BAYESIAN ECONOMETRICS SPRING 2013
TAKE HOME MIDTERM EXAM SOLUTION

Let us continue in the context of homework 1 and homework 2, where we modeled the
relationship between per capita spending (y) on public schools as a linear function
of per capita income (z). The data is in the file spending.txt and

Yi = Bo+ frxi + € e ~ (0,07,
where we entertain three models:
Mi: € ~ N(0,0?) and S|o? ~ N(by, 0% By)
My: €, ~ N(0,02) and 3 ~ N(by, By)
Ms: € ~t,(0,0%) and B|o? ~ N(by, o By)

with 0% ~ IG(no/2,m0s3/2) for M;,i = 1,2,3, and v = 4.46 for Mjz. The hyperpa-
rameters by, By, a and b are obtained such that, a priori, E(8|M;) = (=70,600),
V(BIM,) = 1000015, E(02|M,) = 3750 and V (02|M,) = 1562500, for i = 1,2, 3.

a) Compute Bayes factors By, Bz and Bag.
b) Draw p(Ynew|Tnew = 8000, x,y, M;) for i = 1,2, 3.
¢) Draw p(Ynew|Tnew = 8000, x, 7).
d) Compute the DIC(M,), for i = 1,2, 3.
Note:
1) Recall that B;; = p(y|z, M;)/p(y|z, M;).
2) In a) p(y|x, M;) has to be derived analytically.

3) In b) p(Ynew|Tnew = 8000, z,y, M7) has to be derived analytically.



Solution

Prior distributions

For all models (i = 1,2, 3), the prior of ¢? is the same

7705(2)/2 _ Mo 2
n/2—1 ny—2"°
{E(02|./\/li)}2 B 7500

(m0/2 —2) no— 4’

so 1g = 4.0048 and s3 = 1877 (rounded to the nearest integer). The hyperparameter
bo = (=70,600)" is the same for all models. However, By varies with the model
structure. For model My, V(5) = By = 10000/5, while for models M; and M3,
V(ﬁ) = 770/(770 - 2)8330, SO BQ = 2667]2

E(c?|M;) = 3750 =

V(e*M;) = 1562500 =

Posterior distributions

Model M;. This is the textbook normal linear regression model with conjugate
priors, which leads to

B|0-27yal‘7M1 ~ N(b170231)
ly,z, My~ IG(n1/2,m571/2),

where 71 = 19 + n,

Bi' = By'+X'X
B;lbl = Balbo + le
ms; = mosg+ (y— Xb1)'y+ (bo — b1)' By by,

and X is a (n x 2) matrix with ones in the first column and = = (z1,...,x,)" in the
second column, and y = (y1,...,y,)". It also follows that S|y, x, My ~ t,, (b1, s1B).

Model M;. Model M, is the normal linear regression model with conditionally
conjugate priors, with full conditionals given by

5’027?%1;7-/\/12 ~ N(bbBl)
0'2|B,y,$7M2 ~ ]G(n1/2’n18%/2)’



where 71 = 19 + n and
Bi' = By'+X'X/o?
By = Bylby+ X'y/o?
msi = msp+ (y— XB)'(y — Xp)/o%.
The Gibbs sampler iterates between these two full conditionals and, after convergence

of the MCMC chain, produces draws from p(3, 02|y, z, Ms,). Notice that B; =
Bi(0?), by = by(0?) and s? = s3(B).

Model Mj3. We can use the same data augmentation argument applied to derived
the Gibbs sampler for posterior inference in homework assignment 2. More precisely,
the error term ¢; ~ t,(0,0?) is replaced (by data augmentation) by the pair ¢ ~
N(0,\;0%) and \; ~ IG(v/2,v/2). Then, it can be shown that
ﬁ|0-27 Y, x, /\7 M3 ~ N(bb UzBl)
0-2|y7 Z, /\7 M3 ~ ]G<771/2’ 7718%/2)’

where m1 = 1o + n,

Byt = By'+ X'A'X

B;lbl = Balbo + X/Aily

ms: = mose+ (y — Xb1) Aty 4 (bo — b1) By *bo,

A= (A1,...,\) and A = diag(\). Therefore, the Gibbs sampler is such that 8 and

o? are sampled jointly and conditionally on X. The full conditional distribution of

A, for e =1,...,n is given by

R _ N2/ ~2
)\i‘yi,xi,ﬁ,az,/\/lg ~ IG (V+1 V+(yl 60 611'1) /O' )

2 2
Notice that by = by (\), By = Bi()\) and 52 = s3()\).

Predictives

Model M;. It can be shown (we’'ve shown in class!) that the prior predictive
density and that the posterior predictive for a new observation v, are given by

plylz, M1) = pi(y; Xbo, s5(L, + X BoX'),m0)
p(@/n+1|$n+1>y,$>/\41) = pt(yn+1§£/b175%(1+*%/Blj')a771)>

respectively, where Z = (1,x,41)" and p;(y; u, 0?) is the density of a (univariate or
multivariate) Student’s ¢ distribution with location y and scale o2 evaluated at y.
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Model M,. Prior and posterior draws of 02 can be used to approximate, by Monte
Carlo integration, p(y|x, Ms) and p(yni1|Tni1, x,y, Ms) (this is raoblackwellization
in action!). More precisely, it is easy to see that

p(ylz, 0%, My) = pu(y; Xbo,0°I, + X BoX')
P(Yns1|Tni1, Y, 8, M2, 0°) = pp(Yngr; br, 07 + T Bi ),

where & = (1,z,.1). Here p,(y; u,0?) is the density of a (univariate or multivari-
ate) normal distribution with mean p and variance o? evaluated at y. The MC
approximations to the prior and posterior predictive densities are

