand will pre- 
sent convergence results forthe algorithm. The IXaderwho 
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is interested in applications, rather than theoretical details, 
may skip Section 6 without loss of continuity. In Section 
7, variations of the basic algorithm will be presented and 
issues in its practical implementation will be discussed. 

We now turn to the idea of data augmentation. In well- 
designed experiments, it often happens that, if not for the 
presence of missing values, the estimation of parameters 
will be straightforward. In currently popular terminology, 
the observed data are called the incomplete data. The 
complete data refer to the set of missing and observed 
values. Through the work of many authors, a large body 
of iterative techniques for maximum likelihood estimation 
from incomplete data has recently emerged, all of which 
exploit the simple structure of the complete data problem. 
This area is elegantly synthesized and further developed 
in the influential paper of Dempster, Laird, and Rubin 
(1977), in which references to earlier research can be 
found. Briefly, based on a current estimate of the param- 
eter value, the method seeks to compute the expected 
value of the log-likelihood of the complete data and then 
maximizes the log-likelihood to obtain the updated pa- 
rameter value. Dempster et al. called this approach the 
EM algorithm because of the expectation and maximiza- 
tion calculations involved. Although the details of the EM 
algorithm are not of direct interest for the present article, 
the aspect of Dempster et al. (1977) that is most important 
for our purpose is the impressive list of examples, which 
includes missing data problems, mixture problems, factor 
analysis, iteratively reweighted least squares, and many 
others. In each example, enough detail is presented to 
show how the EM algorithm can be applied. By these 
examples, the authors make it clear that even in cases that 
at first sight may not appear to be an incomplete data 
problem, one may sometimes still profit by artificially for- 
mulating it as such to facilitate the maximum likelihood 
estimation. 

It seems that the potential usefulness of this problem 
formulation is still not fully appreciated by some practi- 
tioners, possibly because their problems appear to have 
little to do with missing values or incomplete data. For 
this reason, we will use the terms observed data (denoted 
by y) and augmented data (denoted by x), instead of in- 
complete data (y) and complete data (x). We will also use 
the term latent data (2) to denote the unobserved supple- 
mentary data needed for the augmentation of y so that 
the augmented data, x = (y, z ) ,  is straightforward to 
analyze. 

In general, this data augmentation scheme is used for 
the calculation of maximum likelihood estimates or pos- 
terior modes. For making inferential statements, the 
validity of the normal approximation is assumed and the 
precision of the estimate is given by the observed Fisher 
information. In most cases, however, it is not possible to 
obtain the Fisher information directly from the basic EM 
calculations and one must do further calculations to obtain 
standard errors [see the discussion following Dempster et 
al. (1977); see also Louis (1982)l. Except in simple cases, 
it is difficult to obtain an indication to the validity of the 
normal approximation. 

In the present article, we are interested in the entire 
likelihood or posterior distribution, not just the maximizer 
and the curvature at the maximizer. The method we pro- 
pose exploits the simplicity of the posterior distribution of 
the parameter given the augmented data, just as the EM 
algorithm exploits the simplicity of maximum likelihood 
estimation given the complete data. Even in large sample 
situations, when the normal approximation is expected to 
be valid, it would still be comforting to note that the ob- 
tained posterior is consistent with the picture given by the 
maximum likelihood analysis. In small sample situations, 
the pitfalls of maximum likelihood estimation are well 
known, and the present method will provide a way of 
improving inference based on the entire posterior distri- 
bution (or the entire likelihood). The examples presented 
in this article will illustrate that a few steps of the iterative 
algorithm will provide a diagnostic for the adequacy of the 
normal approximation for the maximum likelihood esti- 
mate. 

In practice, one is often interested in the marginal dis- 
tribution of various parameters of interest. Even if one 
can evaluate the joint posterior distribution, obtaining the 
marginal distribution can be difficult and is a topic of cur- 
rent interest (Smith, Skene, Shaw, Naylor, and Dransfield 
1985; Tierney and Kadane 1985; Zellner and Rossi 1984). 
In the data augmentation setup, one is faced with the 
additional complication that the posterior distribution 
given the observed data may not be expressible in closed 
form. Ideally, one would want to choose the augmentation 
such that the posterior given the augmented data can be 
sampled from with ease. In cases where this cannot be 
done, one would have to resort to approximate sampling 
methods. The Dirichlet sampling scheme discussed in Sec- 
tion 4 provides a simple approach for approximate sam- 
pling in the case of multinomial data. Moreover, the recent 
works on marginalization referred to previously may po- 
tentially be helpful in this regard. 

