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ABSTRACT 

Stochastic simulation is a method of computing probabilities by recording the fraction of time that 
events occur in a random series of scenarios generated from some causal model. This paper presents 
an efficient, concurrent method of conducting the simulation which guarantees that all generated 
scenarios will be consistent with the observed data. It is shown that the simulation can be performed 
by purely local computations, involving products of parameters given with the initial specification of 
the model. Thus, the method proposed renders stochastic simulation a powerful technique of 
coherent inferencing, especially suited for tasks involving complex, nondecomposable models where 
"ballpark" estimates of probabilities will suffice. 

I. Introduction 

Stochastic simulation is a method of computing probabilities by counting the 
fraction of t ime that events occur in a series of simulation runs. If  a causal 
model  of a domain is available, the model  can be used to generate random 
samples of hypothetical scenarios that are likely to develop in the domain. The 
probabili ty of any event or combination of events can then be computed  by 
recording the fraction of t ime it registers " t rue"  in the samples generated.  

Stochastic simulation shows considerable potential  as a probabilistic infer- 
ence engine that combines evidence correctly and is still computationally 
tractable. Unlike numerical schemes, the computat ional  effort is unaffected by 
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the presence of dependencies within the causal model; simulating the occur- 
rence of an event under a given set of conditions requires the same computa- 
tional effort regardless of whether the conditions are correlated or not. 
Stochastic simulation carries a special appeal to AI researchers in that it 
develops probabilistic reasoning as a direct extension of deterministic logical 
inference [2]. It explicitly represents probabilities as "frequencies" in a sample 
of truth values, and these values, unlike numerical probabilities, can be derived 
by familiar theorem-proving techniques and combined by standard logical 
connectives. Neither is the technique foreign to human reasoning; assessing 
uncertainties by mental sampling of possible scenarios seems a very natural 
heuristic and is, no doubt, an important component of human judgment. 

Another feature offered by simulation techniques is their inherent parallel- 
ism. If we a,~ociate a processor with each propositional variable in the model, 
then the simultaneous occurrence of events within each scenario can be 
generated by concurrently activating the processors responsible for these 
events. For example, the occurrence of the event "Joe entered the restaurant" 
could, in one run, trigger the simultaneous events A: "Joe liked the food," B: 
"Joe hated the noise" and C: "The prices were reasonable, °' while in a 
different run, the combination of (-TA, B,-1C)  may occur. Although parallel 
techniques have also been developed for numerical computation of prob- 
abilities [10], the simulation approach embodies the added advantage of 
message simplicity. Instead of relaying probability distributions, the messages 
passing between processors are the actual values assigned to their correspond- 
ing variables. This conforms to the connectionist paradigm of reasoning, where 
processors are presumed to communicate merely by relaying their levels of 
activity. 

Within AI, reasoning by probabilistic sampling has been suggested by 
Hinton et al. [9] as one of the tasks executable on the Boltzmann machine. 
Geman and Geman [7] combined probabilistic sampling with simulated anneal- 
ing to restore noisy images. This work does not take an explicit probabilistic 
model of the domain as input, but, rather uses probabilistic sampling as an 
auxiliary computational tool to solve problems specified by nonprobabilistic 
constraints. Bundy [2] has suggested an approach to probabilistic logic (called 
incidence calculus) based, essentially, on truth-value sampling. Each logical 
predicate is characterized by a bit string representing a sequence of truth 
values. The bits in each string are combined by standard logical connectives, 
and the probability of the predicate is the fraction of bits which are " t rue"  in 
the predicate's bit string. The model of the domain is specified in terms of 
logical axioms, together with initial bit strings assigned to selected sentences. 

Recently, Henrion [8] applied Bundy's proposal to evidential reasoning 
tasks, using Bayesian networks as a formalism for representing causal relation- 
ships [10]. Henrion's scheme, called logic sampling, uses an uninstantiated 
Bayesian network as a scenario generator which, in each simulation run, 
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assigns random values to all system variables. Belief distributions are calcu- 
lated by averaging the frequency of events over those cases in which the 
evidence variables agree with the data observed. 

