
ARTIFICIAL INTELLIGENCE 245

RESEARCH NOTE

Evidential Reasoning Using
Stochastic Simulation of
Causal Models*

Judea Pearl
Cognitive Systems Laboratory, U C L A Computer Science

Department , Los Angeles , C A 90024, U . S . A .

Recommended by A. Bundy and V. Kumar

ABSTRACT

Stochastic simulation is a method of computing probabilities by recording the fraction of time that
events occur in a random series of scenarios generated from some causal model. This paper presents
an efficient, concurrent method of conducting the simulation which guarantees that all generated
scenarios will be consistent with the observed data. It is shown that the simulation can be performed
by purely local computations, involving products of parameters given with the initial specification of
the model. Thus, the method proposed renders stochastic simulation a powerful technique of
coherent inferencing, especially suited for tasks involving complex, nondecomposable models where
"ballpark" estimates of probabilities will suffice.

I. Introduction

Stochastic simulation is a method of computing probabilities by counting the
fraction of t ime that events occur in a series of simulation runs. If a causal
model of a domain is available, the model can be used to generate random
samples of hypothetical scenarios that are likely to develop in the domain. The
probabili ty of any event or combination of events can then be computed by
recording the fraction of t ime it registers " t rue" in the samples generated.

Stochastic simulation shows considerable potential as a probabilistic infer-
ence engine that combines evidence correctly and is still computationally
tractable. Unlike numerical schemes, the computat ional effort is unaffected by

* This work was supported in part by the National Science Foundation, Grant #DSR 83-13875.
Artificial Intelligence 32 (1987) 245-257

0004-3702/87/$3.50 t~) 1987, Elsevier Science Publishers B.V. (North-Holland)

246 J. PEARL

the presence of dependencies within the causal model; simulating the occur-
rence of an event under a given set of conditions requires the same computa-
tional effort regardless of whether the conditions are correlated or not.
Stochastic simulation carries a special appeal to AI researchers in that it
develops probabilistic reasoning as a direct extension of deterministic logical
inference [2]. It explicitly represents probabilities as "frequencies" in a sample
of truth values, and these values, unlike numerical probabilities, can be derived
by familiar theorem-proving techniques and combined by standard logical
connectives. Neither is the technique foreign to human reasoning; assessing
uncertainties by mental sampling of possible scenarios seems a very natural
heuristic and is, no doubt, an important component of human judgment.

Another feature offered by simulation techniques is their inherent parallel-
ism. If we a,~ociate a processor with each propositional variable in the model,
then the simultaneous occurrence of events within each scenario can be
generated by concurrently activating the processors responsible for these
events. For example, the occurrence of the event "Joe entered the restaurant"
could, in one run, trigger the simultaneous events A: "Joe liked the food," B:
"Joe hated the noise" and C: "The prices were reasonable, °' while in a
different run, the combination of (-TA, B,-1C) may occur. Although parallel
techniques have also been developed for numerical computation of prob-
abilities [10], the simulation approach embodies the added advantage of
message simplicity. Instead of relaying probability distributions, the messages
passing between processors are the actual values assigned to their correspond-
ing variables. This conforms to the connectionist paradigm of reasoning, where
processors are presumed to communicate merely by relaying their levels of
activity.

Within AI, reasoning by probabilistic sampling has been suggested by
Hinton et al. [9] as one of the tasks executable on the Boltzmann machine.
Geman and Geman [7] combined probabilistic sampling with simulated anneal-
ing to restore noisy images. This work does not take an explicit probabilistic
model of the domain as input, but, rather uses probabilistic sampling as an
auxiliary computational tool to solve problems specified by nonprobabilistic
constraints. Bundy [2] has suggested an approach to probabilistic logic (called
incidence calculus) based, essentially, on truth-value sampling. Each logical
predicate is characterized by a bit string representing a sequence of truth
values. The bits in each string are combined by standard logical connectives,
and the probability of the predicate is the fraction of bits which are " t rue" in
the predicate's bit string. The model of the domain is specified in terms of
logical axioms, together with initial bit strings assigned to selected sentences.