We wish to draw the reader's attention to the concurrent 
and independent work of K. H. Li (1985a,b), who has 
devised an algorithm for doing multiple imputation of 
missing values that is very similar in its formal structure 
to our method. Whereas the main goal in the present 
article is to exploit the data augmentation formulation in 
the Bayesian inference of parameters, in Li's work, the 
initial focus, as well as sources of examples, have been the 
imputation of missing values. Thus the essential difference 
is that Li's method exploits the simplicity of the distri- 
bution of one component of the missing values given both 
the observed data and the remainder of the missing values, 
whereas our method relies on the simplicity of the pos- 
terior distribution of the parameter given the augmented 
data. Upon completion of both works, it was realized that 
when one identifies the unknown parameters as part of 
the missing values, then the two algorithms become es- 
sentially the same. 

Our present results are, to a considerable extent, antic- 
ipated in the work of Rubin. In particular, the two key 
concepts of data augmentation and multiple imputation 
have been advocated and studied by Rubin in a series of 
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papers on inference in the presence of incomplete data 
(Dempster et al. 1977; Rubin 1978, 1980). 

2. THE BASIC ALGORITHM 

The algorithm is motivated by the following simple rep- 
resentation of the desired posterior density: 

(2.1) 

where p(0 ( y) denotes the posterior density of the param- 
eter 8 given the data y, p(z ( y) denotes the predictive 
density of the latent data z given y, andp(0 1 z, y) denotes 
the conditional density of 0 given the augmented data x 
= (z, y). The predictive density of z can, in turn, be related 
to the desired posterior density by 

In the above equations, the sample space for the latent 
data z is denoted by Z and the parameter space for 0 is 
denoted by O . (From this point on the range of integration 
will be omitted from the expressions, as it will be specified 
implicitly by the differentials dz or d4.) Substituting (2.2) 
into (2.1) and interchanging the order of integration, we 
see that p(0 1 y) must satisfy the integral equation 

where K(0, 4)  = jp(6 I Z,y)p(z 1 4 , ~ ) d z .  (2.3) 

Let T be the integral transformation that transforms any 
integrable function f into another integrable function Tf 
by the equation 

The method of successive substitution for solving (2.3) 
thereby suggests an iterative method for the calculation of 
p(9 1 y). Namely, start with any initial approximation gO(0) 
to p(0 I y), and successively calculate 

In Section 6 we will show that under mild conditions the 
g;s calculated this way will always converge to the desired 
posterior p(0 1 y). 

If the integral transform (2.5) can be calculated analyt- 
ically, then the implementation of this method is straight- 
forward. Unfortunately, this is seldom the case. In typical 
cases, the integration in (2.1), (2.2), and (2.5) is difficult 
to perform analytically. It is often possible, however, by 
the Monte Carlo method, to perform the integration. 
Equation (2.1) then motivates the following iterative 
scheme: Given the current approximation gi to p(0 1 y), 

(a) generate a sample dl), . . . , z(") from the current 
approximation to the predictive density p(z ( y) 

(b) update the current approximation to p(0 I y) to be 
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the mixture of conditional densities of 0 given the 
augmented data patterns generated in (a), that is, 

m 

gi+1(0) = m-' 2~ ( 0zcn, Y). I 
j= 1 

In the above, we must either be able to calculate p(0 ( z,  
y) for any augmented data (z, y) or we must be able to 
sample numerically from this distribution. This is a pre- 
requisite for the data augmentation scheme, and we will 
assume that it is true for the remainder of this discussion. 
Now consider step (a), that is, the generation of the latent 
data from p(z I y). Given that the current approximation 
to p(0 1 y) is gi(0), (2.2) then suggests that z can be gen- 
erated from the current predictive distribution in two 
steps: 

(al) generate 0 from gi(0). 
(a2) generate z from p(z 1 4 ,  y), where 4 is the value 

obtained in (al). 

Clearly, when m is large, the two steps (a) and (b), where 
(a) may be implemented by (al) and (a2), will provide a 
close approximation to one iteration of (2.5). Further- 
more, as we will see in Sections 6 and 7, even when m is 
as small as 1, the iteration is still "in the right direction9'- 
in the sense that the average ofp(0 I x) over the augmented 
data patterns generated across iterations will converge to 
thep(0 1 y). It is noted that m need not be held fixed from 
iteration to iteration, and in Section 7 comments on how 
m should be adaptively varied are presented. 

Step (a) requires the generation of multiple values of 
the latent data z by sampling from the conditional density 
of z given y. This process is termed multiple imputation 
by Rubin (1980), who first introduced it as a method for 
handling nonresponse in sample surveys and in censuses. 
Thus step (a) can be referred to as the "imputation" step. 
Step (b) requires the computation (or sampling) of the 
posterior distribution of 0 based on the augmented data 
sets. We will call this step the "posterior" step. The al- 
gorithm consists of iterating between the imputation and 
posterior steps. 

