
BAYESIAN ECONOMETRICS SPRING 2013
TAKE HOME MIDTERM EXAM SOLUTION

Let us continue in the context of homework 1 and homework 2, where we modeled the
relationship between per capita spending (y) on public schools as a linear function
of per capita income (x). The data is in the file spending.txt and

yi = β0 + β1xi + εi εi ∼ (0, σ2),

where we entertain three models:

M1: εi ∼ N(0, σ2) and β|σ2 ∼ N(b0, σ
2B0)

M2: εi ∼ N(0, σ2) and β ∼ N(b0, B0)

M3: εi ∼ tν(0, σ
2) and β|σ2 ∼ N(b0, σ

2B0)

with σ2 ∼ IG(η0/2, η0s
2
0/2) for Mi, i = 1, 2, 3, and ν = 4.46 for M3. The hyperpa-

rameters b0, B0, a and b are obtained such that, a priori, E(β|Mi) = (−70, 600)′,
V (β|Mi) = 10000I2, E(σ2|Mi) = 3750 and V (σ2|Mi) = 1562500, for i = 1, 2, 3.

a) Compute Bayes factors B12, B13 and B23.

b) Draw p(ynew|xnew = 8000, x, y,Mi) for i = 1, 2, 3.

c) Draw p(ynew|xnew = 8000, x, y).

d) Compute the DIC(Mi), for i = 1, 2, 3.

Note:

1) Recall that Bij = p(y|x,Mi)/p(y|x,Mj).

2) In a) p(y|x,M1) has to be derived analytically.

3) In b) p(ynew|xnew = 8000, x, y,M1) has to be derived analytically.



Solution

Prior distributions

For all models (i = 1, 2, 3), the prior of σ2 is the same

E(σ2|Mi) = 3750 =
η0s

2
0/2

η0/2− 1
=

η0
η0 − 2

s20

V (σ2|Mi) = 1562500 =
{E(σ2|Mi)}2

(η0/2− 2)
=

7500

η0 − 4
,

so η0 = 4.0048 and s20 = 1877 (rounded to the nearest integer). The hyperparameter
b0 = (−70, 600)′ is the same for all models. However, B0 varies with the model
structure. For model M2, V (β) = B0 = 10000I2, while for models M1 and M3,
V (β) = η0/(η0 − 2)s20B0, so B0 = 2.667I2.

Posterior distributions

Model M1. This is the textbook normal linear regression model with conjugate
priors, which leads to

β|σ2, y, x,M1 ∼ N(b1, σ
2B1)

σ2|y, x,M1 ∼ IG(η1/2, η1s
2
1/2),

where η1 = η0 + n,

B−11 = B−10 +X ′X

B−11 b1 = B−10 b0 +X ′y

η1s
2
1 = η0s

2
0 + (y −Xb1)′y + (b0 − b1)′B−10 b0,

and X is a (n× 2) matrix with ones in the first column and x = (x1, . . . , xn)′ in the
second column, and y = (y1, . . . , yn)′. It also follows that β|y, x,M1 ∼ tη1(b1, s

2
1B1).

Model M2. Model M2 is the normal linear regression model with conditionally
conjugate priors, with full conditionals given by

β|σ2, y, x,M2 ∼ N(b1, B1)

σ2|β, y, x,M2 ∼ IG(η1/2, η1s
2
1/2),
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where η1 = η0 + n and

B−11 = B−10 +X ′X/σ2

B−11 b1 = B−10 b0 +X ′y/σ2

η1s
2
1 = η0s

2
0 + (y −Xβ)′(y −Xβ)/σ2.

The Gibbs sampler iterates between these two full conditionals and, after convergence
of the MCMC chain, produces draws from p(β, σ2|y, x,M2). Notice that B1 ≡
B1(σ

2), b1 ≡ b1(σ
2) and s21 ≡ s21(β).