Recently, Henrion [8] applied Bundy's proposal to evidential reasoning
tasks, using Bayesian networks as a formalism for representing causal relation-
ships [10]. Henrion's scheme, called logic sampling, uses an uninstantiated
Bayesian network as a scenario generator which, in each simulation run,

EVIDENTIAL REASONING USING STOCHASTIC SIMULATION 247

assigns random values to all system variables. Belief distributions are calcu-
lated by averaging the frequency of events over those cases in which the
evidence variables agree with the data observed.

This scheme offers an advantage over the Markov-field approaches of
Hinton et al. [9] and Geman and Geman [7] in that it takes as input both the
structure of a causal model provided by a domain expert and the forward
conditional probabilities reflecting the expert's direct experience; thus, the
simulation is conducted at a conceptually meaningful level of description.
However, since the simulation proceeds only forward in time, there is no way
to account in advance for evidence known to have occurred until variables
corresponding to these observations are brought into play and get sampled. If
they match the observed data, the run is counted; otherwise, it must be
discarded. The result is that the scheme requires an excessive number of
simulation runs. In cases comprising large numbers of observations (e.g., 20),
all but a small fraction (e.g., 10 -6) of the simulations may be discarded,
especially when a rare combination of data occurs.

A more desirable way of accounting for the evidence would be to perma-
nently "clamp" the evidence variables to the values observed, then conduct
stochastic simulation on the clamped network. The question remains, though,
how to propagate the random values coherently through the network, now that
boundary conditions are imposed on both the top and bottom nodes, i.e.,
premises as well as consequences.

This paper offers a solution which involves a two-phase cycle: local numeri-
cal computation followed by logical sampling. The first step involves comput-
ing, for some variable X, its conditional distribution, given the states of all its
neighbors' variables. The second phase involves sampling the distribution
computed in the first step and instantiating X to the value selected by the
sampling. The cycle then repeats itself by sequentially scanning through all the
variables in the system.

Section 2 illustrates the proposed scheme using a simple example taken from
medical diagnosis. Section 3 proves the correctness of the formula used in these
computations, and Section 4 discusses methods for implementing the sampling
scheme in parallel.

2. Illustrating the Proposed Scheme

We shall illustrate the operation of the proposed scheme with a simple example
borrowed from Spiegelhalter [11], originally given by Cooper [4]:

Metastatic cancer is a possible cause of a brain tumor and is also an
explanation for increased total serum calcium. In turn, either of
these could explain a patient falling into a coma. Severe headache is
also possibly associated with a brain tumor.

248 J. PEARL

Figure 1 shows the Bayes network representing these relationships. We use
capital letters to represent propositional variables (i .e. , dichotomies) and lower
case letters for their associated propositions. For example, C E {1, 0} repre-
sents the dichotomy between having or not having brain tumor, c stands for the
assertion C- - 1 or "brain tumor is present" and -7c stands for the negation of
c, i.e., C = 0.

The table below expresses the influences in terms of conditional probabili ty
distributions. Each variable is characterized by a distribution, called a link
matrix, that specifies the probabili ty of that variable, given the state of its
parents. The root variable, having no parent , is characterized by its prior
distribution.

P(A): P(a) : 0.20
P(BIA): P(bla) : 0.80 P(bt-~a) = 0.20
P(CIA): P(cla) = 0.20 P(cl-Ta) = 0.05
P(DIB, C): P(dlb, c) = 0.80 P(dl-Tb, c) = 0.80

P(dlb , --7c) = 0.80 P(dl--7b , -7c) = 0.05
P(EI C): P(elc) = 0.80 P(elTc) = 0.60

Given this information, our task is to compute the posterior probability of
every proposition in the system, given that a patient is observed to be suffering
from severe headaches (e) but is definitely not in coma (T d) , i.e., E = 1 &
D = 0. The first step is to instantiate all the unobserved variables to some
arbitrary initial state, say A = B = C = 1, and then let each variable, in turn,
choose another state in accordance with the conditional probabili ty of that
variable, given the current state of the other variables. Thus, for example, if
we denote by w A the state of all variables except A (i.e., wa = {B = 1, C = 1,
D = 0, E = 1 }), then the next value of A will be chosen by tossing a coin that
favors 1 to 0 by a ratio of P(aIWA) to P(~aIWA).

