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Monte Carlo sampling methods using Markov 
chains and their applications 

BY W. K. HASTINGS 


University of Toronto 


SUMMARY 

A generalization of the sampling method introduced by Metropolis et al. (1953) is pre- 
sented along with an exposition of the relevant theory, techniques of application and 
methods and difficulties of assessing the error in Monte Carlo estimates. Examples of the 
methods, including the generation of random orthogonal matrices and potential applica- 
tions of the methods to numerical problems arising in statistics, are discussed. 

For numerical problems in a large number of dimensions, Monte Carlo methods are often 
more efficient than conventional numerical methods. However, implementation of the 
Monte Carlo methods requires sampling from high dimensional probability distributions 
and this may be very difficult and expensive in analysis and computer time. General methods 
for sampling from, or estimating expectations with respect to, such distributions are as 
follows. 

(i) If possible, factorize the distribution into the product of one-dimensional conditional 
distributions from which samples may be obtained. 

(ii) Use importance sampling, which may also be used for variance reduction. That is, in 
order to evaluate the integral 

where p(x) is a probability density function, instead of obtaining independent samples 
A 

x,, .. . ,x, from p(x) and using the estimate J, = Xf (xi)/N, we instead obtain the sample from 
a distribution with density q(x) and use the estimate 3, = X{f(xi)p(xi))/{q(xi)N). This may 
be advantageous if it is easier to sample from q(x) thanp(x), but i t  is a difficult method to use 
in a large number of dimensions, since the values of the weights w(xi) =p(xi)/q(xi) for 
reasonable values of N may all be extremely small, or a few may be extremely large. I n  
estimating the probability of an event A, however, these difficulties may not be as serious 
since the only values of w(x) which are important are those for which XEA. Since the 
methods proposed by Trotter & Tukey (1956) for the estimation of conditional expectations 
require the use of importance sampling, the same difficulties may be encountered in their use. 

(iii) Use a simulation technique; that is, if i t  is difficult to sample directly from p(x) or 
if p(x) is unknown, sample from some distribution q(y) and obtain the sample x values as 
some function of the corresponding y values. If we want samples from the conditional dis- 
tribution of x =g(y), given h(y) = h,, then the simulation technique will not be satisfactory 
if pr{h(y) = h,) is small, since the condition h(y) = h, will be rarely if ever satisfied even 
when the sample size from q(y) is large. 



I n  this paper, we shall consider Markov chain methods of sampling that  are generaliza- 
tions of a method proposed by Metropolis et ul. (1953), which has been used extensively for 
numerical problems in statistical mechanics. An introduction to Metropolis's method and its 
applications in statistical mechanics is given by Hammersley & Handscomb (1964, p. 117). 
The main features of these methods for sampling from a distribution with density p(x) are: 

(a) The computations depend on p(x) only through ratios of the form p(xt)/p(x), where 
x' and x are sample points. Thus, the normalizing constant need not be known, no factoriza- 
tion of p(x) is necessary, and the methods are very easily implemented on a computer. Also, 
conditional distributions do not require special treatment and therefore the methods 
provide a convenient means for obtaining correlated samples from, for example, the condi- 
tional distributions given by Fraser (1968) or the distributions of the elements in a multiway 
table given the marginal totals. 

(b) A sequence of samples is obtained by simulating a Markov chain. The resulting 
samples are therefore correlated and estimation of the standard deviation of an estimate 
and assessment of the error of an estimate may require more care than with independent 
samples. 

2. DEPENDENTSAMPLES USING MARKOVCHAINS 

2.1. Basic formulution of the method 

Let P = {pij) be the transition matrix of an irreducible Markov chain with states O,1, .. . ,S. 
Then, if X(t) denotes the state occupied by the process at  time t, we have 

If x = (n,, n,, .. . ,ns) is a probability distribution with j.ri > 0 for all i ,  and iff ( .) is a function 
defined on the states, and we wish to estimate 

we may do this in the following way. Choose P so that x is its unique stationary distribution, 
i.e. x = xP.Simulate this Markov chain for times t = 1, ...,N and use the estimate 

For finite irreducible Markov chains we know that f is asymptotically normally distributed 
and that f -+I in mean square as N+co (Chung, 1960, p. 99). 