M
1 ~9(i
puc(yle, Ma) = ME pn(y; Xbo, 721, + X BoX')
=1

M
1 ~q (2 s ~ 1) ~
pvc(Yn+1|Tns1, y, 2, Ma) = Man(ynH;xbg),az()—l—x’Bpx),

=1

respectively, where {52 }M are draws from the prior p(c?| M), and {o?@} M are
draws from the posterior p(o2|y, z, My) and the pairs {(by, B;)®}M, are moments
of the full conditional of 3|c?, A, all obtained via a Gibbs sampler (as in homework
assignment 2). Finally, from standard matrix algebra, it can be shown that

(021, + XBoX') ' =072 (I, + X (a?By ' + X'X) ' X)

with the left-hand side involving the inversion of a n x n matrix and the right-hand
side involving the inversion of a much smaller 2 x 2 matrix. This will make the
computation of p(y|z, Ms) obviously faster.

Model M;
Conditional on A and A, 1, it follows from the derivations under model M, that:
pylz, A\, M3) = pi(y; Xbo, s5(A+ XBoX"), mp)
PWnt1]Tns1, U, T A A1, M) = pe(Yngr; E'b1, 5T (A1 + 3 BiZ), m),

where, again, & = (1,2,41). Therefore, the MC approximations to the prior and
posterior predictive densities are

puc(yle, M) = pe(y; Xbo, s3(AY + X BoX'"), 1)
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quantities {(ny,s%, b1, B1)@}M, are full conditional sufficient statistics obtained via
Gibbs sampler and all functions of posterior draws {A\®}M,

respectively, where {A®}M and {A") M are iid. draws from IG(v/2,v/2). The

DIC

Recall that the deviance information criterion is defined as
DIC(M) = —4Epj, . m {log p(ylz, 0, M)} + 2log p(ylz, §, M)

where 6 = E(0|z,y, M). For My, it follows that 6 = by. For Ms, 6 can be approxi-
mated via MC integration by

1 & 1 &
M =1 M =1

where XV, for ¢ = 1,..., M, are draws from p(Aly, x, M3), obtained via a Gibbs
sampler (as in homework assignment 2). For Ms, 6 can be approximated, also via
MC integration, by

1 X 1 &
3 B0l 5,0, M) = =3 bi(020)
=1 i=1

where 02 for i = 1,..., M, are draws from p(c2|y, z, Ms), obtained via a Gibbs

sampler (as in homework assignment 2).
The log-likelihood densities are

i — Bo — 51%’)2

o2

Li=c —05nlogo® — 0.5 (y

i=1

for models M; and My and ¢; = —0.5n log 27, and

1 (yi — fBo— 51%)2)

Ly = c3 — 0.5nlogo? — 0.5(v + 1) ;log (1 +- 3

for model M3 and ¢z = n (logI'((v 4+ 1)/2) — logI'(v/2)) — 0.5nlog mv. Therefore,
the posterior expectation of Ly (for i = 1,2) is

ci — 0.5n {E(log o?|z,y, M;) + E(Boo |z, y,/\/li)}
— 05 (Z yl) BE(o 2|z, y, M;) — 0.5 <Z x) E(Bio 2|z, y, M),
i=1 =1
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an the posterior expectation of Lj is

n - _ )2
c3—0.5nE (log 0|z, y, M3)—0.5(v+1) ZE {log (1 + % 4: = Fo 5 Az ) | y,$,./\/l3} :

- g
=1

Results

Summary of the posterior distributions for each model appear in Table 1, while
the posterior predictive densities for Yne, given Tpe, = 8000, i.e. p(Ynew|Tnew =
8000, z,y, M;) for ¢ = 1,2,3, appear in Figure 1. The Bayes factors are B3, =
2955806, B3y, = 2.870907¢'%? and By, = 9.712772¢!%5. Following Jeffreys (1961)
recommendations, there is decisive evidence against models M; and M. In addition,
when prior model probabilities are uniform, i.e. Pr(M;) = 1/3, for i = 1,2, 3, then
posterior model probabilities are

_ 1
==
Zj:l Biji

or Pr(M;sly,z) = 0.9999996616829 = 1 — Pr(M,|y,z). The DICs for models M;,
My and M3 are, respectively, —336.6, —328.2 and 551.0030, suggesting that model
M, is the best of the three models.

Pr(M;ly, x) i=1,2,3,



Model M; - log p(y|z, M;) = 145.7119

Parameter Mean Standard Percentiles
deviation  2.5% Median 97.5%
5o -112.9 43.9 -2009 -112.9 -249
551 639.4 57.0  525.1 639.4  753.7
o? 3675.8 735.1 2508.8 3583.9 5371.2
Model My - log p(y|z, M;) = —282.5398
Parameter Mean Standard Percentiles
deviation  2.5% Median 97.5%
5o -113.0 439 -199.1 -1134 -31.5
51 639.7 56.7  533.1 640.7  750.5
o? 3787.4 787.9 2573.0 3665.6 5562.4
Model M3 - log p(y|x, M;) = 160.6112
Parameter Mean Standard Percentiles
deviation ~ 2.5% Median 97.5%
Bo -78.1 37.2 -150.0 =777 -7.4
51 585.0 49.7  489.7 583.6  684.8
o? 2131.0 560.9 1250.9 2038.6 3457.8

Table 1: Posterior summaries for the three models. The Gibbs samplers for models
My and M3y are run for a total of 11,000 draws, with the first 1,000 discarded
(burn-in) and keeping every 10th after that (1000 draws from the posteriors). OLS
estimates are used as initial values for the MCMC schemes. See Figures 2 and 3.
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Model M3: Gibbs sampler outputs.
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