In Section 3, we shall show that P(xI wx), the distribution of each variable X

metastatic cancer
A

increased total ~
serum calcium B brain tumor

D E severe headaches
coma

FIG. 1. Bayes' network representing qualitative influences in the example.

EVIDENTIAL REASONING USING STOCHASTIC SIMULATION 249

conditioned on the values w x of all other variables in the system, can be
calculated by purely local computations. It is given simply as the product of the
link matrix of X times the link matrices of its children:

P(AIW A) = P(AIB, C, D, E) = aP(A)P(BIA)P(CIA) , (la)

P(BIwB) = P(BIA, C, D, E)= aP(BIA)P(DIB, C) , (lb)

P(Clwc) = P(CIA, B, D, E) = aP(CIA)P(DIB, C)P(EIC), (lc)

where the a are normalizing constants that render the respective probabilit ies '
sum to unity. The probabilities associated with D and E are not needed
because these variables are assumed to be fixed at D = 0 and E = 1. Note that a
variable X may determine its transition probabili ty P(X t Wx) by inspecting only
its parents, its children and those with which it shares children. (This set of
variables is called the Markov blanket of X [10].) For example, A needs to
inspect only B and C, while B needs to inspect only A, C and D.

For demonstrat ion purposes, we will activate the variables sequentially, in
the order A, B, C, acknowledging that any other schedule would be equally
adequate.

Activating A

Step 1. Node A inspects its children B and C and, finding both at 1,
computes (using equation (la)):

P(A = llwA) = P(A = l iB -- 1, C = 1)

= a P (a) P (b l a) e (c l a)

= ~ x 0.20 x 0.80 x 0.20

= o~ x 0.032,

P(A = 0lWA) = P(A =0[B = 1, C = 1)

= aP(~oOP(bl~a)P(cl~a)

= a x 0.80 x 0.20 x 0.05

= a x 0.008,

a = [0.032 + 0.008] -1 = 25

yielding

P(A = l l W A) = 25 x 0.032 = 0.80,

P(A = 01WA) = 25 X 0.008 = 0.20.

250 J. PEARL

Step 2. Node A consults a random number generator that issues ones with
probability 80% and zeros with 20%. Assuming the value sampled is 1, A
adopts this value A = 1, and control shifts to node B.

Activating B

Step 1. Node B inspects its neighbors and, finding them with values A = 1,
C = 1, D = 0, it computes (using equation (lb)):

P(B = llwB) P(B = I[A = 1, C = 1, O = 0)

P(B = OlwB) P (B = OIA = 1, C = 1, D = O)

aP(bla)P(Tdlb, c)
a P (T b l a) P (T d l T b , c)

0.80 x (1 - 0.80) 4

(1 - 0.80) x (1 - 0.80) 1 "

Step 2. As A did in its turn, B samples a random number generator favoring
1 b y a 4 : 1 ratio. Assuming this t ime that the value sampled is 0, B is set to 0
and gives control to C.

Activating C

Step 1. The neighbors of C are at the state

w c = {A = 1, B = 0 , D = 0 , E = 1}.

Therefore, f rom equation (lc):

P(clwc)
P(TclWc)

P(cla)P(~dl~b, c)P(elc)
P(-7cla)P(-TdlTb, -Tc)P(el-7c)

0.20 x (1 - 0.80) x 0.80 1

(1 - 0.20) x (1 - 0.05) x 0.60 14.25 "

Step 2. C samples a random number generator favoring zeros by a 14.25:1
ratio. Assuming 0 is sampled, C adopts the value 0 and gives control to A.