In  order to estimate the variance o f f ,  we observe that the process X(t) is asymptotically 
stationary and hence so is the process Y(t) =f{X(t)). The asymptotic variance of the mean 
of such a process is independent of the initial distribution of X(O), which may, for example, 
attach probability 1 to a single state, or may be x itself, in which case the process is 
stationary. Thus, if N is large enough, we may estimate var ( f ) ,  using results appropriate 
for estimating the variance of the mean of a stationary process. 

Let pj be the correlation of Y(t) and Y(t+j) and let a2= var{Y(t)). It is well known 
(Bartlett, 1966, p. 284) that for a stationary process 

- a2 N-1 
var (Y) = -
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and that as N +co var ( P) E 2ng(O)/N, 

where g ( w ) is the spectral density function a t  frequency w. If the pj are negligible for j 3 j,, 
then we may use Hannan's (1957) modification of an estimate of var ( Y )  proposed by 
Jowett (1955), namely 

where N-j 

cj = zY(t) Y(t +j) /(N- j) for j 2 0 and c+ = ci. 
t=l  

A satisfactory alternative which is less expensive to compute is obtained by making use 
of the pilot estimate, corrected for the mean, for the spectral density function a t  zero 
frequency suggested by Blackman & Tukey (1958, p. 136) and Blackman (1965). We divide 
our observations into L groups of K consecutive observations each. Denoting the mean of 
the i th block by 

we use the estimate 

This estimate has approximately the stability of a chi-squared distribution on (L- 1) 
degrees of freedom. Similarly, the covariance of the means of two jointly stationary processes 
Y(t) and Z(t) may be estimated by 

2.2. Construction of the transition matrix 

In  order to use this method for a given distribution x, we must construct a Markov chain P-
with x as its stationary distribution. We now describe a general procedure for doing this 
which contains as special cases the methods which have been used for problems in statistical 
mechanics, in those cases where the matrix P was made to satisfy the reversibility condition 
that for all i andj 

The property ensures that %ripij = nj, for all j ,  and hence that x is a stationary distribution 
of P.The irreducibility of P must be checked in each specific application. It is only necessary 
to check that there is a positive probability of going from state i to state j in some finite 
number of transitions, for all pairs of states i andj. 

We assume that pij has the form 

with 

where Q = {qij) is the transition matrix of an arbitrary Markov chain on the states 
0, 1, .. . ,S and aijis given by 

Sii 
aii = -n.q..' (6)

1 + 2 3  
nj qji 



where sij is a symmetric function of i andj chosen so that 0 6 aij < 1 for all i and j .  With this 
form for pijit is readily verified that nipij = nipji, as required. In  order to simulate this 
process we carry out the following steps for each time t: 

(i) assume that X(t) = i and select a state j using the distribution given by the i th 
row of Q ;  

(ii) take X(t + 1) =j with probability aijand X(t + 1) = i with probability 1 -aij. 
For the choices of sij we will consider, only the quantity (njqji)/(niqij) enters into the 
simulation and we will henceforth refer to it as the test ratio. 

Two simple choices for sij are given for all i and j by 

With qij = qj, and sij = sky) we have the method devised by Metropolis et al. (1953) and 
with qij = qji and sij = sf)  we have Barker's (1965) method. 

Little is known about the relative merits of these two choices for sij, but when qij = qji, 
we have 

= 

Thus we see that if nj = ni, we will take X(t + 1) =j with probability 1 with Metropolis's 
method and with probability 4with Barker's method. This suggests that Metropolis's 
method may be preferable since it seems to encourage a better sampling of the states. 

More generally, we may choose 

where the function g(x) is chosen so that 0 < g(x) < 1+x for 0 < x 6 1, and g(x) may itself 
be symmetric in i and j. For example, we may choose g(x) = 1+2(8x)y with the constant 
y > 1, obtaining sky with y = 1 and sL7) with y = co. 

We may define a rejection rate as the proportion of times t for which X(t + 1) = X(t). 
Clearly, in choosing Q, high rejection rates are to be avoided. For example, if X(t) = i and 
i is near the mode of an unimodal distribution, then Q should be chosen so that j is not too 
far from i, otherwise, nj/ni will be small and it is likely that X(t + 1) = i. For each simulation 
it is useful to record the rejection rate since a high rejection rate may be indicative of a poor 
choice of initial state or transition matrix, or of a 'bug' in the computer program. 