This scheme offers an advantage over the Markov-field approaches of 
Hinton et al. [9] and Geman and Geman [7] in that it takes as input both the 
structure of a causal model provided by a domain expert and the forward 
conditional probabilities reflecting the expert's direct experience; thus, the 
simulation is conducted at a conceptually meaningful level of description. 
However, since the simulation proceeds only forward in time, there is no way 
to account in advance for evidence known to have occurred until variables 
corresponding to these observations are brought into play and get sampled. If 
they match the observed data, the run is counted; otherwise, it must be 
discarded. The result is that the scheme requires an excessive number of 
simulation runs. In cases comprising large numbers of observations (e.g., 20), 
all but a small fraction (e.g., 10 -6) of the simulations may be discarded, 
especially when a rare combination of data occurs. 

A more desirable way of accounting for the evidence would be to perma- 
nently "clamp" the evidence variables to the values observed, then conduct 
stochastic simulation on the clamped network. The question remains, though, 
how to propagate the random values coherently through the network, now that 
boundary conditions are imposed on both the top and bottom nodes, i.e., 
premises as well as consequences. 

This paper offers a solution which involves a two-phase cycle: local numeri- 
cal computation followed by logical sampling. The first step involves comput- 
ing, for some variable X, its conditional distribution, given the states of all its 
neighbors' variables. The second phase involves sampling the distribution 
computed in the first step and instantiating X to the value selected by the 
sampling. The cycle then repeats itself by sequentially scanning through all the 
variables in the system. 

Section 2 illustrates the proposed scheme using a simple example taken from 
medical diagnosis. Section 3 proves the correctness of the formula used in these 
computations, and Section 4 discusses methods for implementing the sampling 
scheme in parallel. 

2. Illustrating the Proposed Scheme 

We shall illustrate the operation of the proposed scheme with a simple example 
borrowed from Spiegelhalter [11], originally given by Cooper [4]: 

Metastatic cancer is a possible cause of a brain tumor and is also an 
explanation for increased total serum calcium. In turn, either of 
these could explain a patient falling into a coma. Severe headache is 
also possibly associated with a brain tumor. 
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Figure 1 shows the Bayes network representing these relationships. We use 
capital letters to represent propositional variables (i .e. ,  dichotomies) and lower 
case letters for their associated propositions. For example,  C E {1, 0} repre- 
sents the dichotomy between having or not having brain tumor,  c stands for the 
assertion C- -  1 or "brain tumor is present"  and -7c stands for the negation of 
c, i.e., C = 0. 

The table below expresses the influences in terms of conditional probabili ty 
distributions. Each variable is characterized by a distribution, called a link 
matrix, that specifies the probabili ty of that variable, given the state of its 
parents. The root variable, having no parent ,  is characterized by its prior 
distribution. 

P(A): P(a) : 0.20 
P(BIA): P(bla ) : 0.80 P(bt-~a ) = 0.20 
P(CIA): P(cla) = 0.20 P(cl-Ta) = 0.05 
P(DIB, C): P(dlb, c) = 0.80 P(dl-Tb, c) = 0.80 

P(dlb , --7c) = 0.80 P(dl--7b , -7c) = 0.05 
P(EI C): P(elc) = 0.80 P(elTc) = 0.60 

Given this information, our task is to compute the posterior probability of 
every proposition in the system, given that a patient is observed to be suffering 
from severe headaches (e) but is definitely not in coma ( T d ) ,  i.e., E = 1 & 
D = 0. The first step is to instantiate all the unobserved variables to some 
arbitrary initial state, say A = B = C = 1, and then let each variable, in turn, 
choose another  state in accordance with the conditional probabili ty of that 
variable, given the current state of the other variables. Thus,  for example,  if 
we denote by w A the state of all variables except A (i.e.,  wa = {B = 1, C = 1, 
D = 0, E = 1 }), then the next value of A will be chosen by tossing a coin that 
favors 1 to 0 by a ratio of P(aIWA) to P(~aIWA). 