The usefulness of the algorithm depends to a large ex- 
tent on the ease of implementation of the imputation and 
posterior steps. In general, neither step is guaranteed to 
be easy. There is a parallel limitation on the EM algorithm; 
namely, that in general both the E and M steps may be 
difficult to implement. There remains, however, a rich 
class of problems, especially those connected with expo- 
nential families, for which there are natural ways to carry 
out these steps. This is illustrated by the examples here 
and the examples in Dempster et al. (1977). 

Linkage Example 

To illustrate the basic algorithm, we consider an ex- 
ample that was presented in Rao (1973) and reexamined 
in Dempster et al. (1977) and Louis (1982). In particular, 
from a genetic linkage model, it is believed that 197 ani- 
mals are distributed multinomially into four categories, 
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y = (yl, y2, y3, y4) = (125, 18, 20, 34), with cell proba- 
bilities specified by 

To illustrate the algorithm, y is augmented by splitting 
the first cell into two cells, one of which having cell prob- 
ability 4,the other having cell probability 014. Thus the 
augmented data set is given by x = (xl, x2, x3, x4, x,), 
where xl + x2 = 125, xs = y2, x4 = y3, and x, = y4. The 
likelihood is of the form 

and the augmented likelihood is of the form 

Thus, in this example, the augmented likelihood has a very 
simple form. 

The implementation of our algorithm is then given as 
follows: 

(a) 	I Step (Imputation Step). 

(al) Draw 0 from the current estimate of p(8 ( y). 
(a2) Generate x2 by drawing from the binomial dis- 

tribution with parameters (125, 8/(8 + 2)). 
Repeat steps (al) and (a2) m times. 

(b) 	P Step (Posterior Step). Set the posterior density of 
8 equal to the mixture of beta distributions, mixed 
over the m imputed values of x2; that is, 

where 

and 

In this step, the prior for 8 is assumed to be uniform in 
(0, 1). 

Figure 1 presents the posterior density estimates of 8 
for this example. In particular, the normal approximation 
with p = .63 and B = .05 (solid line) is plotted along with 
the true posterior distribution (dotted line) 

and the estimated posterior (dashed line) obtained by plot- 
ting the mixture of the beta distributions at the final it- 
eration in which m = 1,600. In the density scale, all three 
estimates are congruent. In the log-scale, however, even 
in this large sample situation a departure of the true pos- 
terior from the quadratic approximation at the mode is 
evident (Fig. 2). 

Alternatively, we consider a second version of the data 
in which the sample size is reduced by a factor of 10, 
though the cell proportions are approximately unchanged; 
that is, y = (13, 2, 2, 3). The resulting posterior density 
estimates are plotted in Figure 3. In this case, although 
the true posterior density and the estimated posterior den- 
sity are congruent, the validity of the normal approxi- 
mation may be in doubt, even when viewed on the density 
scale. An even more dramatic illustration is given in Figure 
4, where y = (14, 0, 1, 5). In cases with such a dramatic 
departure from normality, one or two iterations of our 

The ta  

Figure 1. Posterior Density of 8for Data (125, 18,20,34). The solid, dashed, and dotted lines represent the normal approximation, the estimated 
posterior distribution, and the true posterior, respectively. The dashed and dotted lines are superimposed. 
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Figure 2. Log-Posterior Density of B (same data and legend as in Fig. 1). 

algorithm would indicate the inadequacy of the normal 
approximation. 

3. 	 FUNCVIONALS OF THE MULTIVARIATE NORMAL 
COVARIANCE MATRIX 

In this section, the posterior distribution of the corre- 
lation coefficient from the bivariate normal distribution 
will be investigated. To illustrate, suppose that the data 
in Table 1(Murray 1977) represent 12 observations from 
the bivariate normal distribution with p, = p2 = 0, cor-
relation coefficient p, and variances al and 02,. Before pro- 
ceeding to the formal analysis, we note that in the four 
pairs of observations, two pairs have correlation 1and the 
remaining two pairs have correlation -1. Thus we can 

expect a nonunimodal posterior distribution for p in this 
data set. In such a case, the maximum likelihood estimate 
and the associated standard error will clearly be mislead-. 
ing. Furthermore, we point out that the information re- 
garding a: and a; in the eight incomplete observations 
cannot be ignored because information regarding a; and 
a; is of use in making inference regarding p. 

The implementation of the algorithm in this problem is 
straightforward. Given the covariance matrix x,the unob- 
served data is generated as follows: 

1. If x, is known, then generate the unobserved obser- 
vation from 

Figure 3. Posterior Density of 0 for Data (13, 2, 2, 3) (same legend as in Fig. 1). .The dashed lines and doffed lines are superimposed. 
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Theta 

Figure 4. Posterior Density of B for Data (14, 0, 1, 5) (same legend as in Fig. 1). The dashed and doffed lines are superimposed. 