We shall apply these methods to distributions x defined mathematically on an infinite 
sample space although, when we actually simulate the Markov chains on a digital computer, 
we will have a large but finite number of states. When x is continuous, we will have a 
discrete approximation to x .  Let n(x) d,u(x), p(x, x') d,u(xl) and q(x, x') d,u(xl) be the prob- 
ability elements for the distribution x and the Markov processes analogous to P and Q, 
respectively. Let the possible values for x and x' on the computer be x,, ...,x,. These values 
depend on the word length and on the representation in the computer, float-point, fixed- 
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point, etc. The probability elements may be approximated by n(x,) Sp(xi), p(xi, xj) Sp(xj) 
and q(xi, xj) Sp(xj), respectively. Substituting n(xi) Sp(xi) for ni etc., we have 

and (niqij)/(njqji) is replaced by {n(xi)q(xi, xj))/{n(xj) q(xj, xi)). Therefore, so long as aijis 
chosen so that it depends on x and Q only through the quantity (niqij)/(njqji), we may use 
the densities in place of the corresponding probability mass functions, and we may think 
in terms of continuous distributions ignoring the underlying approximation which will be 
more than adequate in most applications. 

For simplicity we have considered reversible Markov chains only. An example of an 
irreversible P is given in Handscomb (1962), where the states may be subdivided into 
finite subsets of states, where the states within a given subset are equally probable. Transi- 
tions amongst states within such a subset are made in a cyclic fashion; all other transitions 
are reversible. 

2.3. Elementary examples 

Example 1. Let x be the Poisson distribution with ni = hi ech/i! (i = 0,1, ...). For h small 
we may use the following choice of Q to generate samples from x :  

Note that ni+,/ni = h/(i+ 1) and n,-,/ni = i/h so that the computations may be performed 
rapidly. For h large Q must be chosen so that step sizes greater than unity are permitted 
or else very long realizations will be required in order to ensure adequate coverage of the 
sample space. 

Example 2. To sample from the standard normal distribution we define Q, ( k = 1,2) in 
the following ways. Let X(t) be the state a t  time t and choose X1(t) to be uniformly distri- 
buted on the interval [s,X(t) -A, s,X(t) +A], where A > 0 is a constant, el = + 1 and 
s2= - 1. TO use Metropolis's method with either of these choices of Q, both of which are 
symmetric, a t  each time t compute the test ratio P(t) = exp (+[X2(t) -{X'(t))2]). If P(t) 1, 
set X(t + 1) = X1(t); if P(t)< 1, X(t + 1) = X1(t) with probability P(t) and X(t + 1) = X(t) 
with probability 1 -P(t). Computing time can be saved if we compare X2(t) with {X'(t)j2 
instead of P(t) with 1 and compute the exponential only when {X'(t))2 > X2(t). 

Simulations carried out on an IBM 709411 using the above transition matrices yielded 
the following estimates X of the mean of the distribution where, in all cases, we chose 
N = 1000 and L = 25: with X(0) = 0 and A = 1, we obtained X = -0.12 and sz = 0.11 
with s ,  = + 1, and = -0.013 and sz = 0.02 with s, = - 1. The estimated standard devia- 
tion of the estimate is smaller with s, = - 1, and is comparable to the theoretical standard 
deviation of the mean with 1000 independent observations, 0.031. Here we have an ideal 
situation with a symmetric distribution and known mean, but a similar device for variance 
reduction may sometimes be applicable in other problems of more practical interest. Other 
results indicated that there is little to choose between moderate values of A in the range 
0.2-1.8, but extreme values of A led to poor estimates. For example, with X(0) = 1.0 and 
A = 0.001 we obtained X = 1.001 and sz = 0.002. 

2.4. Multidimensional distributions 

If the distribution x is d-dimensional and the simulated process is X(t) = {Xl(t),...,X,(t)), 
there are many additional techniques which may be used to construct P: 



