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Spatial Interaction and the Statistical Analysis of Lattice Systems 

University of Liverpool 

[Read before the ROYAL STATISTICAL at a meeting organized by the RESEARCH SOCIETY SECTION 
on Wednesday, March 13th, 1974, Professor J. DURBINin the Chair] 

The formulation of conditional probability models for finite systems of 
spatially interacting random variables is examined. A simple alternative 
proof of the Hammersley-Clifford theorem is presented and the theorem is 
then used to construct specific spatial schemes on and off the lattice. 
Particular emphasis is placed upon practical applications of the models in 
plant ecology when the variates are binary or Gaussian. Some aspects of 
infinite lattice Gaussian processes are discussed. Methods of statistical 
analysis for lattice schemes are proposed, including a very flexible coding 
technique. The methods are illustrated by two numerical examples. It is 
maintained throughout that the conditional probability approach to the 
specification and analysis of spatial interaction is more attractive than the 
alternative joint probability approach. 

Keywords : MARKOV FIELDS; SPATIAL INTERACTION;AUTO-MODELS;NEAREST-NEIGHBOUR 
SCHEMES; STATISTICAL ANALYSIS OF LATTICE SCHEMES ; CODING TECHNIQUES; 
SIMULTANEOUS BILATERAL AUTOREGRESSIONS; CONDITIONAL PROBABILITY 
MODELS 

1. INTRODUCTION 
IN this paper, we examine some stochastic models which may be used to describe 
certain types of spatial processes. Potential applications of the models occur in 
plant ecology and the paper concludes with two detailed numerical examples in this 
area. At a formal level, we shall largely be concerned with a rather arbitrary system, 
consisting of a finite set of sites, each site having associated with it a univariate 
random variable. In most ecological applications, the sites will represent points or 
regions in the Euclidean plane and will often be subject to a rigid lattice structure. 
For example, Cochran (1936) discusses the incidence of spotted wilt over a rectangular 
array of tomato plants. The disease is transmitted by insects and, after an initial 
period of time, we should clearly expect to observe clusters of infected plants. The 
formulation of spatial stochastic models will be considered in Sections 2-5 of the 
paper. Once having set up a model to describe a particular situation, we should then 
hope to be able to estimate any unknown parameters and to test the goodness-of-fit 
of the model on the basis of observation. We shall discuss the statistical analysis of 
lattice schemes in Sections 6 and 7. 

We begin by making some general comments on the types of spatial systems 
which we shall, and shall not, be discussing. Firstly, we shall not be concerned here 
with any random distribution which may be associated with the locations of the sites 
themselves. Indeed, when setting up models in practice, we shall require quite 
specific information on the relative positions of sites, in order to assess the likely 
interdependence between the associated random variables. Secondly, although, as in 
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Cochran's example above, the system may, in reality, have developed continuously 
through time, we shall always assume that observation on it is only available at an 
isolated instant; hence, we shall not be concerned here with the setting up of spatial- 
temporal schemes. This has the important consequence that our models will not be 
mechanistic and must be seen as merely attempts at describing the "here and now" 
of a wider process. In many practical situations, this is a reasonable standpoint, 
since we can only observe the variables at a single point in time (for example, the 
yields of fruit trees in an orchard) but, in other cases, a spatial-temporal approach 
may be more appropriate. In fact, the states of the tomato plants, in Cochran's 
example, were observed at three separate points in time and it is probably most 
profitable to use a classical temporal autoregression to analyse the system. A similar 
comment applies to the hop plants data of Freeman (1953). Ideally, even when 
dealing with a process at a single instant of time, we should first set up an intuitively 
plausible spatial-temporal model and then derive the resulting instantaneous spatial 
structure. This can sometimes be done if we are prepared to assume stationarity in 
both time and space (see Baktlett, 1971a) but, unfortunately, such an assumption is 
unlikely to be realistic in our context. However, when this approach is justifiable, it 
is of course helpful to check that our spatial models are consistent with it; for simple 
examples, see Besag (1972a). Otherwise, regarding the transient spatial structure of a 
spatial-temporal process, this is almost always intractable and hence there exists a 
need to set up and examine purely spatial schemes without recourse to temporal 
considerations. 

The following examples are intended as typical illustrations of the spatial situations 
we shall have in mind. They are classified according to the nature of 

(a) the system of sites (regular or irregular), 
(b) the individual sites (points or regions) and 
(c) the associated random variables (discrete or continuous). 

1.1. A regular lattice of point sites with discrete variables commonly occurs under 
experimental conditions in plant ecology. Examples include the pattern of infection 
in an array of plants (Cochran, 1936, as described above; Freeman, 1953, on the 
incidence of nettlehead virus in hop plants) and the presence or absence of mature 
plants seeded on a lattice and subsequently under severe competition for survival 
(data kindly supplied by Dr E. D. Ford, Institute of Tree Biology, Edinburgh, relates 
to dwarf French marigolds on a triangular lattice of side 2 cm). Often, as above, the 
data are binary. 

1.2. A regular lattice of point sites with continuous variables commonly occurs in 
agricultural experiments, where individual plant yields are measured (Mead, 1966, 
1967, 1968, on competition models; Batchelor and Reed, 1918, on fruit trees). It is 
often reasonable to assume that the variates have a multivariate normal distribution. 

1.3. A regular lattice of regions with discrete variables arises in sampling an 
irregularly distributed population when a rectangular grid is placed over an area and 
counts are made of the number of individuals in each quadrat (Professor P. Greig-
Smith on Carex arenaria, in Bartlett, 1971b; Gleaves, 1973, on Plantago lanceolata; 
Clarke, 1946, and Feller, 1957, p. 150, on flying-bomb hits in South London during 
World War 11; Matui, 1968, on the locations of farms and villages in an area of 
Japan). In plant ecology, the quadrats are often so small that few contain more 
than a single plant and it is then reasonable to reduce the data to a binary (presence/ 
absence) form. 
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1.4. A regular lattice of regions with continuous variables typically occurs in field 
trials where aggregate yields are measured (Mercer and Hall, 1911, on wheat plots). 
Multivariate normality is often a reasonable assumption. 

1.5. Irregular point sites with discrete variables arise in sampliag natural plant 
populations. Examples include the presence or absence of infection in individuals 
and the variety of plant at each site in a multi-species community. 

1.6. Irregular point sites with continuous variables again occur in sampling natural 
plant populations (Brown, 1965, on tree diameters in pine forests; Mead, 1971, on 
competition models). 

1.7. Irregular regions with discrete or continuous variables have applications 
particularly in a geographical context, with regions defined by administrative 
boundaries (O'Sullivan, 1969, and Ord, 1974, on aspects of the economy of Eire). 

It has previously been stated that in the practical construction of spatial models, 
we shall require precise information concerning the relative positions of the various 
sites. Where the sites are regions, rather than points, the data are by definition, 
aggregate data and the assumption of single, uniquely defined locations for each of 
the associated variables is clearly open to criticism. For example, quadrat counts 
(Section 1.3) are usually used to examine spatial pattern rather than spatial inter- 
action. Further comments will appear in Section 5. 

Combinations of the above situations may occur. For example, in competition 
experiments where yields are measured, "missing observations" may be due to 
intense competition and should then be specifically accounted for by the introduction 
of mixed distributions. We shall not contemplate such situations here. 

2. CONDITIONAL APPROACH PROCESSESPROBABILITY TO SPATIAL 
There appear to be two main approaches to the specification of spatial stochastic 

processes. These stem from the non-equivalent definitions of a "nearest-neighbour" 
system, originally due to Whittle (1963) and Bartlett (1955 Section 2.2, 1967, 1968), 
respectively. Suppose, for definiteness, that we temporarily restrict attention to a 
rectangular lattice with sites labelled by integer pairs (i,j) and with an associated set 
of random variables {Xi,,.). For the moment, we ignore any problems concerning the 
finiteness or otherwise of the lattice. Then Whittle's basic definition requires that the 
joint probability distribution of the variates should be of the product form 

where xiSj is a value of the random variable, Xi,j. On the other hand, Bartlett's 
definition requires that the conditional probability distribution of Xi,$, given all other 
site values, should depend only upon the values at the four nearest sites to ( i , j ) ,  
namely x$-~,~,  and x~,~,,.Whilst the conditional probability formulation 
may be said to have rather more intuitive appeal, this is marred by a number of 
disadvantages. 

Firstly, there is no obvious method of deducing the joint probability structure 
associated with a conditional probability model. Secondly, the conditional proba- 
bility structure itself is subject to some unobvious and highly restrictive consistency 
conditions. When these are enforced, it can be shown (Brook, 1964) that the con- 
ditional probability formulation is degenerate with respect to (2.1). Thirdly, it has 
been remarked by Whittle (1963) that the natural specification of an equilibrium 
process in statistical mechanics is in terms of the joint distribution rather than the 
conditional distribution of the variables. 
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These problems were partially investigated in a previous paper (Besag, 1972a). 
The constraints on the conditional probability structure were identified for homo- 
geneous systems and found to be so severe that they actually generated particular 
spatial models, given the nature of the variables. Had these models failed to retain 
any practical appeal, then there would have been little further scope for discussion. 
However, this is not the case. For example, with binary variables, the conditional 
probability formulation necessarily generates just that basic model (the Ising model 
of.ferromagnetism) which has been at the centre of so much work in statistical 
mechanics. Thus, although this model may classically be formulated in terms of joint 
probabilities, it is generated in a natural way through basic conditional probability 
assumptions. This fact may also be related to the problem of degeneracy. There is 
surely no indignity in studying a subclass of schemes provided that subclass is of 
interest in its own right. However, we go further. Suppose we consider wider classes 
of conditional probability models in which the conditional distribution of Xi,j is 
allowed to depend upon the values at more remote sites. We can build up a hierarchy 
of models, more and more genera1,which eventually will include the scheme (2.1) and 
any particular generalization of it. That is, we extend the concept of first-, second- 
and higher-order Markov chains in one dimension to the realm of spatial processes. 
There is then no longer any degeneracy associated with the conditional probability 
models. This is the approach taken in the present paper. It has been made possible 
by the advent of the celebrated Hammersley-Clifford theorem which, sadly, has 
remained unpublished by its authors. 

Finally, in this section, we examine the problems and implications of deriving the' 
joint probability structure associated with the site variables, given their individual 
conditional distributions. We no longer restrict attention to "nearest-neighbour" 
models nor even to lattice schemes but instead consider a fairly arbitary system of 
sites. Suppose then that we are concerned with afinite collection of random variables, 
X,, ...,X,, which are associated with sites labelled 1, ...,n, respectively. For each site, 
P(xilx,,...., xi-,,xw, ...,x,), the conditional distribution of Xi, given all other site 
values, 1s specified and we require the joint probability distribution of the variables. 
Our terminology will be appropriate to discrete variables but the arguments equally 
extend to the continuous case. 

We make the following important assumption : if x,, ...,x, can individually occur 
at the sites 1, ...,n, respectively, then they can occur together. Formally, if P(x,) >0 
for each i, then P(x,, . . . ,x,) >0. This is called the positivity condition by Hammersley 
and Clifford (1971) and will be assumed throughout the present paper. It is usually 
satisfied in practice. We define the sample space Q to be the set of all possible real- 
izations x = (x,, . . .,x,) of the system. That is, Q =(x:P(x) >0). It then follows that 
for any two given realizations x and y Ea, 

The proof of this result resembles that of equation (6) in Besag (1972a). Clearly, we 
may write 

however, P(x,, ...,x,-,) cannot be factorized in a useful way since, for example, 
P(x,-, 1 x,, ...,x,-,) is not easily obtained from the given conditional distributions. 



196 BESAG- Statistical Analysis of Lattice Systems 

Nevertheless, we can introduce yn, write 

and now operate on xn-, in P(x,, ...,xn-,, yn). This yields 

after the similar introduction of y,-,. Continuing the reduction process, we eventually 
arrive at  equation (2.2) which clearly determines the joint probability structure of 
the system in terms of the given conditional probability distributions. We require the 
positivity condition merely to ensure that each term in the denominator of (2.2) is 
non-zero. 

Equation (2.2) highlights the two fundamental difficulties concerning the speci- 
fication of a system through its conditional probability structure. Firstly, the labelling 
of individual sites in the system being arbitrary implies that many factorizations of 
P(x)/P(y) are possible. All of these must, of course, be equivalent and this, in turn, 
implies the existence of severe restrictions on the available functional forms of the 
conditional probability distributions in order to achieve a mathematically consistent 
joint probability structure. This problem has been investigated by L6vy (1948), 
Brook (1964), Spitzer (1971), Hammersley and Clifford (1971) and Besag (1972a) and 
we discuss it in detail in the next section. Secondly, whilst expressions for the relative 
probabilities of two realizations may be fairly straightforward, those for absolute 
probabilities, in general, involve an extremely awkward normalizing function with the 
consequence that direct approaches to statistical inference through the likelihood 
function are rarely possible. We shall have to negotiate this problem in Section 6 of 
the paper. 

3. MARKOVFIELDS THEOREMAND THE HAMMERSLEY-CLIFFORD 
In this section, we examine the constraints on the functional form of the conditional 

probability distribution available at each of the sites. We restate a theorem of 
Hammersley and Clifford (1971) and give a simple alternative proof. This theorem, 
which has received considerable attention recently, is essential to the construction of 
valid spatial schemes through the conditional probability approach. We begin by 
describing the problem more precisely. Our definitions will closely follow those of 
Hammersley and Clifford. 

The first definition determines the set of neighbours for each site. Thus, site 
j ( + i )  is said to be a neighbour of site i if and only if the functional form of 
P(x$l x,, ...,xi-,,xi+,, ...,x,) is dependent upon the variable xj. As the simplest 
example, suppose that X,, ...,X, is a Markov chain. Then it is easily shown that site 
i (2 < i<  n -1) has neighbours i- 1 and i+  1 whilst the sites 1 and n have the single 
neighbours 2 and n- 1, respectively. For a more interesting spatial example, suppose 
the sites form a finite rectangular lattice and are now conveniently labelled by integer 

pairs (i, j). Then, if P(xiql all other site values) depends only upon xi,j, 

x$,~-,and for each internal site (i, j), we have a so-called "nearest-neighbour" 

lattice scheme. In such a case, each internal site (i,j) has four neighbours, namely 
(i- 1, j),(i+ 1, j), (i, j- 1) and (i, j+1). (There is a slight inconsistency in the usage of 
the word "neighbour" here: this will be resolved in later sections by introducing the 
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term "first-order" scheme.) Any system of n sites, each with specified neighbours, 
clearly generates a class of valid stochastic schemes. We call any member of this class 
a Markovfield. Our aim is to be able to identify the class in any given situation. 