ModelM3. We can use the same data augmentation argument applied to derived
the Gibbs sampler for posterior inference in homework assignment 2. More precisely,
the error term εi ∼ tν(0, σ

2) is replaced (by data augmentation) by the pair εi ∼
N(0, λiσ

2) and λi ∼ IG(ν/2, ν/2). Then, it can be shown that

β|σ2, y, x, λ,M3 ∼ N(b1, σ
2B1)

σ2|y, x, λ,M3 ∼ IG(η1/2, η1s
2
1/2),

where η1 = η0 + n,

B−11 = B−10 +X ′Λ−1X

B−11 b1 = B−10 b0 +X ′Λ−1y

η1s
2
1 = η0s

2
0 + (y −Xb1)′Λ−1y + (b0 − b1)′B−10 b0,

λ = (λ1, . . . , λn)′ and Λ = diag(λ). Therefore, the Gibbs sampler is such that β and
σ2 are sampled jointly and conditionally on λ. The full conditional distribution of
λi, for i = 1, . . . , n is given by

λi|yi, xi, β, σ2,M3 ∼ IG

(
ν + 1

2
,
ν + (yi − β0 − β1xi)2/σ2

2

)
.

Notice that b1 ≡ b1(λ), B1 ≡ B1(λ) and s21 ≡ s21(λ).

Predictives

Model M1. It can be shown (we’ve shown in class!) that the prior predictive
density and that the posterior predictive for a new observation yn+1 are given by

p(y|x,M1) = pt(y;Xb0, s
2
0(In +XB0X

′), η0)

p(yn+1|xn+1, y, x,M1) = pt(yn+1; x̃
′b1, s

2
1(1 + x̃′B1x̃), η1),

respectively, where x̃ = (1, xn+1)
′ and pt(y;µ, σ2) is the density of a (univariate or

multivariate) Student’s t distribution with location µ and scale σ2 evaluated at y.
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ModelM2. Prior and posterior draws of σ2 can be used to approximate, by Monte
Carlo integration, p(y|x,M2) and p(yn+1|xn+1, x, y,M2) (this is raoblackwellization
in action!). More precisely, it is easy to see that

p(y|x, σ2,M2) = pn(y;Xb0, σ
2In +XB0X

′)

p(yn+1|xn+1, y, x,M2, σ
2) ≡ pn(yn+1; x̃b1, σ

2 + x̃′B1x̃),

where x̃ = (1, xn+1)
′. Here pn(y;µ, σ2) is the density of a (univariate or multivari-

ate) normal distribution with mean µ and variance σ2 evaluated at y. The MC
approximations to the prior and posterior predictive densities are

pMC(y|x,M2) =
1

M

M∑
i=1

pn(y;Xb0, σ̃
2(i)In +XB0X

′)

pMC(yn+1|xn+1, y, x,M2) =
1

M

M∑
i=1

pn(yn+1; x̃b
(i)
1 , σ

2(i) + x̃′B
(i)
1 x̃),

respectively, where {σ̃2(i)}Mi=1 are draws from the prior p(σ2|M2), and {σ2(i)}Mi=1 are
draws from the posterior p(σ2|y, x,M2) and the pairs {(b1, B1)

(i)}Mi=1 are moments
of the full conditional of β|σ2, λ, all obtained via a Gibbs sampler (as in homework
assignment 2). Finally, from standard matrix algebra, it can be shown that(

σ2In +XB0X
′)−1 = σ−2

(
In +X(σ2B−10 +X ′X)−1X ′

)
,

with the left-hand side involving the inversion of a n× n matrix and the right-hand
side involving the inversion of a much smaller 2 × 2 matrix. This will make the
computation of p̂(y|x,M2) obviously faster.