(1) In  the transition from time t to (t + 1) all co-ordinates of X(t) may be changed. 
(2) I n  the transition from time t to t + 1 only one co-ordinate of X(t) may be changed, 

that selection being made a t  random from amongst the d co-ordinates. 
(3) Only one co-ordinate may cbange in each transition, the co-ordinates being selected 

in a fixed rather than a random sequence. 
Method (3) was used by Ehrman, Fosdick & Handscomb (1960), who justified the method 

for their particular application. A general justification for the method may be obtained in 
the following way. Let the transition matrix when co-ordinate k is to be moved by P, 
(k = 1, ...,d). Assume that the co-ordinates are moved in the order 1,2, ... and that the 
process is observed only at  times 0, d, .. . . The resulting process is a Markov process with 
transition matrix P = P, ...Pa.If? for each k, P, is constructed so that nP, = n, then TG 
will be a stationary distribution of P since n P  = nP, ...Pa = nP, ...Pa = ... = n. I n  
practice, we must check the irreducibility of P to ensure uniqueness of the stationary 
distribution. Note that for the validity of this proof it is not necessary that each P, satisfy 
the reversibility conditions (4). Also, in our estimates we may average observed values of 
the function f ( .) a t  all times t of the original process although it would not be desirable to 
do so if the function values only cbange every d steps. 

Example 3. To illustrate method (3) we consider sampling from a distribution with 
probability density function p(x)  =p(x,, . . .,x,) defined over the domain 

Let the co-ordinates a t  time t be x(t)= (x,(t), ...,x,(t)) and assume co-ordinate k (k $. d) is 
to be changed. Let xL(t) be chosen from the uniform distribution on the interval 
(~ , -~ ( t ) ,x,+,(t)), where we assume that x,(t) = 0, and define x;(t) = xi(t) (i$. k). Using 
Metropolis's method, we find that the test ratio is p(xl(t))/p(x(t)). When k = d, we may 
choose xi(t) from the uniform distribution on the interval 

[+(x,-,(t) +x,(t)), 2~d(t )  -xd-l(t)l 
and use the test ratio 

A few computer runs using this form of transition matrix have yielded satisfactory results 
for (i) sampling from the distribution of eigenvalues of a Wishart matrix, and (ii) estimating 
the conditional expected values of order statistics needed for the probability plotting 
method proposed by Wilk & Gnanadesikan (1968). The latter problem requires estimation 
of E,(x,) (k = 1, ...,d), where 

the Pi's are constants and c is a norma,lizing constant. 
Generalizations of these methods are readily obtained by noting that, for example, the 

co-ordinates need not be moved equally often and that the co-ordinates may be moved in 
groups instead of one at  a time. For example, in statistical mechanics applications, one 
particle and hence three co-ordinates are moved at  a time. 

When only a few of the co-ordinates are moved at  one time, computing effort can usually 
be saved by employing a recurrence formula for obtaining f (X(t-I-1)) from f (X(t)). However 
it is then necessary to guard against excessive build-up of error. One way to accomplish 
this is periodically to calculate f(X(t)) without the aid of the recursion, although an error 
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analysis in some cases may indicate that this is unnecssary. If, however, it is expensive to 
compute either of j.ri or f(i), it  may be preferable to attempt to move all of the co-ordinates 
a small distance each at  time t. 

2.5. Importance sampling 

Usually, P is constructed so that it depends only on the ratios ?Ini as in the methods of 
Metropolis and Barker. I n  this case we need only know the 7 % ' ~up to a constant of propor- 
tionality, and if 77, + . . . + rs $: 1, we are estimating 

This expression may be rewritten in the form 

which we recognize as E, ( f ( i ) j l r i /~ i ) /Enn(~ i /~ i ) .Hence, if we set up the Markov chain using 
the distribution n' instead of n we can estimate I = E,(f) by the ratio 

This device permits us to use importance sampling with the Markov chain methods as 
suggested by Posdick (1963). 

If T, + . .. + rs = 1 and 77; + . .. + 7~h= 1, then we may replace the denominator in f 
by 1, simplifying the estimate. Otherwise we have a ratio estimate and we can estimate its 
variance using the usual approximation. Thus, if we denote f by y/Z, the variance is 
given approximately by 

var (HIE)= {var ( H)-21 cov ( H, Z) +12 var ( z ) ) l {~ (Z) )~ .  

This may be estimated by 
(s; -2fsFZ+ 1^28z)/22, 

where sg,  sii.2 and s; are obtained as in (2) and (3). Por a discussion of the validity of this 
approximation, see Hansen, Hurwitz & Madow (1953, p. 164). 

Importance sampling for variance reduction is more easily implemented with the Markov 
chain methods than with methods using independent samples, since with the Markov chain 
methods it is not necessary to construct the distribution x' so that independent samples 
can be obtained from it. If, however, we can obtain independent samples from the distribu- 
tion x', we may obtain estimates of E,(f) using the Markov chain methods, which have the 
advantage that they do not involve the weights nx(n/nk(t); see the discussion of importance 
sampling in $1. To accomplish this we set up the Markov chain P so that it has n ,  not x', 
as its stationary distribution and choose qij = n; for all i and j. 