Any set of sites which either consists of a single site or else in which every site is 
a neighbour of every other site in the set is called a clique. Thus, in the "nearest- 
neighbour" situation described above, there are.  cliques of the form {(i,j)}, 
{(i- 1, j), (i, j)} and {(i, j- I), (i, j)). over the entire lattice, possibly with adjustments at 
the boundary. The definition of a clique is crucial to the construction of valid Markov 
fields. 

We now make two assumptions, again following Hammersley and Clifford. 
Firstly, we suppose that there are only a finite number of values available at each site, 
although we shall relax this condition later in the section. Secondly, we assume that 
the value zero is available at each site. If this is originally untrue, it can always be 
subsequently brought about by re-indexing the values taken at the offending sites, a 
procedure which will be illustrated in Section 4.3. This second assumption, which is 
therefore made for purely technical reasons, ensures that, under the positivity con- 
dition, an entire realization of zeros is possible. That is, P(Q) >O and we may 
legitimately define 

for any x E S1. Lastly given any x E a,we write xi for the realization 

The problem to which Hammersley and Clifford addressed themselves may now 
be stated as follows: given the neighbours of each site, what is the most general form 
which Q(x) may take in order to give a validprobability structure to the system ? Since 

the solution to this problem immediately gives the most general form which may be 
taken by the conditional probability distribution at each site. 

In dealing with the rather general situation described above, the Hammersley- 
Clifford theorem superseded the comparatively pedestrian results which had been 
obtained for "nearest-neighbour" systems on the k-dimensional finite cubic lattice 
(Spitzer, 1971; Besag, 1972a). However, the original method of proof is circuitous 
and requires the development of an operational calculus (the "blackening algebra"). 
A simple alternative statement and proof of the theorem rest upon the observation 
that for any probability distribution P(x), subject to the above conditions, there exists 
an expansion of Q(x), unique on S1 and of the form 

For example, we have 

with analogous difference formulae for the higher order G-functions. With the above 
notation, Hammersley and Clifford's result may be stated in the following manner: 
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for any 1 < i <j< . . . <s<n, the function Gi,j,,.,,s in (3.3) may be non-null if and only if the 
sites i, j, . . .,sform a clique. Subject to this restriction, the G-functions may be chosen 
arbitrarily. Thus, given the neighbours of each site, we can immediately write down 
the most general form for Q(x) and hence for the conditional distributions. We shall 
see examples of this later on. 

Proof of theorem. It follows from equation (3.2) that, for any XEQ, Q(x)- Q(xi) 
can only depend upon x, itself and the values at sites which are neighbours of site i. 
Without loss of generality, we shall only consider site 1 in detail. We then have, from 
equation (3.3), 

Now suppose site 1 ( f  1) is not a neighbour of site 1. Then Q(x)-Q(xl) must be 
independent of x, for a11 X E  IR. Putting xi = 0 for i+ 1 or I, we immediately see that 
Gl,,(xl, x,) = 0 on IR. Similarly, by other suitable choices of x, it is easily seen succes- 
sively that all 3-, 4-, . . ., n-variable G-functions involving both xl and xl must be null. 
The analogous result holds for any pair of sites which are not neighbours of each 
other and hence, in general, Gij ,..., can only be non-null if the sites i,j, ..., s form a 
clique. 

On the other hand, any set of G-functions gives rise to a valid probability distri- 
bution P(x) which satisfies the positivity condition. Also since Q(x)- Q(%) depends 
only upon xl if there is a non-null G-function involving both xi and x,, it follows that 
the same is true of P(xi Ixl, . . .,xi-l, xi+,, . . .,xn). This completes the proof. 

We now consider some simple extensions of the theorem. Suppose firstly that the 
variates can take a denumerably infinite set of values. Then the theorem still holds if, 
in the second part, we impose the added restriction that the G-functions be chosen 
such that C exp Q(x) is finite, where the summation is over all x E IR. Similarly, if the 
variates each have absolutely continuous distributions and we interpret P(x) and 
allied quantities as probability densities, the theorem holds provided we ensure that 
exp Q(x) is integrable over all x. These additional requirements must not be taken 
lightly, as we shall see by examples in Section 4. Finally, we may consider the case of 
multivariate rather than univariate site variables. In particular, suppose that the 
random vector at site i has vi components. Then we may replace that site by vi 
notional sites, each of which is associated with a single component of the random 
vector. An appropriate system of neighbours may then be constructed and the 
univariate theorem be applied in the usual way. We shall not consider the multi- 
variate situation any further in the present paper. 

As a straightforward corollary to the theorem, it may easily be established that for 
any given Markov field 

P(Xi = xi,Xj = xj, ..., X, = x,l all other site values) 

depends only upon xi, xj, . . .,x, and the values at sites neighbouring sites i, j, . . .,s. In 
the Hammersley-Clifford terminology, the local and global Markovian properties are 
equivalent. 

In practice, we shall usually find that the sites occur in a finite region of Euclidean 
space and that they often fall naturally into two sets: those which are internal to the 
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system and those which form its boundary (or boundaries). In constructing a Markov 
field, it is quite likely that we are able to make reasonable assumptions concerning 
the conditional distribution associated with each of the internal sites but that problems 
arise at the boundary of the system. Such problems may usually be by-passed by 
considering the joint distribution of the internal site variables conditional upon fixed 
(observed) boundary values. We need then only specify the neighbours and associated 
conditional probability structure for each of the internal sites in order to define 
uniquely the above joint distribution. This is a particularly useful approach for lattice 
systems. 

The positivity condition remains as yet unconquered and it would be of con- 
siderable theoretical interest to learn the effect of its relaxation. On the other hand, 
it is probably fair to say that the result would be of little practical significance in the 
analysis of spatial interaction with given site locations. 

Finally, we note that, for discrete variables, a further proof of the Hammersley- 
Clifford theorem has been given by Grimmett (1973). This is apparently based upon 
the Mobius inversion theorem (Rota, 1964). Other references on the specification of 
Markov fields include Averintsev (1970), Preston (1973) and Sherman (1973). 

4. SOMESPATIAL ASSOCIATED FAMILYSCHEMES WITH THE EXPONENTIAL 
In the next two sections, we become more specific in our discussion of spatial 

schemes. The present section deals with a particular subclass of Markov fields and 
with some of the models which are generated by it, whilst Sections 5.1, 5.2 and 5.3 are 
more concerned with practical aspects of conditional probability models. In Section 
5.4, the simultaneous autoregressive approach (Mead, 1971; Ord, 1974) to finite 
spatial systems is discussed, again from the conditional probability viewpoint. 
Finally, in Section 5.5, stationary auto-normal models on the infinite regular lattice 
are defined and compared with the stationary simultaneous autoregressions of 
Whittle (1954). 

In the remainder of this paper, we shall use the function p,(.) to denote the con- 
ditional probability distribution (or density function) of X, given all other site values. 
Thus pi(.) is a function of xi and of the values at sites neighbouring site i. Wherever 
possible, the arguments of p,(.) will be omitted. 

4.1. Auto-models 
Given n sites, labelled 1, . . .,n, and the set of neighbours for each, we have seen in 

Section 3 how the Hammersley-Clifford theorem generates the class of valid proba- 
bility distributions associated with the site variables XI, ..., Xn. Within this general 
framework, we shall in Section 4.2 consider particular schemes for which Q(x) is 
well defined and has the representation 

where = 0 unless sites i and j are neighbours of each other. Such schemes will be 
termed auto-models. 

In order to motivate this definition, it is convenient to consider the wider formu- 
lation below. Suppose we make the following assumptions. 
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Assumption 1. The probability structure of the system is dependent only upon 
contributions from cliques containing no more than two sites. That is, when well 
defined, the expansion (3.3) becomes 

where G,,j(.)= 0 unless sites i and j are neighbours. 
Assumption 2. The conditional probability distribution associated with each of the 

sites' belongs to the exponential family of distributions (Kendall and Stuart, 1961, 
p. 12). That is, for each i, 

where the functions Bi and C, are of specified form and A, and Di are functions of the 
values at sites neighbouring site i. A valid choice of A, determines the type of 
dependence upon neighbouring site values and D, is then the appropriate normalizing 
function. 

It is shown in Section 4.3 that as a direct consequence of Assumptions 1 and 2, 
A, must satisfy 

where Pj,,= and /3,,j = 0 unless sites i and j are neighbours of each other. Hence, 
it follows, when appropriate, that Gi,j in equation (4.2) has the form 

where xi Hi(x,) =B,(x,)- Bi(0). Thus we generate the class of auto-models by 
making the additional requirement that, for each i, the function B, is linear in xi. 

Superficially, auto-models might appear to form quite a useful subclass of Markov 
fields. Assumption 1 is not only satisfied for any rectangular lattice "nearest- 
neighbour" scheme but can also be taken as a fairly natural starting point in much 
wider lattice and non-lattice situations. Further, the linearity of Bi is satisfied by the 
most common members of the exponential family. However, the assumptions are, 
in fact, so restrictive, as seen through equation (4.4), that they often produce models 
which, in the end result, are devoid of any intuitive appeal at all. In Section 4.2, a 
range of auto-models has been included and hopefully illustrates both ends of the 
spectrum. Practical applications of two of the models will be discussed in later 
sections. 

It is clear that, in terms of equation (4.1), auto-models have conditional prob- 
ability structure satisfying 

where again Pj,,Pi,,. and ,t?6,j = 0 unless sites i and j are neighbours of each other. 
The models can further be classified according to the form which pi(.) takes and this 
leads to the introduction of terms such as auto-normal, auto-logistic and auto-binomial 
to describe specific spatial schemes. 

In the subsequent discussion, it will be assumed, unless otherwise stated, that any 
parameters jSij are at least subject to the conditions following equation (4.6). Ranges 
of summation will be omitted wherever possible and these should then be apparent by 
comparison with equation (4.1) or (4.6). 
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4.2. Some Specijic Auto-models 
4.2.1. Binary schemes 

For any finite system of binary (zero-one) variables, the only occasions upon which 
a given non-null G-function can contribute to Q(x) in the expansion (3.3) are those 
upon which each of its arguments is unity. We may therefore replace all non-null 
G-functions by single arbitrary parameters, without any loss of generality, and this 
leads to the multivariate logistic models of Cox (1972). One would hope in practice 
that only a fairly limited number of non-zero parameters need to be included. In 
particular, if the only non-zero parameters are those associated with cliques con- 
sisting of single sites and of pairs of sites, we have an auto-logistic model for which 
we may write 

Q(x) = X "i Xi + XXPi,jxixj. (4.7) 

It follows that 

pi(. ) = exP {~ i (a i  + Z Pi,i~j)}I{l+ exP (ai + XPi,jxi)), (4.8) 

analogous to a classical logistic model (Cox, 1970, Chapter I), except that here the 
explanatory variables are themselves observations on the process. 

4.2.2. Gaussian schemes 
In many practical situations, especially those arising in plant ecology, it is reason- 

able to assume that the joint distribution of the site variables (plant yields), possibly 
after suitable transformation, is multivariate normal. It is evident that any such 
scheme is an auto-normal scheme: In particular, we shall consider schemes for which 

pi(. ) = (2rra2)-5 exp [- -~ c ,-xj3i,j(xj-P~))~] .  (4.9) 

Using the factorization (2.2) or otherwise, this leads to the joint density function, 

P(x) = (2ra2)-5" I Bl* exp { -+ c 2 ( x-p.)T B(x -p.)}, (4.10) 

where p. is the n x 1 vector of arbitrary finite means, pi, and B is the n x n matrix 
whose diagonal elements are unity and whose off-diagonal ( i , j )  element is -Pi,i. 
Clearly B is symmetric but of course we also require B to be positive definite in order 
for the formulation to be valid. 

At this point, it is perhaps worth indicating the distinction between the process 
(4.9) defined above, for which 

E(Xi I all other site values) = + x&(xj -pj), (4.11) 

and the process defined by the set of n simultaneous autoregressive equations, typically 

xi = + XPi,j(q-~ j )f Ei, (4.12) 

where E ~ ,  . . . ,en are independent Gaussian variates, each with zero mean and variance 
a2. In contrast to equation (4.10), the latter process has joint probability density 
function, 

P(x) = (2rra2)-*" I BI exp{ -&u-~(x-p.lT BT B(x -p.)}, (4.13) 

where B is defined as before. Also, it is no longer necessary that ,0i,i=j3i;,j, only that 
B should be non-singular. Further aspects of simultaneous autoregressive schemes 
will be discussed in Sections 5.4 and 5.5. 
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4.2.3. Auto-binomial schemes 
Suppose that X, has a conditional binomial distribution with associated "sample 

size" m, and "probability of success" 19, which is dependent upon the neighbouring 
site values. Then Hi(xi)= 1 and, under Assumption 1, the odds of "success" to 
"failure" must satisfy 

ln {8,/(1- 8,)) = ai+X xi. 
When mi = 1 for all i, we again have the auto-logistic model. 

4.2.4. Auto-Poisson schemes 
Suppose that X, has a conditional Poisson distribution with mean p, dependent 

upon the neighbouring site values. Again H,(x,)= 1 and, under Assumption 1, p, is 
subject to the form 

p, = =xP(% +xP,,j xj). 

Further, since the range of Xi is infinite, we must ensure that exp Q(x) is summable 
over x. We show below that this requires the further restriction 60 for all i and j. 

We have 

Q(x) = X{cq xi -In (x!)) +ZX ,9,,i xi xi. 

Clearly exp Q(x) must be summable when each ,9,,5 = 0 so the same holds when each 
,94,5 60.  To show the necessity of the condition, we consider the distribution of the 
pair of variates (XI, X,) given that all other site values are equal to zero. The odds of 
the realization (x,, x,) to the realization (0,O) are then 

exp Q(xl, x2, 0, . . .,0) = exp (a, x1 +01, x2+A,,XI x2)/(x1!x29, 
for non-negative'integers x, and x,. We certainly require that the sum of this quantity 
over all x, and x, converges and this is only true when /I,,,<0. Similarly, we require 

60 for all i and j. This restriction is severe and necessarily implies a "competitive" 
rather than "co-operative" interaction between auto-Poisson variates. 