The cycle now repeats itself in the order A, B, C until a query is posted. For
example, "What is the posterior distribution of A ? " Such a query can be
answered in two ways, either by computing the fraction of times A registered
the value 1 or by taking the average of the conditional probabilities
P(A = IIWA) computed by A. The latter normally yields faster convergence.

To illustrate, the value of P(A = 11 w,,) computed in the next activation of A
would be

E V I D E N T I A L R E A S O N I N G USING S T O C H A S T I C S I M U L A T I O N 251

P(A = l i B = 0, C = 0) = aP(a)P(Tbla)P(Tcla)
= a x 0.20 x (1 - 0.80) x (1 - 0.20)

= a × 0.032,

P(A = 0IB = 0, C = 0) = aP(Ta)P(TblTa)P(TclTa)

= a x 0.80 x (1 - 0.20) x (1 - 0.05)

= ~ x 0.608,

a = (0.032 + 0.608) -1 = 1.5625,

P(A = l i b = 0 , C = 0) = 0 . 0 5 ,

P(A = 0IB = 0, C = 0) = 0.95.

In case a query "P(alTd, e) = ?" arrives at this point, A would sample the
distribution P(a)= 0.05 and, upon selecting a value 0, would provide the
estimate

/5(alTd, e) = ½(1 + 0) = 0 . 5 .

The second method would give:

P(alTd, e) = ½(0.80 + 0.05) = 0.425.

The exact value of P(alTd, e) happens to be 0.097, and it takes over 100 runs
to approximate this value to within 1% accuracy. Our choice of initial state
A = B = C = 1 was an especially bad one; more reasonable starting states can
be obtained by simulating the uninstantiated model in the forward direction,
i.e., using P(A), draw a value A l for A, using P(BIA1), draw a value for B;
and so on.

This simulation scheme can also be used to find the most likely interpretation
of the observed data, i.e., a joint assignment w* of values to all variables in the
system that, of all possible assignments, has the highest posterior probability,
given the evidence. It is well known, e.g. [10], that the joint posterior
probabili ty is proport ional to the product

P(wlevidence) = a 1--I P(x~ I f /) ,
i

where i ranges over all variables in the system (including the data) and f,. is the
state of X / s parents, consistent with the assignment w. Thus, the probabili ty of
any global state w entered by the simulation can be calculated by the product

252 J PEARL

above and, by keeping records of the value that this product achieves with each
sampling, the best state reached so far can be easily retrieved.

3. Justifying the Computations

Consider a typical neighborhood of variable X in some Bayesian network, as
shown in Fig. 2: Define the following set of variables:

(1) X's parents U x = (U 1 , . . . , U,} ;
(2) X's children Yx = (Y~ Ym} ;
(3) Fj, the set of parents of Yj; and
(4) W x = W - X , the set of all variables except X.

Theorem 3.1. The probability distribution of each variable X in the network,
conditioned on the state o f all other variables, is given by the product

P (x l W x) = e~ P(x] U x) I-[P[y j l~(x)] , (2)
J

where a is a normalizing constant, independent o f x, and x, w x, u x, Yi and fi(x)
denote any consistent instantiations o f X , W x, U x, Yj and Fj, respectively.

Thus, P(xlWx) can be computed by simply taking the product of the
instantiated link matrix stored at node X times those stored at X ' s children. In
Fig. 2, for example, we have:

P (x] W x) -- ~P(x lu , , u2)P(y ,[x , m,)P(y2]x , u 2, y , , m2).

\ / \ I

/ /

M2

~¥2 "-~. .
/

/

Fm. 2.