2.6. Assessment of the error 

In  using Monte Carlo methods to estimate some quantity we usually use the standard 
deviation of the estimate to obtain some indication of the magnitude of the error of the 
estimate. There are, of course, many sources of error common to all Monte Carlo methods 
whose magnitude cannot be assessed using the standard deviation alone. These include: 
(i) the source of uniform random numbers used to generate the sample, which should be 
of as high a quality as possible; (ii) the nonnormality of the distribution of the estimate; 
(iii) computational errors which arise in computing the estimate; (iv) computation errors 
which arise in generating the samples (including discretization and truncation of the distri- 
bution); and (v) errors induced because the sample size is too small, which are often best 
overcome by methods other than increasing the sample size; for example, by the use of 
importance sampling. I n  what follows we shall concentrate upon categories (iv) and (v) 
above. 

In  generating successive samples using the Markov chain methods, errors will arise in 
computing the new state X(t +1)and in computing the test ratio. An error analysis may 
sometimes be useful for the computation of X(t + 1)(see, for example, $ 3 ) ,but it is difficult 
to assess the effects of using inaccurate test ratios. The situation is also difficult to analyze, 
in general, when successive samples are independent and are generated using a factorization 
of the probability density function. To see this, let 

d 


be the joint density function, where pi(xi) is the conditional density function for xi given 
x,, ...,xi-,. When we attempt to sample from each of the one-dimensional distributions 
pi(xi) in turn, errors will be introduced and we will instead be sampling from some distribu- 
tion Pt(xi) =pi(xi) (1+yi), where yi is a function of x,, ...,xi and will not, in general, be 
small for all sample points. Consequently, we will be generating samples from a distribution 

and, especially when d is large, it will be difficult to assess the error in our estimate induced 
by the yi's. A similar, but more involved, analysis might also be applied to the Markov 
chain methods if we consider a single realization of length N as a single sample from a 
distribution of dimension Nd; sampling at  each step of the Markov chain would correspond 
to sampling from a single factor above. 

If the sample size is not large enough, important regions of the sample space may be 
inadequately represented. For example, if we are estimating the integral 1f(x)p(x)dx by 
sampling from p(x) and if the major contribution to the value of the integral comes from 
a small region of low probability in which f(x) has very large values, then we may obtain 
a very poor estimate and a deceptively small standard deviation even with seemingly large 
sample sizes. This difficulty may be encountered with any method of numerical quadrature 
and there is no substitute for a thorough study of the integrand and a consequent adjustment 
of the method if gross errors are to be avoided. With the Markov chain methods the influence 
on the result of the choice of initial state and the correlation of the samples, which may be 
considerable if the sample size is small, may be minimized by adopting the following 
procedures : 
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(i) Choose a transition matrix Q so that the sample point in one step may move as large 
a distance as possible in the sample space, consistent with a low rejection rate. This offers 
some protection against the possibility that the sample points for the whole realization 
remain near one mode of the distribution which is separated from other modes by a deep 
trough, or that the initial state is in a region of low probability. 

(ii) If possible, choose the initial state so that it is in a region of high probability, by 
sampling from x if this is possible, or set the co-ordinates of the initial state equal to their 
expected values, or asymptotic approximations of these. 

In  view of the many sources of error one or more of the following techniques, depending 
upon the application, should be used in practice to aid in assessing the suitability of the 
Markov chain methods, the magnitude of the error and the adequacy of the length of the 
realization and of the standard deviation as a measure of error: 

(a) Test the method on problems which bear a close resemblance to the problem under 
study and for which the results are known analytically. 

(b) If the expected value of some function with respect to x is known, this may be esti- 
mated for checking purposes, and possibly for variance reduction, while other aspects of x 
are under study. 

(c) Compare estimates obtained from different segments of the same realization to see if 
there is evidence of nonconvergence. 

(d) Compare results obtained with and without the use of importance sampling, or using 
different choices of P,or using different random numbers, or using the Markov chain method 
and some other numerical method, for which adequate assessment of the error may also be 
difficult as is often the case with asymptotic results, for example. 