4.2.5. Auto-exponential schemes 
Suppose that X, has a conditional negative exponential distribution with mean pi 

dependent upon the values at sites neighbouring site i. Once more H,(x,)= 1 and, 
under Assumption 1, p, must take the form (a,+X,9,,!~~)-~. The scheme is valid 
provided q >0 and ,9,,j2 0 but the conditional probability structure appears to lack 
any form of intuitive appeal. Analogous statements hold for all gamma-type 
distributions. 

4.3. Proof of Equation (4.4) 
In order to establish the result (4.4) under Conditions 1 and 2, we begin by 

assuming that In p,(O; ...) is well behaved, relaxing this condition later. For con- 
venience, we shall write A, and D, of equation (4.3) as functions of 

(XI, ,Xi-l,O, Xi+,, ...y x 3  

although in reality they depend only upon the values at sites neighbouring site i. 
Since In p,(O; . . .) is well behaved, Q(x) is well defined (under the positivity condition) 
and has the representation (4.2) according to Assumption 1. Equations (4.2) and 
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(4.3) may now be related through equation (3.2). Putting xj = 0 for all j# i, we obtain, 
for each i, 

Now suppose sites 1 and 2 are neighbours of each other. Putting xj= 0 for j>3 and 
again using equation (3.2) to link (4.2) and (4.3), we obtain, for i = 1, 

and, for i = 2, 

Combining these two equations with (4.14), we deduce that 

where Pi,, is a constant. More generally, if sites i and j are neighbours and i<j ,  

The result (4.4) is easily deduced from (4.14) and (4.15). 
The condition that In pi(O; ...) is well behaved is not satisfied by all members of 

the exponential family. However, in cases where In p,(O; ...) degenerates as, for 
example, with most gamma distributions, we may use a simple transformation on the 
X,'s to affirm that (4.4) still holds. Suppose, without loss of generality, that 
0 <p,(l; . . .)<cc and in that case let & = In X, at each site. Then the conditional 
probability structure of the process (5)also lies within the exponential family of 
distributions but there is no degeneracy associated with the value & = 0. The previous 
arguments may then be applied to show that A, still satisfies equation (4.4). 

5. SOMETWO-DIMENSIONAL SCHEMESSPATIAL AND THEIR APPLICATIONS 
5.1. Finite Lattice Schemes 

In practice, the construction of conditional probability models on a finite regular 
lattice is simplified by the existence of a fairly natural hierarchy in the choice of 
neighbours for each site. For simplicity, and because it occurs most frequently in 
practice, we shall primarily discuss the rectangular lattice with sites defined by integer 
pairs (i, j )  over some finite region. Where the notation becomes a little unwieldy, the 
reader may find it helpful to sketch and label the sites appropriately. The simplest 
model which allows for local stochastic interaction between the variates Xij is then 
thejrst-order Markov scheme (or "nearest-neighbour" model) in which each interior 
site (i,j) is deemed to have four neighbours, namely (i- l , j),  (if l , j),  (i,j-1) and 
(i,j+1). If, as suggested in Section 3, we now interpret Q(x) as being concerned with 
the distribution of the internal site variables conditional upon given boundary values, 
the representation (3.3) in the Hammersley-Clifford theorem can be written 

where {c#~,~}, and {$2,i,j} are arbitrary sets of functions, subject to the sum- {z,&~,~} 
mability of Q(x), and the ranges of summation in (5.1) are such that each clique, 
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involving at least one site internal to the system, contributes a single term to the 
representation. Writing (x, t, t', u, u') for the partial realization 

(xi,j, xi -1 , j7  x i + 1 , j 7  ~i,j+l)7xi,j-17 

the conditional probability structure at the site (i, j) is given by 

pcj(x; t, t', u, uf) = e~p{J;,~(x;t, t', u, u'))lC ex~{J;,~(z; t, t', U, 41, (5.2) 
where 

and the summation, or integration in the case of continuous variates, extends over all 
values z, possible at (i, j). In any given practical situation, the 4-, 4,- and 4,-functions 
can then be chosen to give an appropriate distributional form for pi,(.). For the 
scheme to be spatially homogeneous, these functions must be independent of position 
(i, j )  on the lattice. We then have the special case discussed by Besag (1972a). If, 
further, = $,, the scheme is said to be isotropic. 

The idea of a first-order scheme may easily be extended to produce higher-order 
schemes. Thus a second-order scheme allows (i,j )  to have the additional neighbours 
(i- 1, j- l), (i+ 1, j+1), (i- 1,j+1) and (i+ 1, j- 1), whilst a third-order scheme 
further includes the sites (i- 2, j),  (if 2, j), (i, j- 2) and (i, j+2). To obtain Q(x), we 
merely add a contributory term for each clique which involves at least one site internal 
to the system. For example, a homogeneous second-order scheme has 

where the arguments of each function are its individual multipliers; thus 

a(. xi+l,j, Xi,j+l, xi+l,j+J 
and so on. In specific examples, the apparent complexity of the expressions may be 
very much reduced. However, it is felt that, unless the variables are Gaussian, third- 
and higher-order schemes will almost always be too unwieldy to be of much practical 
use. 

First- and second-order schemes may easily be constructed for other lattice 
systems in two or more dimensions. Amongst these, the plane triangle lattice is of 
particular interest, firstly because it frequently occurs in practice and secondly 
because a first-order scheme on a triangular lattice, for which each internal site has 
six neighbours, is likely to be more realistic than the corresponding scheme on a 
rectangular lattice. 

5.2. Specific Finite Lattice Schemes 
5.2.1. Binary data 

It is clear from equation (5.1) that the homogeneous first-order scheme for zero-one 
variables on a rectangular lattice is given by 
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where a, PI and /I2 are arbitrary parameters. This leads to the conditional probability 
structure 

&(x; t, t', U, u') = exp +Pl(t + t ') +Pz(u +~'111 
1+exp {a +P1(t + t ') +P2(u+ u'))' 

in the notation of Section 5.1. The scheme is necessarily auto-logistic. 
For the second-order scheme, there are cliques of sizes three and four and there is 

no  longer any need for the scheme to be auto-logistic. Thus, if we additionally 
write (v, v', w, w') for the partial realization (xi-l,j-l, x $ + ~ , ~ + ~ ,  we find xi-l,j+l, ~ , + ~ , ~ - 3 ,  
that is now given by an expression similar to (5.3) but with the terms in curly 
brackets { ) replaced by 

a +Pl(t +t ') +P2(u+ut)+y,(v +v') +Y,(W+w') 

+ &(tu+u'w +w't ') + (,(to +v'ut + ut') + t3(tw+ W'U +u't ') 

The scheme is only auto-logistic if the t- and q-parameters are all zero. 
Incidentally, this is a convenient point at which to mention the first-order binary 

scheme on a triangular lattice, for this can be thought of as a scheme on a rectangular 
lattice in which (i, j )  has the six neighbours (i- 1, j), (i+ 1, j), (i, j- 1), (i, j+ 1), 
(i- 1,j- 1) and (i+ 1, j+ 1). The homogeneous first-order scheme is thus obtained 
from (5.4) by putting y, = = t3= 7= 0. The scheme is auto-logistic only if, in 
addition, [,= t4= 0. 

Regarding applications of the rectangular lattice models, we shall, in Section 7.1, 
analyse Gleaves's Plantago lanceolata data using the first- and second-order isotropic 
auto-logistic schemes. However, none of the sets of data, cited in Section 1, appears 
to provide a convincing demonstration of low-order auto-logistic behaviour. It is 
hoped that more "appropriate" sets of data will become available in the future. A 
number of remarks are made in this context. Firstly, in order to carry out a detailed 
statistical analysis of spatial interaction, rather than merely test for independence or 
estimate the parameters of a model, it is usually the case that fairly extensive data 
are required. For example, spatial models have been fitted to Greig-Smith's data by 
Bartlett (1971b), using the spectral approximation technique of Bartlett and Besag 
(1969), and by Besag (1972c), using the coding technique of Section 6 .  The respective 
models are similar, though not equivalent, and each appears to give a fairly satisfactory 
fit. However, the last statement should be viewed with some scepticism since the 
goodness-of-fit tests available for such a small system (24 x 24) are very weak. This 
will be illustrated by the more detailed analysis of Gleaves's data. 

Secondly, it is stressed that the lower-order homogeneous schemes, under dis- 
cussion here, have been specifically designed with local stochastic interaction in mind; 
in particular, it is unreasonable to apply them in situations where there is evidence 
of gross heterogeneity over the lattice. For example, the hop plant data of Freeman 
(1953) display a fairly clear dichotomy between the upper and lower halves of the 
lattice, the former being relatively disease free (Bartlett, 1974). Thirdly, the use of 
lattice schemes on Greig-Smith's and Gleaves's data is, of course, an artifice: as 
remarked in Section 1, these examples are really concerned with spatial pattern rather 
than spatial interaction. Furthermore, as is well known, the size of quadrat used 
when collecting such data can profoundly influence the results of the subsequent 
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statistical analysis. Incidentally, from a numerical viewpoint, it is most efficient to 
arrange the quadrat size so that 0's and 1's occur with approximately equal frequency. 
An alternative procedure might be to adopt some sort of nested analysis (Greig-Smith, 
1964). 

The criticisms above are not intended to paint a particularly gloomy picture but 
merely to point out some limitations of the models. It is maintained that auto-logistic 
analyses can be useful in practice; the models, having once been established, are easy 
to interpret and, even when rejected, can aid an understanding of the data and of the 
underlying spatial situation. 

5.2.2. Gaussian variables 
It has already been stated in Section 2.2 that auto-normal schemes are of relevance 

to many ecological situations. For a finite rectangular lattice system, two homo- 
geneous schemes are of particular practical interest. They are the first-order scheme 
for which Xi,i, given all other site values, is normally distributed with mean 

and constant variance a2and the second-order scheme for which X,,,., given all other 
site values, is normally distributed with mean 

a+ a(xi-l,j + xi+l,j)+ 162(xi,j-l+ xi,j+l) 

+ YI(X~-lj-1fxi+l,j+l)+ ~~(~i- l , j+ l+~i+l , j - l )  (5.6) 

and constant variance, a2. Such schemes can, for example, be used for the analysis 
of crop yields in uniformity trials when, perhaps through local fluctuations in soil 
fertility or the influence of competition, it is no longer reasonable to assume statistical 
independence. This is illustrated in Section 7, using the classical wheat plots data of 
Mercer and Hall (1911). 

In more general experimental situations, it is possible to set up inhomogeneous 
auto-normal schemes to account for stochastic interaction between the variables. For 
example, one can replace a in the expressions (5.5) and (5,6) by g,.,allowing this to 
depend deterministically upon the treatment combination at (i,j),in the usual way. 
Such schemes can still be analysed by the coding methods which will be discussed in 
Section 6 .  It is suggested that there is a need for further research here, particularly 
into the use of specially constructed experimental designs which take advantage of 
both the model and the coding analysis. 

At this point, it is perhaps worth while anticipating the results of Section 5.4 in 
order to re-emphasize the distinction between the present approach and that based 
upon simultaneous autoregressive schemes. Removing means for simplicity, suppose 
we consider the scheme defined by the equations, 

Xi,j = 4Xi-l,j + Pi Xi+~,j+ PZXi,j-lJr PL &,j+l+ &i,j (5.7) 

over some finite region, with appropriate adjustments at the boundary of the system, 
where the ci,;s are independent Gaussian error variates with common variance. The 
analogous scheme on a finite triangular lattice has been examined by Mead (1967). 
It might well be assumed that, at least when = P1 and /3; = P2, the conditional 
expectation structure of the process (5.7) would tally with the expression (5.5), 
putting a =  0. However, this is not at all the case: in fact, the process (5.7) has 
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conditional expectation structure defined by 

(1 +8; + +8; +&) E(Xij I all other site values) 

consistent with a special case (since there are only four independent P-parameters 
rather than six) in the class of third-order auto-normal schemes. The peculiar con- 
ditional expectation structure arises because of the bilateral nature of the auto- 
regression; that is, in contrast with the unilateral time series situation, E ~ , ~is not 
independent of the remaining right-hand-side variables in (5.7). Some previous 
comments concerning the conditional probability structure of simultaneously defined 
schemes'have been made by Bartlett (1971b), Besag (1972a) and Moran (1973a, b). 

5.3. Non:lattice Systems 
We now turn to the construction of models for which there are a finite number of 

irregularly distributed, but co-planar, sites. As stated in Section 1, we shall only be 
concerned here with the distribution of the site variables Xi (i = 1, ...,n), given the 
knowledge of their respective locations, and not with an investigation of the spatial 
pattern associated with the sites themselves. The first problem is in the choice of 
neighbours for each site. If the sites comprise a finite system of closed irregular 
regions in the form of a mosaic, such as counties or states in a country, it will usually 
be natural to include as neighbours of a given site i, those sites to which it is adjacent. 
In addition, it may be felt necessary to include more remote sites whose influence is, 
nevertheless, felt to be of direct consequence to the site i variable. 

Alternatively, if the sites constitute a finite set of irregularly distributed points in 
the plane, a rather more arbitrary criterion of neighbourhood must be adopted. 
However, the situation can be reduced to the preceding one if we can find an intuitively 
plausible method of defining appropriate territories for each site. One possibility is 
to construct the Voronyi polygons (or Dirichlet cells) for the system. The polygon of 
site i is defined by the union of those points in the plane which lie nearer to site i than 
to any other site. This formulation clearly produces a unique set of non-overlapping 
convex territories, often capable of a crude physical or biological interpretation. It 
appears to have been first used in practice by Brown (1965) in a study of local stand 
density in pine forests. Brown interpreted the polygon of any particular tree as 
defining the "area potentially available" to it. If, in general, two sites are deemed to 
be neighbours only when their polygons are adjacent, it is evident that each internal 
site must have at least three neighbours and that cliques of more than four sites cannot 
occur. With this definition, Brown's pine trees each have approximately six neigh- 
bours, as might commonly be expected in situations where competitive influences 
tend to produce a naturally or artificially imposed regularity on the pattern of sites. 
A slight, but artificial, reduction in complexity occurs if we further stipulate that in 
order for two sites to be neighbours, the line joining them must pass through their 
common polygon side. Cliques can then contain no more than three members. 