EVIDENTIAL REASONING USING STOCHASTIC SIMULATION 253

Proof. If we index the system's variables W = (X 1, X 2 X~ } by an
ordering consistent with the orientation of the Bayes net, then the joint
distribution of W can be written as a chain product:

P(w) = P(x I , x: x i)

= P (x ,) (P (x 2 l x ,) P (x 3 1 x , , x 2) " "

= 1-I P(x, l x , , . . . , X,_a)
i

= 1-I P(x i l£) (3)
i

where f~ stands for the values attained by Xi's parents. Equat ion (3) holds
because, the parents of a variable X i are defined as the set of predecessors that,
once known, renders X i independent on all its other predecessors [10]. Now
consider a typical variable X E W, having n parents U x and m children
Yx = { Y1 Ym }" X appears in exactly m + 1 factors of the product above;
once in the factor P(x[Ux) and once in each P(y j l f j) factor corresponding to
the j th child of X. Thus, we can write

P(w) = P(x , Wx)

= P(x]Ux) f i P(Yjlfj(x)) r I P(xk]o'k),
j = l k E K

where tr i stands for the values attained by Xi's parents. Now consider a typical
variable

K = {k: X k E W x - I x } .

Since x does not appear in the rightmost product (over k), the latter can be
regarded as a constant or' relative to x, and we can write

e (x , W x) = , ~ ' P (x l u O I - I (y j l f j (x)) .
J

Moreover , since

P(Wx) = ~ P(x , Wx)
x

is also a constant relative to x, we have

P(xlWx) - P(x, Wx) -P(-w--~ - o~ P(x I u x) I-[P(Yilfi (x)) ,
J

which proves the theorem. []

254 J. PEARL

The main significance of Theorem 3.1 is that P (x l W x) is computed as a
product of parameters which are stored with the specification of the model.
Thus, the parameters are readily available locally and the computat ions are
extremely simple.

4. Distributed Control of Concurrent Activation

The simulation process can also be executed in parallel but requires some
scheduling to keep neighboring processors from operating at the same time. To
see why this is necessary, imagine two neighboring processors, X and Y,
entering the computat ion phase at the same time t 1 . X observes the value yl of
Y and calculates P(x ly~) while, at the same time, Y observes the value x I of X
and calculates P (y l x ~) . At a later time, t2, they enter the simulation phase with
X instantiated to a sample x 2 drawn from P (x l y l) and Y to a sample Y2 drawn
from P (y l x l) . The new values x 2 and Y2 are not compatible with the distribu-
tion P. P was consulted to match y: with x~ (and x 2 with y~), but now that X
has changed its value to x 2, Y2 no longer represents a proper probabilistic
match to it.

To formalize this notion, note that a prerequisite to coherent relaxation is
the stationarity of the distribution of X and Y. In other words, we require that,
if at time t I X and Y are distributed by P (x , y) , then the values of X and Y at
t ime t 2 must also be distributed by P (x , y) . This requirement is met when only
one variable changes at any given time because then (assuming Y is the
changing variable), we can write:

P (X 2 = x , r 2 = y)

= ~ P (X 2 = x , ti2 = Y Ix1 = x ' , I+1 = y ') P (x ' , y ')
X'y '

= P(I11 = y lX~ = x) P (X 1 = x)

= e (x , : x , I+1 = y) = P (x , y) , (4)

which implies stationarity. If, however, X and Y change their values simulta-
neously, we have

P (X 2 = x , I12 = Y)

= P(Y2 = yIX2 = x) P (X 2 = x)

= ~ e (s 2 = x, Y2 = ylg~ = x' , Y ' = y ') e (x ' , y ')
X'y ~

= ~ P (X , = xlY~ = Y ')P (Y1 = y l g l = x ') P (x ' , y ')
x ' y '

= ~ P (x , y ') P (x ' , y) P (x ' , y ') (5)
x,r, P (Y ') P (x ')

EVIDENTIAL REASONING USING STOCHASTIC SIMULATION 255

which does not represent stationarity except in the pathological case where X 1
and Y1 are independent.