2. If x2 is known, then generate the unobserved obser- 
vation from 

N(P ' 6 ( l  - P2)).x27 
0 2  

~h~ covariance matrix z is then generated from the cur-
rent guess of the posterior distribution p ( ~  y ) .  the1 
first iteration, can be generated from U[-1, 11and a: 
and t$ can be generated from weighted X1 distributions. 
At succeeding iterations, the updated posterior p(Z ( Y )  
is a mixture of inverted wishart distributions, w hi^ last 
point follows from the fact that p (E  ( x) is an inverted 
Wishart distribution (Box and Tiao 1973, p. 428) when 
the prior of E is given as 

~ ( 2 )  121-(p+1)'2,CC 

where p is the dimension of the multivariate normal dis- 
tribution. Thus, in the second step of the algorithm, we 
generate m observations from this mixture of inverted Wis- 
hart distributions and compute the associated correlation 
coefficient for each observation. 

Regarding the implementation of the algorithm, it is 
noted that the algorithm of Ode11 and Feiveson (1966) can 
be used to generate observations from the inverted Wis- 
hart distribution. The amount of computation in this al- 
gorithm is not extensive, since the computation is of order 
p(p + 1)/2, which does not depend on the sample size. 

In Figure 5, we plot the histogram of the imputed cor- 
relation coefficients based on pooling the tenth through 
fifteenth iterations (m = 6,400). In addition, the true pos- 

Table 1. Twelve Observations From a Bivariate Normal Distribution 

terior of the correlation coefficient, which is proportional 
to [(I - p2)4.5]/[(I .25 - is also plotted. As is evident 
from the plot, the estimated posterior distribution recovers 
the bimodal nature of the true distribution. 

Finally, it is noted that the algorithm presented in this 
article can be used to examine the posterior distribution 
of any functional of the covariance matrix. For example, 
the posterior distribution of the largest eigenvalue of the 
covariance matrix (Tiao and Fienberg 1969) may be ex- 
aminedb~simply computing the largest eigenvalue of each 
of the observations from the inverted Wishart distribution 

in the second step of the 

4. THE DlRlCHLET SAMPLING PROCESS 

In the linkage example of Section 2, the augmented 
posterior distribution p(0 I x) is a beta distribution. Thus 
it is a trivial matter to carry out the P step. In more com- 
plicated models, the sampling of 0 from p(0 I x) may not 
be so simple. We now present a primitive but generally 
applicable procedure, based on a Dirichlet sampling pro- 
ce'ss, which can be used to approximately sample from the 
posterior distribution of parametric models for multinom- 
ial data. In this section, we develop and illustrate the pro- 
cedure using the linkage example. Further uses will be 
illustrated in Section 5. 

In the linkage example, conditional on the augmented 
data, the distribution of the last four cell probabilities (P2, 
P3, P4, P5) is equal in distribution to that of (v2/2, v3/2, 
v4/2, v5/2), where (v2, v3, v4, v5) has the Dirichlet distri- 
bution 

'Value not observed (missing at random). 
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Figure 5. Posterior Density of the Correlation Coefficient. The solid and dashed lines represent the true and estimated posterior, respectively. 

which will be denoted by D(x2, x3, x4; x5). It is a trivial induced distribution related to the Dirichlet distribution 
matter to generate observations from such a Dirichlet dis- (4.1)? The answer is simple: 
tribution. Our model, however, is not a saturated multi- 
nomial model. In fact, the linkage model specifies that Lemma. The distribution induced by p(8 1 x) on the 
(P,, P3, P4, P5) must lie on a linear parametric curve, curve C is the same as the conditional distribution induced 

{(- -l 
4 ' 4  

- - -l -
4 ' 4  


I]}.[O,O): 8 E  !! 
4 ' 4  

by the Dirichlet distribution (4.1) on C (through the re- 
lationship P = tv). 

Proof. To verify the lemma, it is sufficient to check that 

c = 

The posterior distribution p(8 ( x) will only induce a dis- the ratio of the densities evaluated at any two points on 
tribution of (P,, P,, P4,P,) on the curve C. How is this C is identical under either distribution. 

Theta 

Figure 6. Posterior Density of B for Data (3, 2, 2, 3). The dotted, dashed, and solid lines represent the estimate based on 10,000 values, the 
estimate based on 3,000 values, and the true posterior distribution, respectively. 
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This lemma suggests a simple two-stage algorithm: (a) 
generate observations from the Dirichlet distribution (4.1) 
and (b) accept only those points lying relatively close to 
the parametric curve C. 

To be specific, observations are drawn from D(x2, x3, 
x4; x5) and for each of these observations, we find the 8 
that gives cell probabilities (p2, p3, p4, p5) closest to the 
observed Dirichlet observation (p2, p3, p4, p,). Given the 
functional dependencies of each of the probabilities on 8: 
P2 = 814, P3 = 114 - 814, P4 = 114 - 814, and P5 
= 814, the least squares solution yields 8 = 2(p2 + p5). 
The approximate posterior distribution for 8 is then ob- 
tained by forming the histogram of those 8 values whose 
corresponding (p2, p3, p4,p5) vector is within an e-neigh- 
borhood of (p2, p3, p4, p5), that is, such that 

According to the above lemma, if E is sufficiently small, 
then the 8 values obtained in this way will have a dis- 
tribution approximately equal to p(8 I x). 