Mead (1971) and Ord (1974) have each used the Voronyi polygons of a system to 
set up and examine simultaneous autoregressive schemes such as (4.12). 
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Whatever the eventual choice of the neighbourhood criterion, we may derive the 
most general form for the available conditional probability structure in any particular 
situation by applying the Hammersley-Clifford theorem. Some specific schemes have 
been given in Section 4.2. In particular, we discuss the use of the auto-normal scheme 
(4.9). The first task is to reduce the dimensionality of the parameter space by relating 
the p i s  and ,!3,,;s in some intuitively reasonable way. In the case of point sites, 
suppose the Voronyi polygons are constructed and that di,. represents the distance 
between neighbouring sites i and j whilst I,,. represents the length of their common 
polygon side. It is then often feasible to relate each p, and non-zero to the 
corresponding d,,,. and I,,.. The symmetry property of the /3,,,.'s arises naturally. 
Specific suggestions for use in the scheme (4.12) have been made by Mead (1971) in 
the context of plant competition models. Analogous suggestions are made by Ord 
(1974) in a geographical context. These suggestions could equally be implemented in 
the case of conditional probability models. 

5.4. Simultaneous Autoregressive Schemes 
At various stages, reference has been made to the simultaneous autoregressive 

schemes (4.12) and (5.7). We now determine their associated conditional probability 
structure since this is a facet of the models which has occasionally been misunderstood 
in the past. In fact, it is convenient to widen the formulation somewhat by considering 
schemes of the form 

for i = 1, ...,n, or, in matrix notation, BX = Z, where B is an n x n non-singular matrix 
and Z is a vector of independent continuous random variables. In practice, the matrix 
B will often be fairly sparse. We neither demand that the 2,'s are identically distri- 
buted nor that they are Gaussian. Letf,(.) denote the density function of 2,.Then 
XI, ..., X, have joint density, 

where b7 denotes the ith row of B. The conditional probability structure at site i is 
then immediately obtainable from equation (3.2) or an analogue thereof. In particular, 
the result (5.8) is easily deduced. 

More generally, suppose we say that site j# k is acquainted with site k if and only 
if, for some i, b$,i#O and b,;k#O; that is, if and only if at least one of the equations 
(5.9) depends upon both Xj and Xk. Then it is easily seen that the conditional 
distribution of Xk can at most depend upon the values at sites acquainted with site k. 
That is, the neighbours of any site are included in its acquaintances. 

In a given practical situation, the sets of acquaintances and neighbours of a site 
may well be identical but this is not necessarily so. Suppose, for example, we consider 
the process 

%,j = Pl&-l,i +IS2 -%,.--I +83XJ-I,.-1 + EC,~, (5.10) 

defined, for convenience, over a p x q finite rectangular torus lattice, where the &,,is 
are independent Gaussian variables with zero means and common variances. Then 
(i,j) has acquaintances (i-l,j), (i+l,j),  (i,j-I), (i,j+l), (i-l ,j+l),  (i+l,j-I),  
(i- l , j+2) and (if 1,j-2) provided /3,, 16, and P3 are non-zero. In general, these 
sites will also constitute the set of neighbours of (i,j). However, suppose IS3 = ,!3,,!3,; 
then the sites (i- 1, j+1) and (if 1,j- 1) are no longer neighbours of (i,j). In fact, 
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we shall find in Section 6 that this result provides a useful approach to problems of 
statistical inference, for it enables unilateral approximations to first-order auto- 
normal schemes to be constructed. 

5.5. Stationary Auto-normal Processes on an Injnite Lattice 
We define a stationary Gaussian process {Xi,j: i, j = 0, f1, ...) to be a finite-order 

auto-normal process on the infinite rectangular lattice if it has autocovariance 
generating function (a.c.g.f.) equal to 

where (i) only a finite number of the real coefficients bk,l are non-zero, (ii) b,,, = 0, 
(iii) b-,,-,= bhl and (iv) XI;bk,,z,kz',< 1 whenever 1 zll = 1 z21= 1. K is a constant and 
is related to the variance of Xi,j. The ranges of summation are to be taken as -a to 
sc~ unless otherwise stated. 

The existence of such processes was demonstrated by Rosanov (1967) and in 
certain special cases by Moran (1973a, b). Moran (1973b) included a simplified 
account of some of Rosanov's paper and we shall use this below to discuss the 
structure of the schemes. Firstly, however, we reintroduce the concept of neighbour- 
hood. That is, for a stationary Gaussian process with a.c.g.f. of the form (5.11), we 
define the site (i- k,j-1) to be a neighbour of (i, j )  if and only if bk,,# 0. We now 
show that this accords with our finite system definition. 

It follows from equation (5.11) that, provided I r 1 + I  s 1 >0, 

where p,, denotes the autocorrelation of lags r and s in i and j, respectively. Now 
let ( E ~ , ~ :  i,j = 0,f1, ...) be a doubly infinite set of variates defined by 

Xi, = a+xX bk,l Xi-k,j-1 f %,$, (5.13) 

where a = ( l -xxbk, l )p  and p = E(X(,,.). Then the E~,.'s are stationary Gaussian 
variables with zero means and common variances u2, say. Also the equations (5.12) 
imply that E ~ , ~and XCy are uncorrelated provided 1 i- i'l + I  j-j'l> 0. This result 
together with (5.13), implies the following: given the values at any finite set of sites 
which includes the neighbours of (i,j), Xi,j has conditional mean a+ CCbk,l~i-k,j-l 
and conditional variance u2 independent of the actual surrounding values. 

Thus, we have confirmed that the present criterion of neighbourhood is consistent 
with that for finite systems and that the properties of stationary, infinite lattice, 
auto-normal schemes are in accordance with those of the homogeneous, finite lattice 
schemes. In particular, we may define first-, second- and higher-order schemes 
analogous to those appearing in Section 5.2.2. 

Finally, we make some remarks concerning the infinite lattice schemes proposed 
by Whittle (1954). Removing means for simplicity, Whittle considered simultane- 
ously defined stationary processes in the class 

where {Zi,j: i, j = 0, 5 1, ...) is a doubly infinite set of independent Gaussian variates, 
each with zero mean and variance v. The scheme (5.14) has a.c.g.f. 
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If the number of non-zero coefficients a,,l is finite, we shall refer to (5.14) as being a 
"finite-order" Whittle scheme. It is clear from (5.15) that any such scheme has a 
finite-order auto-normal representation. The converse is in general untrue: for 
example, even the first-order auto-normal scheme does not have a finite-order 
simultaneous autoregressive representation unless or ,8, = 0. One is therefore led 
to pose the following question: when using finite-order schemes in the statistical 
analysis of spatial data, are there a priori reasons for restricting attention to the par- 
ticular finite-order schemes generated by (5.14) or should the wider range of auto- 
normal models be considered? Note that when the number of sites is finite, there is, 
for Gaussian variates, a complete, but somewhat artificial, correspondence between 
the classes of simultaneous and conditional probability models. 

A further point which is relevant, whether the number of sites is finite or infinite, 
is illustrated by the following example. The most general bilateral scheme used by 
Whittle in examining the wheat plot data of Mercer and Hall (191 1) was the infinite 
lattice analogue of (5.7), namely 

Firstly, this process again has the rather peculiar conditional expectation structure 
(5.8), but secondly, as noted by Whittle, there is an ambiguity in the identity of 
parameters. That is, if we interchange P1 and and also P, and Pi, we obtain a 
process with the identical probability structure. For the scheme (4.12), the same holds 
true if we interchange B and BT. This seems rather unsatisfactory. In the time series 
situation, the problem does not arise if one invokes the usual assumption that past 
influences future, not vice versa. With spatial schemes, the problem can be overcome 
if we are content to examine merely the conditional probability structure of the process, 
given by equation (5.8) in the present context. It is suggested that such considera- 
tions again support the use of the conditional probability approach to spatial systems. 
A further comment appears in Section 7 of the paper. 

We note that first- and second-order stationary auto-normal schemes on the 
infinite lattice were first proposed by LCvy (1948) but that, as remarked by Moran 
(1973a), existence was assumed without formal justification. Moran himself concen- 
trates almost exclusively on the first-order scheme. 

In this section, we propose some methods of parameter estimation and some 
goodness-of-fit tests applicable to spatial Markov schemes defined over a rectangular 
lattice. The methods may be extended to other regular lattice systems, notably the 
triangular lattice, and, in part, to some non-lattice situations. In practice, it would 
appear that, amongst lattice schemes, it is the ones of first and second order which 
are of most interest and it is these upon which we shall concentrate. It has already 
been established in Section 2 that, generally speaking, a direct approach to statistical 
inference through maximum likelihood is intractable because of the extremely awkward 
nature of the normalizing function. We therefore seek alternative techniques. The 
exceptional case occurs when the variates have an auto-normal structure, for which 
the normalizing function may often be evaluated numerically without too much effort, 
even in some non-lattice situations. Each of the methods will be illustrated in Section 7 
of the paper. 
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6.1. Coding Methods on the Rectangular Lattice 
We assume, in the notation of Section 4, that the conditional distributions, 

pSjj(.), are of a given functional form but collectively contain a number of unltnown 
parameters whose values are to be estimated on the basis of a single realization, x, 
of the system. Coding methods of parameter estimation were introduced by Besag 
(1972c), in the context of binary data, but they are equally available in more general 
situations. 

In order to fit a first-order scheme, we begin by labelling the interior sites of the 
lattice, alternately x and ., as shown in Fig. 1. It is then immediately clear that, 

. X . X . X . X . X 

X . X . X . X . X . 

. X . X . X . X . X 

X . X . X . X . X . 

FIG. 1. Coding pattern for a first-order scheme. 

according to the first-order Markov assumption, the variables associated with the x 
sites, given the observed values at all other sites, are mutually independent. This 
results in the simple conditional likelihood, 

for the x site values, the product being taken over all x sites. Conditional maximum- 
likelihood estimates of the unknown parameters can then be obtained in the usual way. 
Alternative estimates may be obtained by maximizing the likelihood function for the 
. site values conditional upon the remainder (or, that is, using a unit shift in the 
coding pattern). The two procedures are likely to be highly dependent but, neverthe- 
less, it is reasonable, in practice, to carry out both and then combine the results 
appropriately. 

In order to estimate the parameters of a second-order scheme, we may code the 
internal sites as shown in Fig. 2. Again considering the joint distribution of the x site 
variables given the . site values, we may obtain conditional maximum-likelihood 

. . . . . . . . . .  

FIG. 2. Coding pattern for a second-order scheme. 

estimates of the parameters. By performing shifts of the entire coding framework over 
the lattice, four sets of estimates are available and these may then be combined 
appropriately. 

Using the coding methods, we may easily construct likelihood-ratio tests to 
examine the goodness of fit of particular schemes. Here, we stress three points. 
Firstly, it is highly desirable that the wider class of schemes against which we test is 
one which has intuitive spatial appeal, otherwise the test is likely to be weak. This is, 
of course, an obvious comment but one which, in the limited statistical work on 
spatial analysis, has sometimes been neglected. Secondly, the two maximized likeli- 
hoods we obtain must be strictly comparable. For example, if the fit of a scheme of 
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first order is being examined against one of second order, the resulting likelihood- 
ratio test will only be valid if both the schemes have been fitted to the same set of 
data-that is, using the Fig. 2 coding in each case. Thirdly, there will be more than 
one test available (under shifts in coding) and these should be considered collectively. 
Whilst precise combination of the results may not be possible, they can usually be 
amalgamated in some conservative way. These points will be illustrated in Section 7. 

The efficiency of coding techniques can to a limited extent be investigated 
following the methods of Ord (1974). Also of relevance are the papers by Ogawara 
(1951), Williams (1952) and Hannan (1955a, b) and some comments by Plackett 
(1960, p. 121), all on coding methods for Markov chains. The coding techniques will 
not, in general, be fully efficient but their great advantage lies in their simplicity and 
flexibility. Some results will be reported elsewhere but further investigation of the 
techniques is still required. 

6.2. Unilateral Approximations on the Rectangular Lattice 
An alternative estimation procedure for homogeneous first-order spatial schemes 

involves the construction of a simpler process which has approximately the required 
probability structure but which is much ,easier to handle. The approach is similar 
(equivalent for stationary auto-normal schemes) to that of Bartlett and Besag (1969). 
We begin by defining the set of predecessors of any site (i, j )  in the positive quadrant 
to consist of those sites (k, I) on the lattice which satisfy either (i) I < j  or (ii) I =j and 
k <i. We may then generate a unilateral stochastic process {Xkj : i >  0,j >  0) in the 
positive quadrant by specifying the distribution of each variable Xi,,. conditional 
upon the values at sites which are predecessors of (i,j). In practice, we shall allow 
the distribution of Xd,/ to depend only on a limited number of predecessor values. 
Such a process is a natural extension of a classical one-dimensional finite auto- 
regressive time series into two dimensions and is well defined if sufficient initial values 
are given. Special cases of such schemes have been discussed by Bartlett and Besag 
(1969), Bartlett (1971b) and Besag (1972b). By a judicious choice of the unilateral 
scheme, we may obtain a reasonable approximation to a given first-order spatial 
scheme. The more predecessor values we allow Xi,j to depend upon, the better the 
approximation can be made. The great advantage of a unilateral scheme is that its 
likelihood function is easily written down and parameter estimation may be effected 
by straightforward maximum likelihood. 

As the simplest general illustration, we consider unilateral processes of the form 

P(x$,,.l all predecessors) = q(x*,,.; xi-,,,., xi,$-& 

The joint probability distribution of the variables Xi,,. (1 < i < my 1 <j<n) is given by 

and, hence, for any interior site (i,j )  we have, in the notation of Section 4, the bilateraI 
structure 

P~,~(X;...)- q ( ~ ; t , u ) 4 ( t ' ; x , w ' ) 4 ( ~ ~ ; ~ , ~ )  
pi,,.(x*; . . .) -q(x*; t,u)q(tt; x', wt)q(u'; w, x*)' 

That is, the conditional distribution, P(xi,,.l all other site values), depends not only 
upon xi-,,,., xi+,,,., x,,,.-, and xi,,.+, but also upon x$-,,,.+, and xi+,,,.-,. Nevertheless, 
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the primary dependence is upon the former set of values and, by a suitable choice of 
q(.), we may use the unilateral process as an approximation to a given homogeneous 
first-order spatial scheme. For a better approximation, we may consider unilateral 
processes of the form, 

P(X*,~I all predecessors) =q(x{,*;x~-l,j, x;,j-l, x*+l,j-l) 

and so on. The method will be illustrated for an auto-normal scheme in Section 7. 