This analysis can be extended to the multi-variable case and allows us to
determine which variables can be activated simultaneously. Let the set of
concurrently activated variables be Z = {Z1, Z 2 , . . . , Z n } , and assume each Z,
variable chooses a new value z'~ by sampling the distribution P(z~lsi), where S i
is the subset of variables inspected by Z~ prior to switching. If W z stands for the
set of unchanged variables, then stationarity requires

e(z ' , Wz) = P(z, Wz) or P(z ' lwz) = P(z lwz) (6)

because P(wz) remains unchanged in the transition.
Since the values z' of the Z variables are drawn independently from P(z,ls,),

equation (6) translates to:

I-[P (Z i = zilsi) = P (z , , z 2 z , lWz) .
i - I

(7)

This requirement is satisfied whenever each S~ is a Markov blanket of Z~, i.e.,

p(z, Is,) = p(z I wz) (8)

and, simultaneously, each S i shields Z~ from all other Z,

P (z i l s i) : P (zi ls i /~ zj) , i = 1,2 n .
j # i

(9)

To meet both equations (8) and (9), it is clear that, if S~ contains any of the Zj,
then S i - Zj must also shield Zi from all other Z. However, if we assume that
each Sg is already the smallest Markov blanket permitted by the network, we
must conclude that no Zj should be a member in any of the S~. Thus, any set of
variables licensed to be activated simultaneously, must not contain a pair
belonging to the same Markov blanket.

A convenient way to highlight this requirement is to add dummy links
between mates (i.e., nodes sharing a child), taking care that no two adjacent
nodes in the thus-augmented network are activated concurrently. The question
now arises how to schedule the activation of the processors in such a way that:

(1) no two adjacent processors are activated at the same time;
(2) every processor gets activated sufficiently often;
(3) the activation commands are generated distributedly, with no external

supervision.
This problem is a version of the "dining philosophers" dilemma originally

posed by Dijkstra [5] and later solved independently by Gafni and Bertsekas
[6] and Chandy and Misra [3]. The solution is a distributed control policy called
"edge reversal" and involves the following steps:

256 J. PEARL

A A A

D E D E D E

A

D E

FIG. 3.

(1) Initially, the links of the network are assigned arbitrary acyclic orienta-
tion of arrows. (This orientation bears no relation to the causal ordering
governing the construction of Bayesian networks.)

(2) Each processor inspects the orientation of the arrows on its incident
links and waits until all arrows point inward, i.e., until the processor becomes a
sink.

(3) Once a processor becomes a sink, it is activated and, when it completes
the computation, reverses the direction of all its incident arrows (i.e., it
becomes a source).

It is easily seen that no two neighbors can be activated at the same time.
What is more remarkable about this edge-reversal policy, though, is that no
processor ever gets "deprived"; every processor fires at least once before the
orientation returns to some previous state and the cycle repeats itself.
Moreover, every processor is activated the same number of times in any such
cycle [1]. The "nondeprivation" feature is important because it constitutes a
necessary condition for the convergence of the entire process [7]. As time
progresses, the system is guaranteed to reach a steady state in the sense that,
regardless of the initial instantiation, the probability that the system will enter
any global state w is given by the joint distribution specified by the link
matrices.

Figure 3 illustrates this policy on the Bayesian net of Fig. 2 by marking (with
circles) the nodes activated at each step of the process. Initially, the dummy
edge BC is added to designate these mates as neighbors, and the orientation of
Fig. 3(a) is assigned, where C is the only sink. Once C is activated, the arrows
pointing to C are reversed (by C), B and E become sinks and fire. After three
steps, Fig. 3(d), the orientation is back where it started, and the cycle repeats.
Note that every processor fires once during the cycle and that twice, depicted
in Figs. 3(b) and 3(c), we had two processors firing simultaneously. The
problem of achieving maximum concurrency with edge reversal was analyzed
by Barbosa [1].