In Section 3, we shall show that P(xI wx), the distribution of each variable X 

metastatic cancer  
A 

increased total ~ 
serum calcium B brain tumor  

D E severe headaches  
coma 

FIG. 1. Bayes' network representing qualitative influences in the example. 
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conditioned on the values w x of all other variables in the system, can be 
calculated by purely local computations.  It is given simply as the product  of the 
link matrix of X times the link matrices of its children: 

P(AIW A) = P(AIB, C, D, E) = aP(A)P(BIA)P(CIA) , ( la )  

P(BIwB) = P(BIA, C, D, E)= aP(BIA)P(DIB, C) , ( lb)  

P(Clwc) = P(CIA, B, D, E) = aP(CIA)P(DIB, C)P(EIC),  ( lc)  

where the a are normalizing constants that render the respective probabilit ies '  
sum to unity. The probabilities associated with D and E are not needed 
because these variables are assumed to be fixed at D = 0 and E = 1. Note  that a 
variable X may determine its transition probabili ty P(X t Wx) by inspecting only 
its parents,  its children and those with which it shares children. (This set of 
variables is called the Markov blanket of X [10].) For example,  A needs to 
inspect only B and C, while B needs to inspect only A, C and D. 

For demonstrat ion purposes,  we will activate the variables sequentially, in 
the order  A,  B, C, acknowledging that any other schedule would be equally 
adequate.  

Activating A 

Step 1. Node A inspects its children B and C and, finding both at 1, 
computes  (using equation (la)):  

P(A = llwA) = P(A = l iB -- 1, C = 1) 

= a P ( a ) P ( b l a ) e ( c l a )  

= ~ x 0.20 x 0.80 x 0.20 

= o~ x 0.032, 

P(A = 0lWA) = P(A =0[B = 1, C =  1) 

= aP(~oOP(bl~a)P(cl~a) 

= a x 0.80 x 0.20 x 0.05 

= a  x 0.008, 

a = [0.032 + 0.008] -1 = 25 

yielding 

P(A = l l W A )  = 25 x 0.032 = 0.80,  

P(A = 01WA) = 25 X 0.008 = 0.20. 
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Step 2. Node A consults a random number  generator  that issues ones with 
probability 80% and zeros with 20%. Assuming the value sampled is 1, A 
adopts this value A = 1, and control shifts to node B. 

Activating B 

Step 1. Node B inspects its neighbors and, finding them with values A = 1, 
C = 1, D = 0, it computes (using equation (lb)):  

P(B = llwB) P(B = I[A = 1, C = 1, O = 0) 

P(B = OlwB) P ( B  = OIA = 1, C = 1, D = O) 

aP(bla)P(Tdlb,  c) 
a P ( T b l a ) P ( T d l T b ,  c) 

0.80 x (1 - 0.80) 4 

(1  - 0.80) x (1 - 0.80) 1 " 

Step 2. As A did in its turn, B samples a random number  generator  favoring 
1 b y  a 4 : 1 ratio. Assuming this t ime that the value sampled is 0, B is set to 0 
and gives control to C. 

Activating C 

Step 1. The neighbors of C are at the state 

w c = {A = 1, B = 0 ,  D = 0 ,  E =  1}. 

Therefore,  f rom equation (lc): 

P(clwc) 
P(TclWc) 

P(cla)P(~dl~b,  c)P(elc) 
P(-7cla)P(-TdlTb, -Tc)P(el-7c ) 

0.20 x (1 - 0.80) x 0.80 1 

(1 - 0.20) x (1 - 0.05) x 0.60 14.25 " 

Step 2. C samples a random number  generator  favoring zeros by a 14.25:1 
ratio. Assuming 0 is sampled, C adopts the value 0 and gives control to A. 

The cycle now repeats itself in the order  A, B, C until a query is posted. For 
example,  "What  is the posterior distribution of A ? "  Such a query can be 
answered in two ways, either by computing the fraction of times A registered 
the value 1 or by taking the average of the conditional probabilities 
P(A = IIWA) computed by A. The latter normally yields faster convergence. 

To illustrate, the value of P(A = 11 w,,) computed in the next activation of A 
would be 
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P(A = l i B  = 0, C = 0 ) =  aP(a)P(Tbla)P(Tcla ) 
= a x 0.20 x (1 - 0.80) x (1 - 0.20) 

= a × 0.032, 

P(A = 0IB = 0, C = 0) = aP(Ta)P(TblTa)P(TclTa ) 

= a x 0.80 x (1 - 0.20) x (1 - 0.05) 

= ~ x 0.608, 

a = (0.032 + 0.608) -1 = 1.5625, 

P(A = l i b  = 0 ,  C = 0 ) = 0 . 0 5 ,  

P(A = 0IB = 0, C = 0) = 0.95. 