6.3. Maximum-likelihood Estimation for Auto-normal Schemes 
We begin by considering the estimation of the parameters in an auto-normal 

scheme of the form (4.9) but subject to the restriction p = 0. We assume that the 
dimensionality of the parameter space is reduced through B having a particular 
structure and that u2 is both unknown and independent of the Pi,,.'s. For a given 
realization x, the corresponding likelihood function is then equal to 

(2nu2)-*"]* exp (- Bx). (6.1) 

It follows that the maximum-likelihood estimate of u2 will be given by 

once B, the maximum-likelihood estimate of B, has been found. Substituting (6.2) 
into (6.1), we find that B may be obtained by minimizing 

The problem of implementing maximum-likelihood estimation therefore rests upon 
the evaluation of the determinant, I BI . We now examine how this relates to existing 
research into simultaneous autoregressions. 

Suppose then that we temporarily abandon the auto-normal model above and 
decide instead to fit a simultaneous scheme of the form (4.12), again subject to p =0 
and with B having the same structure as in (6.1). Provided (6.1) is valid so is the 
present, but different, scheme. The likelihood function now becomes 

(2nu2)-f I B Iexp (- BT Bx) (6.4) 

and the new estimate of B must be found by minimizing 

-Zn-l In I B I +In (xT BT Bx). (6.5) 

Again the only real difficulty centres upon the evaluation of the determinant I Bl, a 
point which we may, in a sense, now turn to advantage. Suppose that we wish to 
fit the auto-normal scheme associated with (6.1) to a given set of data. Then it 
follows that we may use existing approaches to fitting simultaneous autoregressive 
schemes provided that these can cope with the likelihood function (6.4). Indeed with 
minor modifications, we may use any existing computer programs. It is probably 
fair to say that thus far the simultaneous and conditional probability schools have 
tended to suggest the same structure for B in a given problem. This, together with 
the previous remarks, implies that it would be relatively straightforward to conduct 
a useful comparative investigation of the two approaches for some given sets of data. 

As regards minimizing (6.5), computational progress has been made by Mead 
(1967) on small (triangular) lattices and by Ord (1974) in non-lattice situations where 
the number of sites is fairly limited (about 40 or less) and there are only one or two 
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unknown parameters determining B. The reader is referred to their papers for 
further details. As regards large lattices for which we may sometimes view the data 
as being a partial realization of a stationary Gaussian infinite lattice process, we may 
use the semi-analytical result of Whittle (1954) which is summarized below. 

Whittle showed, for the simultaneous autoregression (5.14), that, given a partial 
realization of the process over n sites, the term n-l In I BI in (6.5) can be approximated 
by. the coefficient of z! z: in the power series expansion of 

There is no complication if the variates have equal, but non-zero, means. Thus, in 
order to fit a particular auto-normal scheme of the form (5.11) from a partial realiza- 
tion of the process over n sites, we need to minimize (6.3), where n-llnl BI is the 
absolute term in the power series expansion of 

and where, neglecting boundary effects, 

and C,,, denotes the empirical autocovariance of lags k and I in i and j, respectively 
(cf. Whittle, 1954). 

For example, with the first-order scheme, analogous to (5.5), we minimize 

where A(@) is the absolute term in the power series expansion of 

With the second-order scheme, analogous to (5.6), we minimize 

where A(@, y) is the absolute term in the power series expansion of 

The absolute terms can easily be evaluated for given parameter values by appropriate 
numerical Fourier inversion. The expression (6.3) may be minimized by, for example, 
the Newton-Raphson technique. Convergence, in the limited work thus far, has 
been extremely rapid. A numerical example is included in Section 7. 

Finally, we note an analogy between the fitting of stationary auto-normal schemes 
in the analysis of spatial data and the fitting of autoregressive schemes in classical 
time-series analysis. That is, considering a particular scheme in the class (5.11), 
suppose that the corresponding autocorrelations are denoted by pkjl. Then the effect 
of large-sample maximum-likelihood estimation is to ensure perfect agreement 
between p,,, and the corresponding sample autocorrelation r,,, whenever b,,,+O in 
the original formulation. Thus, for a first-order scheme, the fit ensures that p,,, = r,,, 
and p0,, = rO,,. For the second-order scheme, we additionally fit p,,, = r,,, and 
pl,-, = rl,-,. In general, there is no such interpretation for simultaneously defined 
autoregressions. This may suggest that the auto-normal schemes are, in fact, a more 
natural extension of classical temporal autoregressions to spatial situations. 
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7. NUMERICALEXAMPLES 
7.1. Auto-logistic Analysis of Plantago lanceolata Data 

Observations on Plantago lanceolata were made over an apparently homogeneous 
area of lead-zinc tailings in defunct mine workings, Treloggan, Flintshire. The 
sampling frame consisted of a transect 10 x 940 with grid size 2 cm x 2 cm. Counts 
were made of the number of seedlings and number of adults in each of the 9,400 
quadrats. As the grid size is rather small, the analysis below is based upon the pooled 
data and only presencelabsence of plants in each quadrat is considered. The latter 
simplification results in little loss of information. The data were kindly collected by 
Dr J. T. Gleaves of the Department of Botany, University of Liverpool. 

We let xi,j = 011 denote absencelpresence of Plantago Ianceolata in the (i,j)th 
quadrat. There is no reason to expect asymmetry in the system and we shall therefore 
only consider auto-logistic schemes of the form 
(a) isotropicJirst-order scheme for which 

P(x,,~I all other values) = ~ X P{(a+Pyi,j) xi,J 
1+~ X P(a +P Y ~ , ~ )' 


where yi,j = xi-l,j +xi+si + + and 

(b) isotropic second-order scheme for which 

P(xijl all other values) = exP {(a Pyi,j+yzi,j) xi,j} 
1+exP (a +Pyi,j+~zi,j)' 

where, in addition, z,,~= xi-l,i-l +xi+,j+l +xi-l,ii;l +xi+l,i-l. 
Note that a full isotropic second-order scheme would ~nvolve two further parameters, 
corresponding to cliques of triples and quadruples, respectively. A further comment 
appears later. 

Parameter estimates can be obtained for schemes (a) and (b) using the coding 
techniques described in Section 6.1. For scheme (a), estimates for a and P, under 
Fig. 1 codings, are given in Table 1. The respective observed and expected frequencies 

Auto-logistic analysis of Plantago lanceolata data: 
parameter estimates for scheme (a) under Fig. 1 

codings 

First analysis -2.254 0.724 

Second analysis -2.141 0.748 

Approx. S.E. 0.07 0.04 

Mean estimate -2.198 0.736 


appear in Tables 2 and 3, and these may be used to conduct simple chi-squared 
goodness-of-fit tests for the scheme. The resulting statistics, each on 3 degrees of 
freedom (d.fr.), are 4.84 and 2.90, respectively, suggesting a satisfactory fit. However, 
interpreting these tests as likelihood-ratio tests, we see that the wider hypothesis, 

http:(d.fr.)
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against which we are examining scheme (a), is itself rather specialized (and un-
attractive) since it still assumes independence between the columns within the body of 
the tables. Thus, the above type of test is not recommended although its use may be 
unavoidable where there is a shortage of data. 

Auto-logistic analysis of Plantago lanceolata data: observed and expected frequencies 
forjirst analysis in Table 1 

X P , ~  Y i , j  = 0 1 2 3 4 Total 

0 1798 (1786.5) 847 (856.6) 329 (338.7) 101 (98.9) 25 (19.3) 3100 
1 176 (187.5) 195 (185.4) 161 (151.3) 89 (91.1) 31 (36.7) 652 

Total 1974 1042 490 190 56 3752 

Auto-logistic analysis of Plantago lanceolata data: observed and expected frequencies 
for second analysis in Table 1 

X i , $  Y i . 5  = 0 1 2 3 4 Total 

0 1826 (1820.1) 838 (852.2) 293 (281.9) 83 (86.2) 13 (12.5) 3053 
1 208 (213.9) 226 (211.8) 137 (148.1) 99 (95.8) 29 (29.5) 699 

Total 2034 1064 430 182 42 3752 

For scheme (b), the parameter estimates, under Fig. 2 codings, are given in Table 
4. Scheme (a) may also be fitted under these codings and this is done in Table 5. 
Hence, we may examine the goodness of fit of scheme (a) within the class (b) in each 
of the four cases, using the usual likelihood-ratio test. The resulting statistics, each 
on 1 d.fr., are 49.9, 60.6, 49.4 and 48.6! It is now clear that scheme (a) is hopelessly 
inadequate in describing the system and that we must be wary of non-significant 
results in the type of test previously described. Incidentally, it is of interest to note 
the correspondence between Tables 1 and 5. 

A typical set of observed and expected frequencies under scheme (b) is recorded 
in Table 6 and may be used to produce a simple chi-squared test for scheme (b) itself. 
The results corresponding to each of the four analyses are given in Table 7 and, 
combining these conservatively, leads to the rejection of scheme (b) at the 5 per cent 
level. Thus, despite the preceding remarks, it is still quite possible for the weaker 
form of test to be useful in practice. 

It might be of interest to fit the full second-order or higher-order schemes to the data 
but, once fitted, a large number of cells would be found empty or nearly empty in the 
contingency tables, resulting in the invalidity of the usual distributional assumptions 
concerning goodness-of-fit tests. Furthermore, the objections (see Section 5.2.1) to 
Markov lattice models for quadrat schemes suggest that a more detailed analysis on 
the present lines is unlikely to be particularly helpful. 
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Auto-logistic analysis of Plantago lanceolata data: 
parameter estimates for scheme (b) under Fig. 2 

codings 

First analysis -2.534 0.5 18 0.497 

Second analysis -2.459 0.529 0.528 

Third analysis -2.369 0.543 0.456 

Fourth analysis -2.456 0.515 0.487 

Approx. S.E. 0.10 0.07 0.07 

Mean estimate -2.455 0.526 0.492 


Auto-logistic analysis of Plantago lanceolata data: 
parameter estimates for scheme (a) under Fig. 2 

codings 

First analysis -2.294 0.736 

Second analysis -2.149 0.744 

Third analysis -2.133 0.753 

Fourth analysis -2.21 5 0.712 

Approx. S.E. 0.09 0.06 

Mean estimate -2.198 0.736 


Auto-logistic analysis of Plantago lanceolata data: observed and expected frequencies 
for first analysis in Table 4 
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Auto-logistic analysis of Plantago lanceolata data: goodness-ofjit tests for scheme (b) 

Analysis Test statistic D.fr. (approx.) Signijcance 

First 20 almost 10 % 
Second 21 -
Third 21 almost 1 % 
Fourth 22 2% 

7.2. Auto-normal Analysis of Mercer and Hall Wheat Plots 
Mercer and Hall (1911) present the results of a uniformity trial concerning 500 

wheat plots, each 11 ft x 10.82 ft, arranged as a 20x25 rectangular array. Two 
measurements, grain yield and straw yield, were made on each plot. Whittle (1954) 
analysed the grain yields, fitting various stationary normal autoregressions, as 
briefly described in Section 6.3 of the present paper. We shall analyse the same set of 
data but on the basis of the homogeneous first- and second-order schemes, (5.5) and 
(5.6). 

7.2.1. Coding methods 
In Tables 8 and 9 we record the parameter estimates for the schemes (5.5) and 

(5.6), respectively, using the coding techniques. The various analyses, within each 
table, refer to shifts in coding pattern, as previously described. Scheme (5.5) is also 
fitted under the Fig. 2 codings (Table 10) in order to test for the significance of the 
parameters y, and y,. A typical analysis of variance is given in Table 11. Over the 
four coding shifts, the respective F ratios for the combined effect of y, and y, are 0.9 

Auto-normal analysis of wheat plots data: 
parameter estimates for scheme (5.5) under Fig. 1 

codings 

First analysis 0.332 0.128 
Second analysis 0.354 0.166 
Approx. S.E. 0.03 0.03 
Mean estimate 0.343 0.147 

(2 and 103 d.fr.), 0.06 (2 and 94 d.fr.), 1.1 (2 and 103 d.fr.) and 1.2 (2 and 94 d.fr.). Each 
of these statistics suggests that the first-order scheme provides an adequate description 
of the system (incidentally, 0.06 is a very reasonable observation from the F2,,, 
distribution). However, for further comments concerning the model and the para- 
meter estimates, see Section 7.2.4. 
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Auto-normal analysis of wheat plots data: parameter estimates for scheme (5.6) under 
Fig. 2 codings 

First analysis 0.344 0.043 0.079 -0.062 
Secoad analysis 0.318 0.085 0.016 0.011 
Third analysis 0.407 0.243 -0.067 -0.034 
Fourth analysis 0.361 0.236 -0.092 -0.041 
Approx. S.E. 0.05 0.06 0.07 0.06 
Mean estimate 0.358 0152 -0.016 -0.032 

Auto-normal analysis of wheat plots data: 
parameter estimates for scheme (5.5) under 

Fig. 2 codings 

First analysis 0.348 0.052 

Second analysis 0.321 0.104 

Third analysis 0.393 0.199 

Fourth analysis 0.340 0.168 

Approx. S.E. 0.05 0.05 

Mean estimate 0.350 0.131 


TABLE11 

Auto-normal analysis of wheat plots data: first analysis of variance under Fig. 2 codings 

Effect Sum of squares D.fr. Mean squares F ratio 

8198 2  9.63 2 4.81 45.5 
Yi! Ya 0.19 2 0.10 0.9 

Res~dual 10.89 103 0.106 
Total 20.71 107 

7.2.2. Unilateral approximations to the first-order scheme 
If we treat the data as a partial realization from the stationary infinite lattice 

version of (5.5), we have an a.c.g.f. proportional to 

(1-pl(z1 +ZF~)-pZ(zz+z,l))-l. (7.1) 

As a first unilateral approximation, we may use the stationary autoregression, 

Xi,j =b1 Xi-l,i +b2 Xi,i-l +Zi,jY (7.2) 
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where {Zi,j:i,j = 0, f 1 ,  . . .} is a doubly infinite set of independent Gaussian variates, 
each with zero mean and equal variance. The scheme (7.1) has a.c.g.f. proportional 
to 

( 1  +b2,+ bi -bl(zl+ zi l)-b,(z, +z;l) +b1 bz(zl z;l+ zi1 z&}-l, 

which is clearly a first approximation to (7.1). Fitting the scheme (7.2) results in 
parameter estimates 6, = 0.488 and 6, = 0.202 and an estimated a.c.g.f. proportional 
to 

'The values 0.382 and 0.158 may therefore be interpreted as crude estimates of /3, and 
/3, in (7.1). However, these estimates are somewhat arbitrarily formed and little 
confidence should be placed in them. For example, there is no real reason why % 
and 6, themselves should not be used to estimate j3, and /3,; the fact is that a and /3, 
are really too large for the first approximation to be of much use. Thus, we consider 
the second unilateral approximation. 