5. Conclusions

The local and concurrent scheme presented in this paper renders stochastic
simulation a viable inferencing technique for evidential reasoning tasks. AI-

EVIDENTIAL REASONING USING STOCHASTIC SIMULATION 257

t hough dozens of runs a re necessa ry for achieving r e a s o n a b l e levels of accura-
cy, each run r equ i r e s only IvI + IEI c o m p u t a t i o n a l s teps , w h e r e IVI is the
n u m b e r of ver t ices in the m o d e l and IEI is the n u m b e r of edges . Un l ike pu re ly
numer i ca l t echn iques , which s o m e t i m e s r equ i r e e x p o n e n t i a l complex i ty , the
length of c o m p u t a t i o n is d e t e r m i n e d ma in ly by the r e q u i r e d deg ree of accura-
cy, no t by the d e p e n d e n c i e s e m b o d i e d in the mode l . I t is pos tu l a t ed , t he re fo re ,
tha t s tochas t ic s imu la t ion will be found prac t ica l in app l i ca t ions involving
complex mode l s wi th h ighly i n t e r d e p e n d e n t va r i ab les and w h e r e " b a l l p a r k "
e s t ima tes of p robab i l i t i e s will suffice.

ACKNOWLEDGMENT

I am indebted to Max Henrion for rekindling my interest in stochastic simulation and helping me
regain confidence in its viability as a practical inferencing technique. Also appreciated are the
discussions with Eli Gafni and Valmir Barbosa who, during the latter's oral examination, pointed
out both the danger of concurrently activating neighboring variables and the remarkable features
of the edge-reversal policy.

REFERENCES

1. Barbosa, V.C., Concurrency in systems with neighborhood constraints, Ph.D. Dissertation,
Computer Science Department, UCLA, Los Angeles, CA, 1986.

2. Bundy, A., Incidence calculus: A mechanism for probabilistic reasoning, in: Proceedings
Workshop on Uncertainty in Artificial Intelligence, UCLA, Los Angeles, CA (1985) 177-184.

3. Chandy, K.M. and Misra, J., The drinking philosophers problem, ACM Trans. Program.
Lang. Syst. G (4) (1984) 632-646.

4. Cooper, G.F., NESTOR: A computer-based medical diagnostic aid that integrates causal and
probabilistic knowledge, Ph.D. Dissertation, Department of Computer Science, Stanford
University, Stanford, CA, 1984.

5. Dijkstra, E.W., Hierarchical ordering of sequential processes, in: C.A.R. Hoare and R.H.
Perrott (Eds.), Operating Systems Techniques (Academic Press, New York, 1972).

6. Gafni, E.M. and Bertsekas, D.P., Distributed algorithms for generating loop-free routes in
networks with frequently changing topology, IEEE Trans. Commun. 29 (1) (1981) 11-18.

7. Geman, S. and Geman, D., Stochastic relaxations, Gibbs distributions and the Bayesian
restoration of images," IEEE Trans. Pattern Anal. Mach. InteU. 6 (6) (1984) 721-742.

8. Henrion, M., Propagating uncertainty by logic sampling in Bayes' networks, in: Proceedings
Workshop on Uncertainty in AI, Philadelphia, PA (1986).

9. Hinton, G.E., Sejnowski, T.J. and Ackley, D.H., Boltzman machines: Constraint satisfaction
networks that learn, Tech. Rept. CMU-CS-84-119, Department of Computer Science, Car-
negie-Mellon University, Pittsburgh, PA, 1984.

10. Pearl, J., Fusion, propagation and structuring in belief networks, Artificial Intelligence 29 (3)
(1986) 241-288.

11. Spiegelhalter, D.J., Probabilistic reasoning in predictive expert systems, in: L.N. Kanal and J.
Lemmer (Eds.), Uncertainty in Artificial Intelligence (North-Holland, Amsterdam, 1986)
47-68.

Rece ived Sep tember 1986; revised version received January 1987