In practice, the value of E is selected by plotting a se- 
quence of estimated posterior distributions of 8 corre- 
sponding to a sequence of decreasing E values. The curves 
tend to converge as the value of E is decreased. The afore- 
mentioned procedure is generally applicable to parametric 
models for multinomial data if the cell probabilities are 
linear in 8 or if the posterior distribution is relatively con- 
centrated in comparison with the curvature of the para- 
metric surface. Otherwise, the raw histogram of 8 must 
be multiplied by some adjustment factor. 

To test the procedure in the linkage example, assume 
that the augmented data vector is given by (3, 2, 2, 3). To 
obtain the posterior distribution of 8, we begin by drawing 
10,000 observations from the Dirichlet distribution cor- 
responding to this data vector. For each of these Dirichlet 
observations, the value of 8 that gives the closest (p2, p3, 
04, 05) vector is found using least squares. The resulting 
histograms of the 6 values (using 10,000 initial values and 
3,000 accepted values) and the true posterior distribution 
are presented in Figure 6. An examination of this figure 
reveals that the estimated distribution of 8 based on the 
restricted set of 8 values is quite similar to the true dis- 
tribution. 

5. THE TRADITIONAL LATENT-CLASS MODEL 

The data in Table 2 represent the responses of 3,181 
participants in the 1972, 1973, and 1974 General Social 
Surveys, as presented in Haberman (1979). The partici- 
pants in these surveys are cross-classified by the year of 
the survey and their responses to each of three questions 
regarding abortion. Thus the cell entry represents the 
number of subjects who in year D = d give responses a 
to question A, b to question B, and c to question C. 
Regarding question A,  subjects are asked, "Please tell me 
whether or not you think it should be possible for a preg- 
nant woman to obtain a legal abortion if she is married 

Table 2. White Christian Subjects in the 1972-1974 General Social 

Surveys, Cross-Classified by Year of Survey and Responses to 


Three Questions on Abortion Attitudes 


Response Response Response Observed 
Year (13) to A to B to C count 

1972 Yes Yes Yes 
Yes Yes No 
Yes No Yes 
Yes No No 
No Yes Yes 
No Yes No 
No No Yes 
No No No 

1973 Yes Yes Yes 
Yes Yes No 
Yes No Yes 
Yes No No 
No Yes Yes 
No Yes No 
No No Yes 
No No No 

1974 Yes Yes Yes 
Yes Yes No 
Yes No Yes 
Yes No No 
No Yes Yes 
No Yes No 
No No Yes 
No No No 

Source: Haberman (1979, p. 559). 

and does not want any more children." In question B, the 
italicized phrase is replaced with "if the family has a very 
low income and cannot afford any more children," and in 
question C it is replaced with "if she is not married and 
does not want to marry the man." For these data, Ha- 
berman (1979) considered several models, one of which 
is the traditional latent-class model. [See Goodman 
(1974a,b), Haberman (1979), or Clogg (1977) for an ex- 
position of this model.] In this example, the traditional 
latent-class model assumes that the manifest variables (A, 
B, C, D) are conditionally independent, given a dicho- 
tomous latent variable (X). In other words, if the value 
of the dichotomous latent variable is known for a given 
participant, then knowledge of the response to a given 
question provides no further information regarding the 
responses to either of the other two questions. Haberman 
used the EM and scoring algorithms to obtain maximum 
likelihood estimates of the cell probabilities. 

One parameter of interest associated with this model is 
the conditional probability of a response a to question A, 
given that X = 1(which will be denoted as 71;;"). In con- 
junction with n$E, the magnitude of this conditional prob- 
ability indicates the accuracy of the response a to question 
A in identifying the latent classification X = 1, since the 
ratio n$?/n$E is the likelihood ratio for identifying X based 
on an observation of A. In the present example, Haberman 
estimated .;':to be .892. The estimated standard error 
can also be obtained using the delta method, though Ha- 
berman did not include this value in his presentation. 