The distribution of Xi,j, conditional upon all other values, in the scheme (7.2) 
involves an unwanted dependency upon and This may be removed 
by modifying the scheme to 

with a.c.g.f. proportional to 

( 1  + b2,+ be + b2, bi -bl(l -bi) (zl +z ~ l )-b,(z, +z;l) +b2, b,(zf z;l+ z i2  z2))-l. 

Fitting this scheme gives parameter estimates 6, = 0.483 and 6, = 0.150 and an 
estimated a.c.g.f. proportional to 

( 1  -0-374(z1+ z;l) -0.1 19(z, + z;') +o.o28(z: z;l+ zi2 z,)}-l. 

The values 0.374 and 0.119 may therefore be interpreted as better estimates of /3, and 
/3z in (5.5). By continuing the procedure, next introducing Xi+,,j-l and so on, a 
sequence of unilateral approximations to the scheme (5.5) may be generated (although 
there is probably little point in going further than the third one). These unilateral 
schemes also have the advantage that their analytical correlation structure is available 
in a region of the plane (Besag, 1972b). However, in more general situations, the 
approximation technique is likely to be rather cumbersome and is not particularly 
recommended. 

Whittle (1954) also fits the unilateral scheme (7.2) to the Mercer and Hall data, 
but in its own right rather than as an approximation. Whittle notes that the fit is 
"surprisingly" good in comparison with some of his bilateral autoregressions. This 
might now be explained by interpreting the scheme as an approximation to an auto- 
normal scheme. 

7.2.3. Adaptation of Whittle's method 
Under the assumption of stationarity and neglecting edge effects, we may fit the 

schemes (5.5) and (5.6)as outlined in Section 6.3. Parameter estimation can be carried 
out iteratively using the Newton-Raphson technique, with the normalizing function, 
A, being evaluated by numerical integration at each stage. The results are given in 
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Table 12. The likelihood-ratio test for the scheme (5.5) within the class (5.6) gives a 
chi-squared statistic 2-69 on 2 d.fr. and again (see Section 7.2.1) the first-order auto- 
normal scheme appears satisfactory. 

Auto-normal analysis of wheat plots data: parameter estimates using Whittle's method 
for stationary schemes 

First order (5.5) 0.368 0.107 - -
Second order (5.6) 0.381 0.160 -0.015 -0.056 

7.2.4. More realistic models 
Concerning the Mercer and Hall data, it was pointed out by Whittle (1954) that 

the simple simultaneous autoregression (5.16) does not really reflect the observed 
correlation structure. This is also true for the first- and second-order (stationary) 
auto-normal schemes. The disparity between the observed and fitted correlograms 
can easily be seen from Tables 13, 14 and 15. The entries in Table 13 have been 

Observed autocorrelations for the wheat plots data 

TABLE14 


Fitted autocorrelations for the$rst-order scheme in Table 12 
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TABLE15 


Fitted autocorrelations for the second-order scheme in Table 12 


copied from Whittle's paper. Whittle gives a number of possible explanations of the 
observed correlogram behaviour. Amongst these is the fact that the data are inte- 
grated observations of growth over plots rather than point observations. As with 
quadrat counts, this renders a simple Markov assumption somewhat dubious. A 
further suggestion (Patankar, 1954) is that the process is non-stationary, but we leave 
this for the moment and treat the observed correlogram at face value. The question 
then is: how can we reproduce a fitted correlation structure which tallies with Table 
13, without the associated scheme becoming too artificial? The answer may well lie 
in the use of a third-order auto-normal scheme, for then r,,, and r,,, can be fitted 
exactly and it is here that the trouble really seems to be. Note that, with the inclusion 
of third-order terms, the second-order terms may now have a significant role to play. 
The results of fitting the third-order scheme will be reported in due course. 

In the Biometrika paper immediately following Whittle's, Patankar (1954) also 
examined some spatial aspects of the Mercer and Hall data but, notably, only after 
removing a significant linear trend running from West to East. Thus, in Table 16, 
we give a typical auto-normal analysis of variance, constructed by the coding method 

Auto-normal analysis of wheat plots with the inclusion of a linear trend term: first 
analysis of variance under Fig. 2 codings 

Effect Sum of squares D.fr. Mean squares F ratio 

Trend (7) 
f3 (7 removed) 
y (7, f3 removed) 
Residual 

2.03 
7.61 
0.19 

10.88 

1 
2 
2 

102 

2.03 
3.81 
0.09 
0.107 

19.0 
35.6 
0.8 

Total 20.71 107 

but including trend removal. The estimates of the parameters are only slightly 
changed, as might be expected in such a situation, and the overall conclusions con- 
cerning influence of diagonally nearest plots remains unchanged. 

Thirdly, we note a disconcerting property of some of the coding fits. That is, on 
a number of occasions, they individually give parameter estimates which are in- 
consistent with a stationary auto-normal scheme. For example, with the first-order 
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scheme (5.9, the second analysis in Table 8 produces estimates of PI and P, whose sum 
exceeds 0.5. Similar inconsistencies occur even after the removal of trend. Whilst it 
is so happens that, for each model fitted, the mean estimates are feasible, the in- 
dividual values again suggest that the models are not entirely appropriate. 

Summarizing, it cannot be claimed that the present auto-normal schemes have 
been successful in reflecting the overall probabilistic structure of the wheat plots 
process. Further analysis is required, although it is felt to be perhaps more important 
to examine a range of examples rather than to concentrate in too much detail upon 
a single set of classical data. 

8. CONCLUDINGREMARKS 
In the preceding sections, an attempt has been made to establish that a con-

ditional probability approach to spatial processes is not only feasible but is also 
desirable. It has been suggested, firstly, that the conditional probability approach 
has greater intuitive appeal to the practising statistician than the alternative joint 
probability approach; secondly, that the existence of the Hammersley-Clifford 
theorem has almost entirely removed any consistency problems and, further, can 
easily be used as a tool for the construction of conditional probability models in 
many situations; thirdly, that the basic lattice models under the conditional prob- 
ability approach yield naturally to a very simple parameter estimation procedure 
(the coding technique) and, at least for binary and Gaussian variates, to straight- 
forward goodness-of-fit tests. For Gaussian variates, maximum likelihood appears 
equally available for both simultaneous and conditional probability models of 
similar complexity. As regards the joint probability approach, it is not clear to the 
present author how, outside the Gaussian situation, the models are to be used in 
practice. How, for example, would Gleaves's binary data be analysed? 

On the other, hand, the two examples discussed in Section 7 of the paper are far 
from convincing in demonstrating that simple conditional probability schemes 
provide satisfactory models for spatial processes. It is felt to be pertinent that, in 
each case, the data were derived from regions of the plane rather than point sites. 
There is clearly a need for more practical analyses to be undertaken. Some alternative 
suggestions on the specification of lattice models for aggregated data would also be of 
great interest. 
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Professor D. R. Cox (Imperial College): The paper is original, lucid and comprehensive. 
The topic is important and notoriously difficult. It is a pleasure to congratulate Mr Besag. 

Statistical subjects can be characterized qualitatively by their statistical analysis to 
stochastic model ratio. This is rather low in the present subject and therefore the 
emphasis in the present paper on models for the analysis of data is very welcome. Never- 
theless understanding of the conditional models may be helped by relating them to 
temporal-spatial models, and in particular to their stationary distributions. It would be 
interesting to know what general connections can be established between Mr Besag's 
auto-models and stationary distributions of simple temporal-spatial processes. 

Mr Besag remarks on the possible advantages of a triangular rather than a rectangular 
lattice. Has this been tried numerically on examples of aggregated responses, where a 
comparison with a square lattice could be made? The physical meaning of a lirst-order 
scheme is more appealing for a triangular lattice than for a square one. There is possibly 
a qualitative conhection with results on the location of points in sampling for a mean 
(Dalenius et al., 1961). 

Experimental design aspects are mentioned briefly in the paper. The link here is, I 
think, with the method of Papadakis (Bartlett, 1938). In this the treatment effects are 
estimated after adjustment by analysis of covariance on the residuals on neighbouring 
plots. The one-dimensional version of this has been related by Atkinson (1969) to an 
autoregressive process and Mr Besag's discussion probably provides a framework for the 
two-dimensional theory. 

The sections of the paper on the coding method are of particularly general interest as 
illustrating one more technique for simplifying complicated likelihoods. There are many 
outstanding questions; a qualitative explanation of the high efficiency in the one-
dimensional case (Hannan, 1958) might throw light on the two-dimensional behaviour. 

I propose a cordial vote of thanks to Mr Besag for his excellent paper. 

Dr A. G. HAWKES(University of Durham): Like many people who have proposed or 
seconded votes of thanks at meetings of this Society I am distinguished by the fact that I 
know little about the subject of the paper. Of course I have seen papers previously on the 
analysis of distributions on lattices. Having received the distinct impression that they 
contained rather nasty, messy mathematics and unpleasant computation, since I had no 
desperate need to understand them, I put them on one side and, apart from a brief look, 
tended not to work through them carefully. Therefore I am extremely grateful to Mr Besag 
for presenting this paper with his elegant general treatment of distributions on lattices-or, 
indeed, for any multivariate distribution at all-and his interesting general results. 

In addition, he gives a simple and flexible class of automodels, a simple method of 
analysis and some nice practical examples. 
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In consequence of this he makes the methods which he proposes readily available for 
use by practising statisticians, and I am sure as a result of this these methods will become 
used quite widely. 

The examples he proposes show that the models are not likely to be satisfactory for all 
spatial problems. Hopefully, in time we will accumulate a fund of examples in which 
they seem to be adequate. Most of the examples mentioned by Mr Besag are concerned 
with plant ecology. I thought it might be interesting to return to the place from where 
most of the terminology comes, and consider problems in sociology in which the dots 
would represent houses, and in which we are concerned with social interactions of 
neighbours and cliques of neighbours. One kind of problem in this connection which 
would be interesting, although it is not dealt with at all in this paper, would be to identify 
what the cliques were in that sort of situation. There would not be the same sort of 
homogeneous type system as that described by Mr Besag; the cliques would differ over 
the whole area, and it would be interesting to try to determine what they were. 

There are problems too for the academic researcher: what is the efficiency of the 
coding procedure? Apart from the Gaussian model, what other models are there which 
can be tackled by the complete likelihood method without too much nasty computation? 
Apart from the auto-models, what other simple kinds of models can be found which might 
be generally useful? In particular, it might be interesting to know whether Poisson models 
or exponential models could be found which exhibited some kind of co-operation rather 
than competition which Mr Besag mentioned. 

The paper is extremely comprehensive and does not leave me much to say about it. 
I have two small comments: first, I would have welcomed some suggestion on how the 
results of the hypothesis tests on the different codings should be combined, apart from a 
rather vague statement that they should be combined in some suitable conservative manner. 
My inclination would be to take the average of the exact significance levels, or P values 
if you like, as a reasonable sort of measure. 

Secondly, on the question of the restrictions on the parameter values which there have 
to be in order to make the schemes valid, in a number of places Mr Besag gives us general 
results. I am thi+ing in particular of the auto-normal case; they are not, in fact, absolutely 
trivial to work out in practice for special cases. For the simple special cases such as first-, 
second- and third-order auto-normal I would have welcomed it if he could have written 
these out more explicitly and prominently for the people who will be using them, in order 
to see exactly what is going on. 

With the coding methods there is no reason why estimate values should be obtained 
which are admissible-because the method of estimation does not impose those restraints. 
However, with the likelihood approach there should be estimates obtained which are 
admissible always. I think Mr Besag did not emphasize that point sufficiently strongly. 
There is a short paragraph at  the end of Section 7 of the paper, in which Mr Besag appears 
to say, almost as an afterthought, "Oh, by the way, half my estimates are inadmissible". 
I felt that should have been emphasized a little more when he went through the discussion 
of the examples. 

These are minor quibbles only, and they do not detract at  all from the excellent paper 
which I am sure will be valuable in stimulating a lot of work, both practical and theoretical, 
in the future. I am very pleased to second the vote of thanks. 

The vote of thanks was passed by acclamation. 

Dr  PETER CLIFFORD (University of Bristol): I am happy to have this opportunity of 
adding my congratulations to the author on this stimulating paper. My invitation to join 
this discussion arrived only this morning and I take it from this that my comments should 
be brief. The last occasion on which I joined a discussion of this learned society was, I 
believe, in 1964. As time has gone by, I have looked at those few cryptic sentences of mine 
and the realization has dawned on me that my comments were worthless. The author of 
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that paper was kind enough not to expose my ignorance and I hope Mr Besag will be so 
minded. In an effort to improve my contribution I have studied recent published discussions 
of the Royal Statistical Society. I was particularly impressed that Fellows have been 
moved to speak in rhyme. With such thoughts in mind I would like to propose a minor 
change in notation. In the trgmslated works of Dobrushin we frequently see Markov 
stream for Markov chain. How much more pleasant it would be to see Markov meadow 
for Markov field. Thus the poets in our audience could stroll by Markov streams through 
Markov meadows. 

My specific comments concern firstly the use of coding. Since all tests for auto-models 
are conditional on the boundary, it is a question of what else we choose to condition on. 
For first-order schemes the author bases his inference on the behaviour of half the sites 
with half considered to be constant. Let us call this 50 per cent utilization. In an effort 
to increase the utilization I would like to suggest the following scheme which conditions 
on every third diagonal. 