The illustrations given by Fox & Mayers (1968), for example, show how even the simplest 
of numerical methods may yield spurious results if insufficient care is taken in their use, and 
how difficult it  often is to assess the magnitude of the errors. The discussion above indicates 
that the situation is certainly no better for the Markov chain methods and that they should 
be used with appropriate caution. 

We now consider methods for generating random orthogonal and unitary matrices and 
their application to the evaluation of averages over the orthogonal group with respect to 
invariant measure, a problem considered analytically by James (1955), and to other related 
problems. 

Let H be an orthogonal m x m matrix with IHI = 1 and let Etj(0) be an elementary ortho- 
gonal matrix with elements given by 

eii = cos 0, eij = sin 0, eji = -sin 0, ejj = cos 0, 

eaa= 1 (a+ j ) ,  eap= 0 otherwise, 

for some angle 0. We may generate a sequence of orthogonal matrices H(t) (t  = 1,2,...) 
using Metropolis's method, which is suitable for estimating averages over the orthogonal 
group with respect to invariant measure (dH), in the following way: 

(i) Let H(0) = H,, where H, is an orthogonal matrix. 
(ii) For each t, select i andj at  random from the set (1, ...,m) with i $ j .  Select 0 from the 

uniform distribution on [O, 2n]. 
(iii) Let H1(t) = Eij(0) H(t). 



Since the measure {dH) is left invariant, {dH1(t)) and {dH(t)) are equal and hence, in 
Metropolis's method, the new state is always the newly computed value, i.e. H(t + 1)= H'(t). 
To estimate the integral 

where O(m)denotes the group of orthogonal matrices, we use the estimate 

To remcve the restriction that IHI = 1 we may use the following procedure. After i andj 
are selected as above, select one of i and j a t  random, each with probability +,and call the 
result i'. Multiply the i'th row of Eii(6') by + 1, the sign being selected a t  random, to form 
a new matrix which we denote by Eb(6'); Eij(6') is then used in step (iii) above, in place of 

Eij(6'). 
To show that the Markov chain is irreducible we need only show that every orthogonal 

matrix H may be represented as the product of matrices of the form Elj(@. This, in turn, 
may be done by a simple annihilation argument. Choose 6' so that E12(6') H = H(1) has the 
element hi;) = 0. Choose 6' so that El,(6') Hcl) = Hc2) has elements hi;) = hat) = 0. Continue in 
this way until we have the matrix Hcm-l) with the first column annihilated. Since Hem-l) is 
orthogonal, we must have hi7-l) = ... = hi:-') = 0 and = i1. Continuing this pro- 
cedure we may annihilate the remaining off diagonal elements and obtain a diagonal 
matrix with elements i1 on the diagonal. The desired factorization is easily deduced 
from this. 

We now show that the process, by which the sequence of orthogonal matrices is generated, 
is numerically stable. Denote the computed values of H(t) and Eij(6') by H,(t) and E,(t). Let 
H,(t) = H(t)+He(t), E,(t) = Eij(6') +E,(t) and H,(t + 1) = E,(t) H,(t) +F(t). We are interested 
in how far He(t) is from zero, which we measure by IjHe(t)jl, where the Euclidean norm IIAll 
of a matrix A is defined by 

Using the fact that 11 All is preserved under orthogonal transformations and the inequalities 
j/ABl/6 /IA// I/B/I and IIA +Blj < llA//+ l/Bl/, we can easily show that 

where k is chosen such that //Ec(t)/l + //F(t)/l< k for a11 t, and by induction that IIH,(t)l/ < q, 
where U, is the solution of the difference equation U,,, = (1+k)U, +k with U, = //He(0)l/. 
Solving the difference equation, we arrive at  the bound 

Therefore, unless the word length of the computer is short or t is very large, the accumula- 
tion of error may be neglected since, for all t, / I  F(t)l/ will be small in view of the few arithmetic 
operations involved in forming the elements of the product E,(t) H,(t), and l/Ee(t)/l will also 
be small if the method below is used for the generation of the four nontrivial elements of 
E,(t).'For short computer word length or very large t, orthonormalization of the columns 
of H,(t) a t  regular intervals will prevent excessive accumulation of error. 
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One method for computing cos 8 and sin 8 required in Eij(8) is that of von Neumann. 
Let Ul and U2 be independent and uniformly distributed on [0, 11. If U2,+ U; < 1, compute 

where the sign of sin 8 is chosen at  random. If U2, + UE z 1,obtain new values of Ul and U2 
until U2,+ U;  < 1. 