To obtain the posterior distribution of .;'?, the IP al- 
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gorithm is implemented as follows. In the initial iteration, 
the odds of being in the latent class X = 2 (which will be 
denoted as eabcd.) is taken to be 4 for all values of a, b, c, 
and d. The unobserved cell counts (nab,&) are imputed by 
noticing that conditional on both eabcd.and the observed 
cell counts nabc& the posterior distribution of nabcdl follows 
a binomial distribution with parameters nab& and 1/(1 + 
Oabcd.).The posterior distribution of nf? is then obtained 
by drawing from the mixture of augmented posterior dis- 
tributions. In particular, for a given augmented data set, 
a vector of probabilities {Pabcdr) is drawn from the Dirichlet 
distribution D(nlllll, . . . , 1222231; n22232) and some of the 
observations are discarded using the Euclidean distance 
criterion, as discussed in the previous section. The odds 
of being in the latent class X = 2 given that A = a, B = 
b, C = c ,  and D = d is updated using the maximum 
likelihood estimate (under the conditional independence 
model) 

P a b c d l  P a b c d l  p a b c d l  P a b c d 2  

and the algorithm cycles until convergence is achieved. 
For each augmented data set, the conditional probability 
of interest is calculated from the equation 

C P l b C d l  

#X -
11 - 2 P a b c d l  ' 

a . 4 c . d  

In Figures 7a and 7b, the estimated posterior distribu- 
tion of zf? is presented, where the values from the fif- 
teenth through the twentieth iteration are pooled (m = 
1,600) to form the histogram in these figures. As can be 
seen from the figures, the posterior distribution appears 

L e f t  Mode 

to be bimodal, with one mode occurring at about .039 and 
the other mode occurring at about 386. The reason for 
this bimodality stems from the unidentifiability inherent 
in the problem. In the latent-class model, the data analyst 
has the choice of identifying a positive attitude toward 
abortion with the condition that X = 1or with the con- 
dition that X = 2. The mode occurring at .039 occurs if 
one identifies a positive attitude with X = 2; the second 
mode occurs if a positive attitude is identified with X = 
1. In this regard, it is important to note that the modes 
are well separated. Thus, for the present data set, the 
conditional probability is, in the Bayesian sense, locally 
identifiable. 

Conditioning on the identification of a positive attitude 
toward abortion with X = 1, that is, examining the right 
mode, we find that our point estimate for zI;Y is close to 
the maximum likelihood estimate (A86 versus .892). (Such 
an identification is reasonable given the nature of the ques- 
tion.) In addition, there is little evidence of a departure 
of the normal approximation from the posterior distri- 
bution. Comparing the estimated density to the normal 
curve with matching mean and standard error (.009), an 
overall concordance is observed (Fig. 7b). A similar con- 
clusion is reached by examining the corresponding rankit 
plot (Fig. 8). Regarding the lower mode (Figs. 7a and 9); 
some evidence against the normal approximation (4 = 
.039, b = .006) is noted. In particular, the posterior dis- 
tribution is slightly skewed to the right. 

6. THEORETICAL DEVELOPMENT 

In this section, we return to the study of the algorithm 
motivated and outlined in Section 2. In previous examples, 
it was seen that the algorithm converged to the true pos- 
terior. The results in this section will explain why the al- 

Righ t  Mode 

Conditional Probability Conditional Probability 


Figure 7. Posterior Density of ~ f f .The solid and dashed lines represent the estimated and true posterior density, respectively. (a) Left mode. 
(b) Right mode. 
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Conditional Probability 


Figure 8. Rankit Plot for Right Mode. 

gorithm should converge and at what rate it does so. For 
simplicity we will first assume that 8is a connected subset 
of RP. The theory is essentially the same for discrete 8 ,  
as discussed briefly at the end of this section. Let L1 be 
the space of (Lebesque) integrable functions of 8 E 8 ,  
and llf l l  = S If (8)I do for f E Ll. Let gi(8) K(8, 4) and 
T be defined as in (2.3)-(2.5). Clearly, T is a bounded 
linear operator on L1. Let us denote the true posterior 
density by g*(8). Then according to (2.3), g, is a fixed 
point under T; that is, Tg, = g*. 

The main results of this section are, roughly, (a) g* is 
the only density that satisfies the fixed point equation and 
(b) for essentially any starting value, the iteration (2.5) 
converges linearly to g,, that is, the deviation in the L1 
norm decreases at a geometric rate. These statements hold 

under some regularity conditions [Condition (C), given 
subsequently]. 

The first theorem shows that the L1 distances from the 
true posterior are nonincreasing in the iterations. 

Theorem 1. IIgi+l - g*II IIgi - g*II. 
Proof. The proof will make use of the following ele- 

mentary facts: (a) S K(8, 4) d8 = 1;thus if f(8) 3 0 for 
all 8, then IlTfll = Ilfll. (b) If f(8) a g(8) for all 8, then 
Tf(8) a Tg(8) for all 8. To prove the theorem, let f = gi 
- g*. Then 

Conditional Probability 


Figure 9. Rankit Plot for Left Mode. 
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Can the distances from the truth be strictly decreasing? 
Is g, the only density that satisfies the fixed point equa- 
tion? To obtain positive results, we must impose some 
regularity conditions. 

Condition (C). K(8, 4)  is uniformly bounded and is 
equicontinuous in 8. For any 80 E 0 ,  there is an open 
neighborhood U of 80, so K(8, 4)  > 0 for all 8, 4 E U. 