FIG.1. Coding scheme for first order Markov field, exposing underlying 
conditional Markov chain. 

Observe that between these diagonals there is, conditional on the diagonals, a Markov 
chain (or stream) whose likelihood can be written down. The test for the presence of a 
first-order effect then reduces to a test for a first-order effect in a chain, this, of course, 



Discussion of Mr Besag's Paper 

corresponds to 67 per cent utilization. For the triangular and second-order rectangular 
lattice the utilization is improved from 25 to 50 per cent. Greater economies will be 
achieved in higher dimensions. Thus one can produce tests with a greater degree of 
utilization by tapping one's knowledge of Markov chains. Again there will be the problem 
of combining several dependent test statistics in the most efficient manner-there are more 
than four different ways of coding for conditionally independent sites in the manner of 
Fig. 2 in the paper (by slipping any pair of columns down by one unit) and there are 
many routes that the Markov stream can follow as it meanders through the meadow. 

My second point is a general one concerning the applicability of auto-models to data. 
In most situations the data represent a time cross-section of a spatial-temporal process. 
The aim should be to estimate the relative values of the parameters of this process from 
the data. In this way one would hope to be able to predict the development and say 
something about the past of the process. Auto-models do arise from spatial processes 
but to my knowledge only as equilibrium distributions for either a time reversible local 
birth-death process or a process in which particles move with Spitzer's speed-change 
interaction. Since the spread of plants is not likely to be in equilibrium nor to be a purely 
local phenomenon and the plants do not move around then even if we could estimate the 
parameters we would not feel confident in using them to predict the future. My personal 
feeling is that there is a need for more research into the dynamics of spatial processes as, 
for example, Clifford and Sudbury (1973). 

My final comment concerns the paper by Hammersley and myself. Whatever the 
historical reasons for not publishing in 1971 the paper has clearly been superseded by the 
work of others and notably by the excellent exposition we have heard today. 

Professor P. WHITTLE(University of Cambridge): Mr Besag has given us a substantial, 
interesting and most useful paper. It collects together a great amount of material and 
clarifies a number of points admirably. For example, the Hammersley-Clifford theorem 
now appears very much more accessible. 

On the questipn of joint versus conditional specifications, there is probably no point 
in being very partisan, as there are plainly arguments on both sides. I must confess, 
however, that I still find a conditional specification natural only in a context where the 
conditionings occur in a natural ("temporal") sequence, so that the sequence of condi- 
tioning sigma-fields is monotone, and there are no unobvious restrictions on the conditional 
probabilities, as there are in abundance in the spatial case. One feels, however, that all 
these questions will find their proper resolution when the process is embedded in a spatio- 
temporal process, as Professor Bartlett has done in the paper quoted (1971a) and as I did 
myself in a special case in my paper on topographic correlation (Whittle, 1962). Properties 
of the equilibrium spatial process follow nicely in some cases from those of the spatio- 
temporal process. For example, Spitzer has shown that a process which is both spatially 
and temporally first-order Markov (with appropriate definition), and is moreover 
reversible, has an equilibrium spatial distribution which is second-order Markov. 

The "awkward normalizing factor" which Mr Besag mentions at the end of Section 2 
is of course important in its own right, and none other than the partition function in 
statistical mechanical contexts. 

Mr Besag indicates some hope that conditional descriptions will resolve the questions 
of non-identifiability mentioned at the end of Section 5. In fact, though, as long as the 
model is Gaussian these non-identifiabilities are intrinsic and unavoidable, however one 
may have chosen to specify the Gaussian process. 

Finally, I might mention that both Mr Besag and I might have achieved a better fit 
with our models had we docked the central spike off the correlogram, which presumably 
reflects uncorrelated noise superimposed on the variable of the spatial model. In one of 
the cases I examined in Whittle (1954) the correlogram followed the predicted form (a 
Bessel function) very well except just at the origin. 
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Dr KEITHORD (University of Warwick): First of all, I should like to join with earlier 
contributors in thanking Mr Besag for his stimulating paper, which, in the best tradition 
of this Society, gave us both sound theory and sound practice. 

The first point on which I should like to comment is the question of joint as against 
conditional specifications. 

Let us consider a temporally stationary model in discrete time for n sites of the form 

AXt + BZt = Et . 
( n x n ) ( n x l )  (nXm)(mXl )  (nX1) 

The qotation is chosen deliberately to make a comparison with simultaneous equation 
models in econometrics, and A, B represent matrices of parameters, Zt a matrix of m 
exogeneous or lagged endogeneous variables and st the error vector. If the model is 
specialized to 

(i) 	A = I, Z, lagged endogeneous only, then the resulting spatial model for Xt is of 
the conditional form (cf. Bartlett, 1971a); 

(ii) A # I, then simultaneous, rather than lagged, dependence is allowed and the 
joint model follows; 

(iii) Zt = et, then a simultaneous moving average model results. 
The purpose of these examples is to illustrate that the choice between joint and conditional 
models is, at least in one important case, a choice between theories of simultaneous and 
lagged dependence. To date, econometrics has operated entirely in the joint model 
framework, but the other side of the fence should be explored, at least. 

My other point relates to the evaluation of ML estimators discussed in Section 6.3. 
Since my earlier work in this area (Ord, 1974), it has been found possible to evaluate the 
determinant IB I analytically for the square lattice for first-order models of form (5.5), 
through use of the eigenvalues of the connection matrices. While Mr Besag's numerical 
approach appears to have worked well, I wonder whether we do not need more analytic 
results in this direction if realistic mixed regressive, auto-regressive, models are to be 
made operational ? 

Mr R. MEAD (University of Reading) : First I must say how much I have learned from 
conversations with Mr Besag and tonight from this paper. I feel that he has constructed 
a most impressive general theory of a class of spatial interaction models, exposing the 
structure of the conditional probability approach and its relationship with the joint 
probability approach. As an essentially applied statistician I am always conscious of the 
need for that generality of approach which is the hallmark of the mathematical 
statistician. Yet, at the same time, I distrust generalization because of its Procrustean 
tendency to force different problems into a single format. Thus my comments tonight 
are concerned with doubts as to the practical use of the methods of this paper. 

When discussing the application of the spatial interaction models to problems of 
spatial patterns the author comments (Section 5.2.1): "An alternative procedure might be 
to adopt some sort of nested analysis (Greig-Smith)." I believe that the approach of this 
paper and the Greig-Smith approach are in no sense alternatives since they are attempting 
to answer different questions. The auto-logistic models are concerned with small-scale 
patterns on the scale of one or two quadrat widths. Greig-Smith's methods are concerned 
with detecting the several scales of pattern up to a scale of 32 or 64 quadrat widths. It is 
a mistake to assume that there is one form of pattern which will be detected more or less 
efficiently by different methods. The method of pattern detection must be related to the 
questions the ecologist wants to answer. Unfortunately there is no mention in Section 7.1 
of the objectives in collecting the data on Plantago lanceolata so that it is not possible to 
judge whether the auto-logistic models are appropriate here. However, my experience 
with ecologists is that they usually assume that spatial distributions contain patterns at 
possibly several differing scales, which they wish to detect. So the answer to the author's 
question in Section 8 as to how Gleaves's data could be analysed using joint probability 



230 Discussion of M r  Besag's Paper [No. 2, 

models is perhaps that neither form of spatial interaction model is appropriate for analysing 
spatial patterns. 

This brings me on to my other comments which concern the conditional-joint 
comparison. In my experience the data available for looking at inter-plant competition 
usually consist of small regular lattice arrays of plants (typically 30-100 plants) for a 
number of different treatments often with gaps or markedly atypical plants, so that the 
usable array is much smaller still. The object in measuring competition is to compare the 
degree of competitions in different situations. To make these comparisons we need 
information on the precision of our estimates. The paper includes, in various tables 
quoted in Section 7, approximate standard errors of the parameter estimates. Is anything 
known about the small-sample properties of these standard errors? There appears to be 
no method yet of examining the sampling distributions of the parameter estimates of the 
auto-models. Using the joint-probability models however it is always possible to obtain 
sampling distributions, albeit by simulation methods. . 

So, in spite of the very convincing arguments advanced in the paper that conditional 
models are preferable, I am still not convinced of their uniform superiority over the joint- 
probability models. I agree that conditional models appear to have every advantage save 
this one of sampling distribution; but I want to use these models to provide answers for 
practical problems and so unless Mr Besag has something more up his sleeve I shall stick 
with the joint-probability models. 

The following contributions were received in writing: 

Dr  J. M. HAMMERSLEY(University of Oxford): I am much impressed by Mr Besag's 
very interesting and far-ranging paper on spatial interaction. The variety and flexibility 
of his treatment will greatly contribute to our understanding of these very difficult problems 
of co-operative phenomena. 

In his paper he expresses regret that D r  Clifford and I decided not to publish our joint 
paper; so perhaps I might explain, by way of an historical note, our reasons for this 
decision. Essentially our theorem states that the probabilities associated with a Markov 
field must satisfy 'certain algebraic identities. In  proving this result, we assumed apositivity 
condition, namely that no probability should be zero. Mr Besag says that "the positivity 
condition remains unconquered and it would be of considerable theoretical interest to 
learn the effect of its relaxation. On the other hand, it is probably fair to say that the 
result would be of little practical significance in the analysis of spatial interaction with 
given site locations." However, with this we do not agree: in many of the most important 
practical applications to statistical mechanics, the physical system is subject to constraints 
which prevent the system from assuming certain forbidden states. Nevertheless, a forbidden 
state can be subsumed into the general theory if we interpret it as a state having zero 
probability. So it seemed to us not only aesthetically desirable but also practically im- 
portant to amend our proof in order to make the theorem independent of ally positivity 
condition. Moreover, at  first sight the necessary amendments appeared to be quite 
straightforward. For example, we felt that we ought to be able to include zero proba- 
bilities by means of some limiting argument. After all, algebraic identities are very simple 
and robust mathematical objects, which are unlikely to fall to pieces when taken to a limit. 
Indeed I remember from my undergraduate days a stock device of considerable use in the 
Mathematical Tripos; it was known as the Principle of the Irrelevance of Algebraic 
Inequalities; and it asserted that, if a polynomial in x was identically zero in some open 
interval a < x <  b, then this polynomial must be identically zero for all x. And this 
principle could easily be extended to polynomials in several variables x,, x,, ..., x,. Now 
we could certainly express our theorem in terms of polynomials (in the probabilities 
p1,p2, ...,p,) being identically zero for all p,>O; and hence these polynomials ought to 
remain identically zero for p, >0. In short, the positivity inequalities p, >0 looked 
irrelevant. So much for hand-waving mathematics. On the other hand, wriggle as we 
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might, we were unable to convert this reasoning into a watertight argument. The very 
good reason for our failure was the unexpected discovery by a graduate student, Mr John 
Moussouris, of a counter-example! His discovery, and his subsequent development and 
discussion of what happens in the absence of the positivity condition, afforded the substance 
of his M.Sc. Thesis at Oxford. This thesis (which is being published in full in the Journal 
of Statistical Physics under the title "Gibbs and Markov random systems with constraints") 
supersedes the Hammersley-Clifford paper (hence our decision to leave our paper un- 
published) as well as other published accounts (such as those by Averintsev, Spitzer, 
Grimmett, etc. quoted in Mr Besag's references). There are still some open questions 
(which will be found at  the end of Moussouris's paper?); but, by and large, it can now be 
said that the positivity condition is "conquered". 

Professor M. S. BARTLETT(University of Oxford): I regret that my absence in Australia 
has prevented my coming to this meeting, but it is indeed a pleasure to send my congratu- 
lations to the author for this very comprehensive and valuable paper on nearest-neighbour 
lattice models, containing both exposition of basic theory and of statistical techniques of 
analysing spatial interaction. I find his discussion of auto-normal and auto-logistic 
model-fitting especially interesting and useful. 

With the auto-normal model his ingenious coding methods are not perhaps so necessary 
in view of the possibility of maximum-likelihood estimation, adapted either from Whittle's 
Jacobian technique for the simultaneous model or equivalently, as Mr Besag notes, by 
equating the theoretical and observed relevant nearest-neighbour correlations. With the 
auto-logistic model, on the other hand, the analogous second-order polynomial in the 
exponential also identifies the maximum-likelihood method with the equating of theoretical 
and observed correlations, and in view of the absence of a complete theoretical solution 
for the correlation (for general mean) emphasizes the current unavailability of the 
maximum-likelihood method in the auto-logistic case. I t  is clearly desirable to have 
further information on the efficiency of the coding method; in the meantime, Hannan's 
results for the one-dimensional case suggest a much better efficiency when the mean from 
the alternative patterns is taken. 

With regard to the earlier theoretical development in the paper, and the author's basic 
Assumptions 1 arid 2, the use of Assumption 2 has seemed to me somewhat arbitrary. 
The assumption does of course ensure attractive sufficiency properties for the appropriate 
statistics, but this in itself seems more a matter of convenience than of necessity. 

Finally, with the auto-logistic model (for an  infinite lattice), the author will be aware 
from its identity with the Ising model in physics that there is a critical point before the 
nearest-neighbour correlation reaches unity, and some recent results of my own (Bartlett, 
1974) suggest an  intriguing ambiguity of fitting as a consequence. Above the critical point 
the non-ergodic long-range component of the correlation appears interpretable as a non- 
zero mean, even in the nominally zero mean case, so that the observed mean and nearest- 
neighbour correlation might in some cases be fitted either by high a and low p, or by low 
a and high p. With these parameter values, I am assuming - 1 , l  (not 0, 1) as the possible 
x values, as in the Ising model, where this is equivalent to saying that, if magnetization is 
observed, it is not possible to say (unless the temperature is stated, corresponding to the 
value of 8)  whether the magnetization is a consequence of an external magnetic field 
(a  # 0, and /3 small) or is spontaneous (a  -+ 0, but high). 

The author replied later, in writing, as follows: 

I am extremely grateful to all of the discussants for their very interesting and helpful 
comments. This especially since the three-day week (Heath et al., 1974) prevented the 
galleys from being available in good time. 