Example 4. When f(H) = h!l +...+hh,, then J = 1. Using N = 1000,L = 25, m = 50 and 
H(0) = I, we obtained the estimate j = 3.5 with standard deviation 1.5. This estimate is 
poor because of the very poor choice for H(0) but the estimated standard deviation gives us 
adequate warning. It would be natural to increase the sample size N in order to obtain 
greater precision but this may also be achieved by a better choice of H(0) with a saving in 
computer time. For problems of the kind being considered here the following choice of H(0) 
is generally useful and better than that considered above. For j = 1, ...,m and form even, set 

h,, = J(2/m) cos { ( j  - 1)( r-2) 2n/m) ( r  = 3,4, . . . ,+m+1), 

h ( 2 / ) i n { ( - 1 - m - 1 ) 2 / m  ( s = + m + 2 ,  ...,m). 

For m odd a similar choice for H(0) may be made. Using this matrix for H(O), we obtained 
the estimate 1= 0.96 with standard deviation 0.03; the computer time required was 
0.08 minutes. 

The techniques discussed above may be applied to the following problems: 
(i) To generate random permutation matrices we set 8 = ST. To generate random 

permutations, of m elements, at  each time t, we interchange a randomly selected pair of 
elements in the latest permutation in order to generate a new permutation. 

(ii) To generate k orthogonal vectors in m dimensions we replace H(t) by an m x k matrix 
where columns will be the desired vectors. 

(iii) To generate random unitary matrices the above procedure for orthogonal matrices 
is modified as follows: 

In  place of Eij(8) we use an elementary unitary matrix Uij(8, 4)with elements given by 

qi= cos 8, q, = e-i+ sin 8, qi= -ei$ sin 8, q, = cos 8, 

Uaa = 1 (a+ j )  Uap= 0 otherwise. 

The matrix U&(8, 4 ) is obtained by multiplying the i th row of Ulj(8, 4) by eiy. Here, 8, 4 
and y are chosen to be independent and uniformly distributed on [0,2~]. Irreducibility may 
again be established by an annihilation argument and the proof of numerical stability given 
above requires only minor modifications. 

(iv) To sample from a distribution defined on a group G = {g), the transition matrix Q 
must generate gl(t) from g(t), and this may be done by arranging that gf(t) = hg(t), where 
h e  G and h is chosen from some distribution on G. If the probability element for g is 
p(g) {dp(g)), where p is the left invariant measure on G, then the ratio corresponding to 
n,/ni is p{gl(t))/p{g(t)). AS above we must ensure that g(t) is close to being a group element. 

(v) To generate samples from a distribution with probability element 



we may remove the integral and sample from q(x,H){dH)dx with, unfortunately, a 
consequent increase in the dimension of the space being sampled. The sampling may be 
carried out by combining the methods of 5 2.4, alternating the changes of x and H, with the 
techniques given above for orthogonal matrices. Note that the value of the test ratio for 
changing H will no longer be unity. More generally, sampling from any distribution whose 
density may be expressed as an average may be accomplished in a similar way. Many of the 
normal theory distributions of multivariate analysis given by James (1964) have this form. 

I n  the method described above for orthogonal matrices the successive matrices are 
statistically dependent and we now consider a method in which successive matrices are . -

independent. Let xi,. (i = 1, .. . ,k; j = 1, . . .,m) be independent standard normal variates 
and form the k vectors 

xi = (xil, ...,xim) (i = 1,2,...,k). 

If we now apply a Gram-Schmidt orthonormalization to these vectors, we will obtain 
k vectors yi with the desired properties, since it is easy to see that the joint distribution of 
the yi's will be unchanged if they are subjected to an arbitrary orthogonal transformation. 
For the case k = 1, see Tocher (1963). For each set of k orthogonal vectors generated by this 
procedure we require mk standard normal deviates, k square roots and, approximately, 
2mk2 arithmetic operations. The Markov chain method, on the other hand, requires only 
6k arithmetic operations and the cosine and sine of a uniformly distributed angle and, if 
the function f ( .) being averaged is evaluated only a t  times T,2T, .. . ,we must have T as 
large as +mk before the computing times of the two procedures are comparable. The 
degree of correlation amongst the sample values for the Markov chain method will depend 
upon the particular function f ( .) and will determine, ignoring error analysis considerations, 
which of the two methods is better. 
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