The second part of this condition says that if 8 and 4 
are close, then it is possible to generate some latent data 
pattern z from p(z I 4 ,  y) such that p(8 I z, y) is nonzero, 
which is a reasonable condition. 

Lemma 1. Under Condition (C), any density g that is 
a fixed point of T must be continuous and strictly positive. 

Proof. By hypothesis, g(8) 2 0, g(8) = S K ( ~ ,  4)g(4) 
d4. Hence Ig(e1) - g(0)I s S IK(81, 4)  - K(8, 4)I g(4) 
d4,  which tends to 0 as el+ 8, by dominated convergence. 
This proves continuity of g. To prove positivity, consider 
A = (8 E 0:g(8) > 0). If A # 0 ,  then there must be a 
80 E 0 that is also on the boundary of A .  By Condition 
(C), there is a neighborhood U of 8, such that K(8, 4)  > 
0 for all 8, 4 E U.Since 8, is on the boundary we must 
have g(4) > 0 for some open subset of U.Hence 0 = 
g(B0) 2 S, K(OO, 4)g(4) d 4  > 0, a contradiction. Hence 
A = 0 .  

Lemma 2. Under Condition (C), iff E L, is a function 
so that neither its positive part f + nor its negative part f -
are identically 0, then IlTfll < Ilfll. 

Proof. By connectedness of 0 and Condition (C), we 
must have support of Tf + 3 support of f +,and support 
of Tf- 3 support off -. Note that the inclusions are strict. 
It follows that 

(support of Tf +) f l  (support of Tf-) (6.1) 

is nonempty. Now 

Hence under (6.1) we must have 

Corollary. Under (C), the distance of gi to g, is strictly 
decreasing. 

Now we are ready to state and prove the main theorems. 
Theorem 2 guarantees the uniqueness of the solution to 
the fixed point equation. Theorem 3 gives the rate of con- 
vergence of the iteration (2.5) in terms of L, distances. 

Theorem 2. Under Condition (C), the posterior den- 
sity g, is the only density that satisfies Tg = g. 

Proof. The fact that g, satisfies the fixed point equation 
was derived in Section 2. Suppose that g,, is a different 
density satisfying Tg = g. Let f = g, - g,,, then f must 
be continuous by Lemma 1. In addition, since S f(8) d8 
= 0 and f # 0, neither f + nor f -  can be identically 0. 
Hence, by Lemma 2, IlTfll < Ilfll. But on the other hand, 
Tf = Tg, - Tg,, = g, - g,, = f ,  a contradiction. 
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Theorem 3. Suppose that Condition (C) holds and that 
the starting value go satisfies sups (go(8)lg*(8)) < w. Then 
there exists a constant a (0 < a < I), such that 

Proof. The proof proceeds in five steps: 

(a) For any M > 0, if (go(8)lg,(8)) < M for all 8 E 0 ,  
then (gi(8)/g,(8)) < M for all i, for all 8 E 0 .  

(b) For any M > 0, the set {f E L1 : lf(8)lg,(8)1 < M 
for all 8) is weakly sequentially compact in L,. 

(c) Let f i  = gi - g* and let a = SUPi>l (IITfilllllfill). 
There exists a subsequence {f;) such that IITfi'lllllfi'll + a ,  
and fit converges to some f, weakly in L,. 

(d) Since the set {fir) is bounded and equicontinuous, 
we must actually have f i  converges to f, strongly in L1, 
and f, can be chosen to be continuous. 

( 4  Hence a = lim(llTf;lllllf~ll)= IITf *lllllf*ll. But Sf*(8) 
dB = 0; hence by Lemma 2, 0 6 a < 1. From this, the 
theorem follows directly. 

It remains to establish statements (a)-(e). Statement (e) 
needs no proof, statement (a) follows from elementary 
manipulation, and statement (b) is a well-known property ' 
of L, spaces (see, e.g., Dunford and Schwartz 1958, p. 
294). To prove (c), let ifi.) be a subsequence of ifi) such 
that IITfi.lllllfi,,ll + a .  Now by (a) and (b), {fi,,) is weakly 
sequentially compact, so there must exist a further sub- 
sequence {fir) of {fi,,) convergent weakly in L,. This es- 
tablishes (c). Finally, (d) can be established by standard 
analytical arguments. 

Remark 1.One of the conditions of Theorem 3 requires 
that go(8)lg,(8) be uniformly bounded. For a compact 
parameter space 0 ,  this condition is automatic if Condition 
(C) holds, since under (C), g, is continuous and strictly 
positive. For an unbounded parameter space, we need to 
make sure that the decay of go(8) when 181 + t. is not 
slower than that of g,(8). This suggests using go of bounded 
support. 