In case a query "P(alTd, e ) =  ?" arrives at this point, A would sample the 
distribution P(a)= 0.05 and, upon selecting a value 0, would provide the 
estimate 

/5(alTd,  e) = ½(1 + 0 ) = 0 . 5 .  

The second method would give: 

P(alTd, e) = ½(0.80 + 0.05) = 0.425. 

The exact value of P(alTd, e) happens to be 0.097, and it takes over  100 runs 
to approximate  this value to within 1% accuracy. Our  choice of initial state 
A = B = C = 1 was an especially bad one; more  reasonable starting states can 
be obtained by simulating the uninstantiated model  in the forward direction, 
i.e., using P(A), draw a value A l for A, using P(BIA1), draw a value for B; 
and so on. 

This simulation scheme can also be used to find the most likely interpretation 
of the observed data, i.e., a joint assignment w* of values to all variables in the 
system that, of all possible assignments, has the highest posterior probability, 
given the evidence. It is well known, e.g. [10], that the joint posterior  
probabili ty is proport ional  to the product  

P(wlevidence ) = a 1--I P(x~ I f / ) ,  
i 

where i ranges over  all variables in the system (including the data) and f,. is the 
state of X / s  parents,  consistent with the assignment w. Thus,  the probabili ty of 
any global state w entered by the simulation can be calculated by the product 
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above and, by keeping records of the value that this product achieves with each 
sampling, the best state reached so far can be easily retrieved. 

3. Justifying the Computations 

Consider a typical neighborhood of variable X in some Bayesian network, as 
shown in Fig. 2: Define the following set of variables: 

(1) X's parents U x = ( U 1 , . . .  , U,} ; 
(2) X's children Yx = ( Y~ . . . . .  Ym} ; 
(3) Fj, the set of parents of Yj; and 
(4) W x = W -  X ,  the set of all variables except X. 

Theorem 3.1. The probability distribution of  each variable X in the network, 
conditioned on the state o f  all other variables, is given by the product 

P ( x l  W x ) = e~ P(x]  U x ) I-[ P[ y j l~(x)  ] , (2) 
J 

where a is a normalizing constant, independent o f  x, and x, w x, u x,  Yi and fi(x) 
denote any consistent instantiations o f  X ,  W x, U x, Yj and Fj, respectively. 

Thus, P(xlWx) can be computed by simply taking the product of  the 
instantiated link matrix stored at node X times those stored at X ' s  children. In 
Fig. 2, for example, we have: 

P ( x ] W x )  -- ~P(x lu , ,  u2)P(y ,[x ,  m, )P(y2]x ,  u 2, y , ,  m2). 

\ / \ I 

/ /  

M2 

~¥2 "-~. . 
/ 

/ 

Fm. 2. 
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Proof. If  we index the system's variables W =  ( X  1, X 2 . . . . .  X~ . . . .  } by an 
ordering consistent with the orientation of the Bayes net, then the joint 
distribution of W can be written as a chain product: 

P(w)  = P(x  I , x:  . . . . .  x i . . . .  ) 

= P ( x , ) ( P ( x 2 l x , ) P ( x 3 1 x , ,  x 2 ) " "  

= 1-I P(x, l x , , . . . ,  X,_a) 
i 

= 1-I P(x i l£ )  (3) 
i 

where f~ stands for the values attained by Xi's parents.  Equat ion (3) holds 
because, the parents of a variable X i are defined as the set of predecessors that,  
once known, renders X i independent  on all its other  predecessors [10]. Now 
consider a typical variable X E W, having n parents U x and m children 
Yx  = { Y1 . . . . .  Ym }" X appears  in exactly m + 1 factors of the product  above;  
once in the factor P(x[ Ux) and once in each P(y j l f j )  factor corresponding to 
the j th  child of X. Thus, we can write 

P(w)  = P(x ,  Wx)  

= P(x]Ux) f i  P(Yjlfj(x)) r I  P(xk]o'k), 
j = l  k E K  

where tr i stands for the values attained by Xi's parents.  Now consider a typical 
variable 

K =  {k: X k E W x -  I x } .  

