Let us continue in the context of homework 1 and homework 2, where we modeled the relationship between per capita spending (y) on public schools as a linear function of per capita income (x). The data is in the file spending.txt and

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i \quad \epsilon_i \sim (0, \sigma^2),$$

where we entertain three models:

- M_1: $\epsilon_i \sim N(0, \sigma^2)$ and $\beta \sim N(b_0, \sigma^2 B_0)$
- M_2: $\epsilon_i \sim N(0, \sigma^2)$ and $\beta \sim N(b_0, B_0)$
- M_3: $\epsilon_i \sim t_\nu(0, \sigma^2)$ and $\beta \sim N(b_0, \sigma^2 B_0)$

with $\sigma^2 \sim IG(\eta_0/2, \eta_0 \nu_0^2/2)$ for $M_i, i = 1, 2, 3$, and $\nu = 4.46$ for M_3. The hyperparameters b_0, B_0, a and b are obtained such that, a priori, $E(\beta|M_i) = (-70, 600)'$, $V(\beta|M_i) = 10000I_2$, $E(\sigma^2|M_i) = 3750$ and $V(\sigma^2|M_i) = 1562500$, for $i = 1, 2, 3$.

a) Compute Bayes factors B_{12}, B_{13} and B_{23}.

b) Draw $p(y_{\text{new}}|x_{\text{new}} = 800, x, y, M_i)$ for $i = 1, 2, 3$.

c) Draw $p(y_{\text{new}}|x_{\text{new}} = 800, x, y)$.

d) Compute the DIC(M_i), for $i = 1, 2, 3$.

Note:

1) Recall that $B_{ij} = p(y|x, M_i)/p(y|x, M_j)$.

2) In a) $p(y|x, M_1)$ has to be derived analytically.

3) In b) $p(y_{\text{new}}|x_{\text{new}} = 800, x, y, M_1)$ has to be derived analytically.