Remark 2. Theorem 3 says that the convergence rate is 
linear. Unfortunately, the rate a is dependent on the initial 
value go. If 0 is compact, it can be shown that the supre- 
mum of a over all possible go is still less than 1; that is, 
we get a linear rate independent of the starting values. If 
0 is unbounded, however, a can be arbitrarily close to 1, 
depending on the starting value. This seems to be an in- 
trinsic limit imposed by an unbounded parameter space 
and should not be regarded as a weakness of the method. 

Remark 3. The whole theory can be developed in the 
same way for finite or countable 0 .  The simplest replace- 
ment for Condition (C) is to require K(8, 4)  > 0 for all 
8, 4 E 0 .  Weaker conditions exist but they are cumber- 
some to state. 

Remark 4. It is clear from properties (a) and (b) in the 
proof of Theorem 1that T is a Markov transition operator. 
However, a search through standard references, including 
Doob (1953), does not produce results directly suitable 
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Iteration 


Figure 10. Median and Upper and Lower Quartiles of 8 Values Across Iterations. The upper dashed line, the solid line, and the lower dashed 
line represent the upper quartile, the median, and the lower quartile, respectively. 

for our use. Especially, the L, convergence rate in Theo- 
rem 3 seems to be new. 

Remark 5. Similarly, there is a vast literature on fixed 
point operator equations and the method of successive 
substitution (see, e.g., Rall 1969, pp. 64-74). Again, we 
have not found results directly usable here. 

7. PRACTICAL IMPLEMENTATION OF 
THE ALGORITHM 

As indicated in the introduction, if the sample size m is 
taken to be large in each iteration, then the algorithm can 

be interpreted as the method of successive substitution for 
solving a fixed point problem. In practice, however, it is 
inefficient to take m large during the first few iterations 
when the estimated posterior distribution is far from the 
true distribution. Rather, it is suggested that m initially 
be small and then increased with successive iterations. In 
addition, we have found it helpful to monitor the progress 
of the algorithm by examining selected percentiles of the 
estimated posterior distribution, for example, the 25%, 
50%, and 75% percentiles. 

To illustrate these ideas, let us return to the linkage 

Theta 


Figure 11. The Posterior Density of 8. The dashed and solid lines represent the estimated and true posterior, respectively. 
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example, where the observed data is taken to be (13, 2, 
2, 3). At the initial iteration, m is taken to be 20. The 
algorithm then runs through 40 iterations, at which point 
it appears (see Fig. 10) that the process has become sta- 
tionary. The sample size is then increased to 400 and the 
algorithm proceeds through 20 further iterations. From 
Figure 10, we see that the effect of increasing m has been 
to reduce substantially the system variability. The final 10 
iterations are run with m = 1,600, and the estimated pos- 
terior distribution is then obtained by pooling the imputed 
theta values from the final iterations. Figure 11is obtained 
by pooling the results of iterations 67-70. 

For obvious reasons, the statistical fluctuations exhib- 
ited in iterations 20-40 cannot be reduced by further it- 
erations without increasing the sample size m (for the 
sample of augmented data). Typically, graphical displays, 
such as Figure 10, will give a good idea of how m should 
be varied. A more formal procedure can be obtained by 
comparing the within-iteration variance to the between- 
iteration variance. 

Another point illustrated in the linkage example is the 
possibility of pooling among iterations. For example, in 
iterations 20-40 we see that the process has stabilized. 
These samples are then pooled to form a combined sample 
of 400 to initialize the new iteration with m = 400. This 
pooled sample should not be regarded for all purposes as 
a random sample because the values from different iter- 
ations are dependent. If the process has reached equilib- 
rium, however, then the histogram constructed from 
the sample will give the correct shape. Thus, for exani- 
ple, let m, &,, and s denote, respectively, the sample size, 
mean, and standard deviation of the pooled sample. It 
then follows that 8,will be a consistent estimate (as m + 
m) of the posterior mean of 0, but the standard error of 
this estimate will typically be larger than s / G .  To see 
this, consider the extreme case in which m = 1, so that 
iteration i produces only one value 0(i). In this case, 0(i) 
(i = 1, 2, . . .) forms a Markov process with transition 
function equal to K(0, 4) , as defined in (2.3). Under the 
regularity conditions of Section 6, this is an ergodic Mar- 
kov process with an equilibrium distribution satisfying the 
fixed point equation given in (2.3). Hence 8,will converge 
to the mean of this equilibrium distribution, which is iden- 
tical to the mean of the posterior distribution. 

Finally, it is noted that the computation in Section 2.1 
(10 iterations with m = 1,600) required 13 minutes on a 
VAX 750, whereas the computations in Section 3 (15 it- 
erations with m = 6,400) and Section 5 (15 iterations with 

m = 1,600) required 23 minutes and 171 minutes, re-
spectively, on a VAX 750. 

[Received April 1985. Revised October 1986.1 
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