Since x does not appear  in the rightmost product  (over k),  the latter can be 
regarded as a constant or' relative to x, and we can write 

e ( x ,  W x ) =  , ~ ' P ( x l u O I - I ( y j l f j ( x ) ) .  
J 

Moreover ,  since 

P(Wx)  = ~ P(x ,  Wx)  
x 

is also a constant relative to x, we have 

P(xlWx) - P(x,  Wx) -P(-w--~ - o~ P(x I u x) I-[ P( Yilfi (x)) , 
J 

which proves the theorem.  [] 
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The main significance of Theorem 3.1 is that P ( x l W x )  is computed as a 
product of parameters  which are stored with the specification of the model.  
Thus, the parameters  are readily available locally and the computat ions are 
extremely simple. 

4. Distributed Control of  Concurrent Activation 

The simulation process can also be executed in parallel but requires some 
scheduling to keep neighboring processors from operating at the same time. To 
see why this is necessary, imagine two neighboring processors, X and Y, 
entering the computat ion phase at the same time t 1 . X observes the value yl of 
Y and calculates P(x ly~)  while, at the same time, Y observes the value x I of X 
and calculates P ( y l x ~ ) .  At a later time, t2, they enter the simulation phase with 
X instantiated to a sample x 2 drawn from P ( x l y l )  and Y to a sample Y2 drawn 
from P ( y l x l ) .  The new values x 2 and Y2 are not compatible with the distribu- 
tion P. P was consulted to match y:  with x~ (and x 2 with y~), but now that X 
has changed its value to x 2, Y2 no longer represents a proper  probabilistic 
match to it. 

To formalize this notion, note that a prerequisite to coherent  relaxation is 
the stationarity of the distribution of X and Y. In other words, we require that, 
if at time t I X and Y are distributed by P ( x ,  y ) ,  then the values of X and Y at 
t ime t 2 must also be distributed by P ( x ,  y ) .  This requirement  is met  when only 
one variable changes at any given time because then (assuming Y is the 
changing variable), we can write: 

P ( X  2 = x ,  r 2 = y )  

= ~ P ( X  2 = x ,  ti2 = Y Ix1  = x ' ,  I+1 = y ' ) P ( x ' ,  y ' )  
X'y '  

= P(I11 = y lX~ = x)  P ( X  1 = x )  

= e ( x ,  : x ,  I+1 = y )  = P ( x ,  y ) ,  (4) 

which implies stationarity. If, however,  X and Y change their values simulta- 
neously, we have 

P ( X  2 = x ,  I12 = Y) 

= P(Y2  = yIX2 = x ) P ( X 2  = x)  

= ~ e ( s 2  = x, Y2 = ylg~ = x' ,  Y '  = y ' ) e ( x ' ,  y ' )  
X'y ~ 

= ~ P ( X ,  = xlY~ = Y ' )P (Y1  = y l g l  = x ' ) P ( x ' ,  y ' )  
x ' y '  

= ~ P ( x ,  y ' )  P ( x ' ,  y )  P ( x ' ,  y ' )  (5) 
x,r, P ( Y ' )  P ( x ' )  
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which does not represent stationarity except in the pathological case where X 1 
and Y1 are independent.  

This analysis can be extended to the multi-variable case and allows us to 
determine which variables can be activated simultaneously. Let  the set of 
concurrently activated variables be Z = {Z1, Z 2 ,  . . . , Z n }  , and assume each Z, 
variable chooses a new value z'~ by sampling the distribution P(z~lsi), where S i 
is the subset of variables inspected by Z~ prior to switching. If W z stands for the 
set of unchanged variables, then stationarity requires 

e(z ' ,  Wz) = P(z, Wz) or P(z ' lwz)  = P(z lwz)  (6) 

because P(wz) remains unchanged in the transition. 
Since the values z' of the Z variables are drawn independently from P(z,ls,), 

equation (6) translates to: 

I-[ P ( Z  i = zilsi) = P ( z , ,  z 2 . . . . .  z ,  lWz )  . 
i - I  

(7) 

This requirement is satisfied whenever each S~ is a Markov blanket of Z~, i.e., 

p(z,  Is,) = p(z  I wz) (8) 

and, simultaneously, each S i shields Z~ from all other Z, 

P ( z i l s i )  : P (zi ls  i /~  zj) , i =  1,2 . . . . .  n .  
j # i  

(9) 

To meet both equations (8) and (9), it is clear that, if S~ contains any of the Zj, 
then S i - Zj must also shield Zi from all other Z. However,  if we assume that 
each Sg is already the smallest Markov blanket permitted by the network, we 
must conclude that no Zj should be a member  in any of the S~. Thus, any set of 
variables licensed to be activated simultaneously, must not contain a pair 
belonging to the same Markov blanket. 