Note added in proof: Moussouris's paper has now appeared in J. Statist. Phys., 10 (1974), 
11-33. 
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Professor Cox suggests that a knowledge of the (stationary) spatial structure of simple 
temporal models may help an understanding of conditional (and presumably other) 
spatial schemes. I shall try to cite some of the available results during the course of my 
reply. For example, there is the class of models associated with discrete state, time-reversible 
Markov processes (Kendall, 1959), as mentioned both by Dr Clifford and by Professor 
Whittle. Such processes, more or less by definition, have stationary spatial distributions 
possessing obvious conditional probability structures. In Besag (1972a), I give a simple 
example which generates a first-order auto-logistic scheme on the rectangular lattice as 
stationary distribution. This model has now been simulated by Mr David Green, using 
Monte Carlo methods, as part of his final-year undergraduate project at Liverpool and 
his results provide useful information on methods of parameter estimation and goodness- 
of-fit tests. Preston (1973) examines the stationary distribution for the analogous binary 
model defined on an arbitrary finite graph and gives results which may easily be generalized. 
Thus, subject to positivity, any discrete multivariate (spatial) distribution may be generated 
as the stationary limit of some easily identified time-reversible process. Unfortunately, 
this process may have no direct physical or biological interpretation but, even in such cases, 
the result may still be useful for computer simulation of spatial schemes. For binary 
variables, other spatial-temporal processes which have been investigated include the 
"jumping particles" of Preston (1973) and the "spatial conflict" models of Clifford and 
Sudbury (1973) for which some evolutionary results are even available. 

Professor Cox mentions the appeal of using hexagonal rather than square regions 
when fitting a first-order scheme to aggregated responses. I agree but do not yet have any 
numerical results. Another possibility is to investigate the influence of size of plot on the 
resulting analysis. Here there may be connections with Whittle (1956). Concerning 
Papadakis's method, it would certainly be nice to extend Dr Atkinson's work to two 
dimensions although I do not, at present, see this as being a simple matter! 

One problem in setting up Professor Hawkes's "fund of examples" is the apparent 
lack of published spatial data. A collection of examples has been started by Dr Ord and 
we should be most grateful for additional contributions. The identification of sociological 
cliques, mentioned by Professor Hawkes, is an intriguing problem. Related work has, I 
believe, appeared-in the social sciences literature concerning gravity models etc. Regarding 
the combination of significance levels, this could certainly do with further investigation. 
The simple technique which I used in Table 7 was to multiply the minimum P value 
(just greater than 1 per cent) by the number of tests (four), which led to the rejection of 
scheme (b) at the 5 per cent level. This procedure clearly gives a rather conservative test. 
Professor Hawkes's suggestion of taking the average P value would, I think, generate 
extremely conservative tests. 

Professor Hawkes points out my failure to give explicit conditions on the allowable 
parameter values for auto-normal lattice schemes. A sufficient condition for the rectangular 
lattice scheme in which Xi,, X ~ - ~ , P - Zhas conditional mean pi,,+ 22 b k , ~  is that 

22 b s , ~z t  z: < 1 

whenever z, J = Jz,J = 1. This follows from the conditions for existence of stationary 
auto-normal schemes on the infinite lattice (Section 5.5). The condition is not necessary 
on a finite lattice but is "almost so" in most practical situations where the lattice is not 
too small. In some cases, exact results are available. For example, it follows from the 
evaluation of eigenvalues in Ord (1974) that for a first-order isotropic scheme on an n x n 
lattice to be valid, one requires that I ,$ I cos {n/(n+ I))<$ or, to all intents and purposes, 
I ,$I <+, the result for the stationary scheme. It follows from Dr Ord's discussion comments 
that the conditions for the anisotropic scheme are also known exactly and may therefore 
be compared with the asymptotic requirement, 1 13, I+ I fl, I <+. This will also tell us 
whether some of the individual coding estima.tes for the Mercer and Hall data are in fact 
inadmissible for the overall model (I only stated that they were inconsistent with a 
stationary auto-normal scheme). Assuming they are, I would not expect this to be so in 
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situations where one wished to accept the model. However, I certainly agree that I should 
have emphasized the inconsistency more strongly in the paper rather than as an "after- 
thought" (which it was!). 

Incidentally, if one fits a third-order stationary auto-normal scheme to the wheat plots 
data, the overall fit is substantially improved but still leaves much to be desired. Since the 
first- and second-order auto-normal schemes and the simultaneous autoregressive models 
1, 2, 3, 5, 6, 7 in Whittle (1954) are all special cases of the third-order auto-normal model, 
we may construct appropriate goodness-of-fit tests. This leads to rejection of each of 
the special cases at the per cent level or less, except for scheme 7 for which the P value 
is 7 per cent. Further comments on model-fitting appear later. 

On improving the coding technique, Dr Clifford's suggestion, ingenious though it is, 
looks to me rather awkward to use in practice. The stream is not only inhomogeneous, 
its banks appear to recede as one travels along. However, I believe Dr Clifford has taken 
the plunge and I very much look forward to seeing his results. I agree wholeheartedly with 
the appeal for more research into the dynamics of spatial processes. I feel no conflict 
here with the aims of the present paper; rather I see the two approaches as being cornple- 
mentary. An examination of the evolutionary (where possible) or equilibrium spatial 
structure of simple but plausible spatial-temporal models can hopefully give a qualitative 
lead to the types of spatial model which may be appropriate in practice. On the other hand, 
in order to devise detailed spatial schemes for the quantitative statistical analysis of spatial 
data, it is, I believe, useful to have available a purely spatial approach which is capable of 
various degrees of generalization. 

I certainly agree with Professor Whittle that there is no point in being particularly 
partisan about "joint" versus "conditional" specifications of spatial schemes. If I have 
sounded otherwise then I apologize. Indeed, I would think that Assumption 1 (Section 4.1) 
might easily be interpreted as a first step in a joint-probability approach based upon the 
representation (3.3) of P(x). I fancy that any personal prejudice I may hold against 
simultaneous autoregressions stems from the difficulty I have in concentrating, at one 
time, upon more than a single random variable in a dependent set. As regards the nature 
of the conditioning sigma-fields, could I perhaps reverse Professor Whittle's view and 
suggest that monotonicity is only a natural concept when one is constructing a model for 
the development of a process, through cause and effect, rather than just a spatial scheme 
to describe its "here and now" probabilistic properties? On a related point, my comment 
on the identifiability of parameters (Section 5.5) may have been misleading. What I 
meant is that by attempting only to determine the underlying probability structure of a 
spatial system, rather than postulate an actual process, one avoids (not "overcomes") 
the problem of identifiability. May I stress that I think of a "spatial scheme" merely as a 
collection of random variables with an associated probability structure rather than as a 
physical model in its classical sense? 

I am grateful to Professor Whittle for pointing out that each of us would have achieved 
a better fit to the Mercer and Hall wheat plots data had we docked the central spike off the 
observed correlogram; that is, had we fitted the model Xi,, = X,,+Zi,,, where Xi,i denotes 
plot yield, Zi,, denotes uncorrelated noise and Y;,,, is, respectively, a first-order simultaneous 
autoregressive process or a first-order auto-normal scheme. In either case, x,,can be 
thought of as reflecting variations in soil fertility and& as reflecting the intrinsic variability 
of the wheat itself, from plot to plot (cf. Whittle, 1954). Unfortunately, for either the 
simultaneous or conditional probability scheme, {Xi,,) is no longer a finite-order process 
and this leads to complications in maximum-likelihood estimation and in testing goodness 
of fit. It is intended to discuss such problems elsewhere. However, returning to the 
general form of the correlogram, I doubt whether docking the central spike really satisfies 
Professor Whittle. His evidence (Whittle, 1956), based partially upon the results in 
Fairfield Smith (1938), that, in agricultural uniformity trials, covariance functions often 
decay as a power of distance, rather than exponentially, at least for large lags, still conflicts 
with both the simultaneous and conditional multinormal schemes. Indeed, Professor 
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Whittle (1962) has constructed a physically plausible spatial-temporal random diffusion 
model which, in its three-dimensional form, exhibits the suggested power-law decay. My 
present confusion is only compounded by the statement in Quenouille (1949), claiming 
that an exponential correlation function can be used to provide "substantial agreement 
with Fairfield Smith's law over a wide range of values". There is clearly scope for further 
discussion of such problems. 

Dr Ord discusses the choice between simultaneous and conditional spatial schemes in 
the context of discrete time, spatial-temporal autoregressions arising in econometrics. 
However, suppose we consider the (zero mean) temporally stationary process represented 
by 

where A, B and C are suitable matrices of constant coefficients and var E~ = a2I .  Writing 
r =EXt XF for the spatial covariance matrix, it follows that 

Matrix equations of this form have attracted much attention in their own right-for a 
recent account see KuEera (1974)-but, so far as I know, explicit matrix solutions are not 
in general available. We may of course proceed in situations where the matrices in equation 
(2) all commute, as they will for homogeneous regular torus lattice systems and for spatially 
stationary infinite regular lattice systems. We then have the familiar looking result, 

This spatial structure is not in general consistent with any simple conditional or simul- 
taneous probability scheme. However, in the special case where C = I, suppose we define 
qt by the purely spatial relationship (analogous to equation (5.13) in the paper), 

(AAT-BBT) Xt  = q,. 

Then E(q, XT)=~o2I and, provided the system is Gaussian, the spatial conditional 
expectation structure follows immediately. To obtain the corresponding simultaneous 
formulation, we need to find a matrix D such that DDT = AAT-BBT. The only simple 
case therefore appears to occur when B = 0. But equation (1) then no longer represents a 
true temporal model. Dr Ord's case (ii), in which B = 0 presumably, is a definition of a 
simultaneous spatial scheme, not a temporal derivation. Similarly, case (iii) appears to 
lack any temporal consideration. 

Another class of spatial-temporal models, related to that above but arguably of more 
intuitive appeal, is provided by the continuous time process, 

with the usual notation. Provided B and BT commute, this leads to the corresponding 
spatial covariance matrix r = a2(B+BT)-I in the temporally stationary situation. When 
the variables are Gaussian, it follows that the spatial conditional expectati0.n structure is 
particularly simple. This accords with a result in Bartlett (1971a). Again there is, in 
general, no obvious correspondence with a simultaneously defined spatial scheme. Thus, I 
am unaware of any simple situations in which truly temporal autoregressions, either in 
discrete or continuous time, suggest the use of simultaneous spatial schemes rather than 
conditional ones. Am I missing something? 

I would certainly agree with Dr Ord's second point that there is a need for more 
analytical results concerning the evaluation of the Jacobian in either the joint or conditional 
models. Dr Ord has done some pioneering work in this direction and I look forward to 
seeing more of his results. These should be particularly useful in examining the efficiency 
of special estimation techniques, such as the coding method. 
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Mr Mead rightly criticizes my analysis (or lack thereof) concerning the Plantago 
lanceolata transect. Dr Gleaves is primarily interested in the interaction between gene 
flow and spatial pattern in plant communities. As a single aspect of his studies, Dr Gleaves 
required a test of randomness, preferably based upon distance methods, and we therefore 
developed the "T-square" sampling technique (Besag and Gleaves, 1973), the aims of 
which Mr Mead has criticized elsewhere. Having used the method with apparent success, 
Dr Gleaves collected the quadrat data to see what else we could learn about the 
community from statistical analysis. As one approach, it seemed reasonable to me, 
bearing in mind the peculiar environment of the plants, to examine the fit of homogeneous 
low-order auto-logistic schemes. I agree with Mr Mead that Professor Greig-Smith's 
technique aims to answer different, and possibly more relevant, questions but I still think 
it is somewhat premature to dismiss the auto-logistic method of analysis as a tool in 
plant ecology. Incidentally, the fact that a scheme is formally described as "locally 
interactive" does not imply that the patterns it produces are local in nature (cf. the extreme 
case of long-range order in the Ising model). 

Regarding lattices of Gaussian variables and the small-sample properties of estimators, 
it seems to me that a Monte Carlo examination of the associated sampling distributions 
is equally available with either the simultaneous or conditional probability approach. 
My guess is that in order to simulate the joint model (4.13), with given parameter values, 
Mr Mead has at some stage to invert the non-singular matrix B. Now for the conditional 
scheme (4.10), the matrix B is symmetric positive definite and, as I am sure Mr Mead is 
aware, the standard method of numerically inverting such a matrix is to determine a 
triangular matrix C such that CT C = B. The matrix that Mr Mead requires to simulate 
(4.10) is just C-l. 

I am delighted to hear from Dr Hammersley that the positivity condition has, by and 
large, finally been dispensed with. I spent longer than I should care to admit, a couple 
of years ago, trying to overcome the condition without any form of success. Thepractical 
relevance of positivity finally got through to me after reading Preston (1973); at the meeting 
itself, I gave an example based upon voting tendencies in each constituency at a parlia- 
mentary election. I very much look forward to a detailed reading of Mr Moussouris's 
paper and congratulate him on his work. However, I feel sure that Dr Hammersley will 
agree that, in most practical data analytic situations, the basic theorem will still suffice. 

Professor Bartlett, in pointing out that, for the auto-logistic lattice models, maximum- 
likelihood estimation is (asymptotically) equivalent to equating the relevant observed and 
theoretical correlations, indicates how a Monte Carlo assessment of the relative efficiency 
of the coding technique (or other methods), with respect to maximum likelihood, may be 
made, at least for totally symmetric {P(O) = P(1)) first-order schemes. As regards analytical 
results on the coding technique, my own limited work suggests that for an isotropic Gaussian 
first-order scheme, the asymptotic efficiency of a single coding test for independence is unity 
on the square and hexagonal lattices but only 213 on the triangular lattice! Bearing in 
mind previous comments on lattice type, this <last value seems somewhat annoying. 
However, I believe Professor P. A. P. Moran has rather more informative results on 
coding efficiency with @#0 and I look forward to seeing these in due course. 

I agree with Professor Bartlett's remarks upon the somewhat arbitrary nature of 
Assumption 2, which admittedly was made largely for the reasons he suggests (sufficiency 
and convenience). I certainly did not intend to claim that it is a "basic" assumption to 
the conditional probability approach. Whilst I hope the schemes illustrate several points, 
for example the effect of the summability condition, there is clearly a need to set up and 
examine other types of schemes if the conditional probability approach is to be generally 
viable. 

Regarding Professor Bartlett's k a l  point, which relates to the non-ergodic nature of 
the Ising lattice beyond the critical point, I can but tentatively suggest that the use of a 
conditioning set, such as with the coding technique, may circumvent the problem of 
inconsistent parameter estimation. 

9 
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