A convenient way to highlight this requirement is to add dummy links 
between mates (i.e., nodes sharing a child), taking care that no two adjacent 
nodes in the thus-augmented network are activated concurrently. The question 
now arises how to schedule the activation of the processors in such a way that: 

(1) no two adjacent processors are activated at the same time; 
(2) every processor gets activated sufficiently often; 
(3) the activation commands are generated distributedly, with no external 

supervision. 
This problem is a version of the "dining philosophers" dilemma originally 

posed by Dijkstra [5] and later solved independently by Gafni and Bertsekas 
[6] and Chandy and Misra [3]. The solution is a distributed control policy called 
"edge reversal" and involves the following steps: 
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A A A 

D E D E D E 

A 

D E 

FIG. 3. 

(1) Initially, the links of the network are assigned arbitrary acyclic orienta- 
tion of arrows. (This orientation bears no relation to the causal ordering 
governing the construction of Bayesian networks.) 

(2) Each processor inspects the orientation of the arrows on its incident 
links and waits until all arrows point inward, i.e., until the processor becomes a 
sink. 

(3) Once a processor becomes a sink, it is activated and, when it completes 
the computation, reverses the direction of all its incident arrows (i.e., it 
becomes a source). 

It is easily seen that no two neighbors can be activated at the same time. 
What is more remarkable about this edge-reversal policy, though, is that no 
processor ever gets "deprived"; every processor fires at least once before the 
orientation returns to some previous state and the cycle repeats itself. 
Moreover, every processor is activated the same number of times in any such 
cycle [1]. The "nondeprivation" feature is important because it constitutes a 
necessary condition for the convergence of the entire process [7]. As time 
progresses, the system is guaranteed to reach a steady state in the sense that, 
regardless of the initial instantiation, the probability that the system will enter 
any global state w is given by the joint distribution specified by the link 
matrices. 

Figure 3 illustrates this policy on the Bayesian net of Fig. 2 by marking (with 
circles) the nodes activated at each step of the process. Initially, the dummy 
edge BC is added to designate these mates as neighbors, and the orientation of 
Fig. 3(a) is assigned, where C is the only sink. Once C is activated, the arrows 
pointing to C are reversed (by C), B and E become sinks and fire. After three 
steps, Fig. 3(d), the orientation is back where it started, and the cycle repeats. 
Note that every processor fires once during the cycle and that twice, depicted 
in Figs. 3(b) and 3(c), we had two processors firing simultaneously. The 
problem of achieving maximum concurrency with edge reversal was analyzed 
by Barbosa [1]. 

5. Conclusions  

The local and concurrent scheme presented in this paper renders stochastic 
simulation a viable inferencing technique for evidential reasoning tasks. AI- 
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t hough  dozens  of  runs  a re  necessa ry  for  achieving  r e a s o n a b l e  levels  of  accura-  
cy, each  run  r equ i r e s  only  IvI + IEI c o m p u t a t i o n a l  s teps ,  w h e r e  IVI is the  
n u m b e r  of  ver t ices  in the  m o d e l  and  IEI is the  n u m b e r  of  edges .  Un l ike  pu re ly  
numer i ca l  t echn iques ,  which s o m e t i m e s  r equ i r e  e x p o n e n t i a l  complex i ty ,  the  
length  of  c o m p u t a t i o n  is d e t e r m i n e d  ma in ly  by  the  r e q u i r e d  deg ree  of  accura-  
cy, no t  by  the  d e p e n d e n c i e s  e m b o d i e d  in the  mode l .  I t  is pos tu l a t ed ,  t he re fo re ,  
tha t  s tochas t ic  s imu la t ion  will  be  found  prac t ica l  in app l i ca t ions  involving 
complex  mode l s  wi th  h ighly  i n t e r d e p e n d e n t  va r i ab les  and  w h e r e  " b a l l p a r k "  
e s t ima tes  of  p robab i l i t i e s  will suffice. 
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