Model M3

Conditional on λ and λn+1, it follows from the derivations under model M1 that:

p(y|x, λ,M3) = pt(y;Xb0, s
2
0(Λ +XB0X

′), η0)

p(yn+1|xn+1, y, x, λ, λn+1,M3) = pt(yn+1; x̃
′b1, s

2
1(λn+1 + x̃′B1x̃), η1),

where, again, x̃ = (1, xn+1)
′. Therefore, the MC approximations to the prior and

posterior predictive densities are

pMC(y|x,M3) =
1

M

M∑
i=1

pt(y;Xb0, s
2
0(Λ̃

(i) +XB0X
′), η0)

pMC(yn+1|xn+1, y, x,M3) =
1

M

M∑
i=1

pt(yn+1; x̃
′b
(i)
1 , s

2(i)
1 (λ

(i)
n+1 + x̃′B

(i)
1 x̃), η

(i)
1 ),
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respectively, where {λ̃(i)}Mi=1 and {λ(i)n+1}Mi=1 are i.i.d. draws from IG(ν/2, ν/2). The
quantities {(η1, s21, b1, B1)

(i)}Mi=1 are full conditional sufficient statistics obtained via
Gibbs sampler and all functions of posterior draws {λ(i)}Mi=1.

DIC

Recall that the deviance information criterion is defined as

DIC(M) = −4Eθ|y,x,M {log p(y|x, θ,M)}+ 2 log p(y|x, θ̂,M)

where θ̂ = E(θ|x, y,M). For M1, it follows that θ̂ = b1. For M3, θ̂ can be approxi-
mated via MC integration by

1

M

M∑
i=1

E(θ|x, y, λ(i),M3) =
1

M

M∑
i=1

b1(λ
(i)),

where λ(i), for i = 1, . . . ,M , are draws from p(λ|y, x,M3), obtained via a Gibbs
sampler (as in homework assignment 2). For M2, θ̂ can be approximated, also via
MC integration, by

1

M

M∑
i=1

E(θ|x, y, σ(i),M2) =
1

M

M∑
i=1

b1(σ
2(i))

where σ2(i), for i = 1, . . . ,M , are draws from p(σ2|y, x,M2), obtained via a Gibbs
sampler (as in homework assignment 2).

The log-likelihood densities are

L1 = c1 − 0.5n log σ2 − 0.5
n∑
i=1

(yi − β0 − β1xi)2

σ2

for models M1 and M2 and c1 = −0.5n log 2π, and

L3 = c3 − 0.5n log σ2 − 0.5(ν + 1)
n∑
i=1

log

(
1 +

1

ν

(yi − β0 − β1xi)2

σ2

)
for model M3 and c3 = n (log Γ((ν + 1)/2)− log Γ(ν/2)) − 0.5n log πν. Therefore,
the posterior expectation of L1 (for i = 1, 2) is

c1 − 0.5n
{
E(log σ2|x, y,Mi) + E(β0σ

−2|x, y,Mi)
}

− 0.5

(
n∑
i=1

yi

)
E(σ−2|x, y,Mi)− 0.5

(
n∑
i=1

xi

)
E(β1σ

−2|x, y,Mi),
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an the posterior expectation of L3 is

c3−0.5nE(log σ2|x, y,M3)−0.5(ν+1)
n∑
i=1

E

{
log

(
1 +

1

ν

(yi − β0 − β1xi)2

σ2

)
| y, x,M3

}
.

Results

Summary of the posterior distributions for each model appear in Table 1, while
the posterior predictive densities for ynew given xnew = 8000, i.e. p(ynew|xnew =
8000, x, y,Mi) for i = 1, 2, 3, appear in Figure 1. The Bayes factors are B31 =
2955806, B32 = 2.870907e192 and B12 = 9.712772e185. Following Jeffreys (1961)
recommendations, there is decisive evidence against modelsM1 andM2. In addition,
when prior model probabilities are uniform, i.e. Pr(Mi) = 1/3, for i = 1, 2, 3, then
posterior model probabilities are

Pr(Mi|y, x) =
1∑3

j=1Bji

i = 1, 2, 3,

or Pr(M3|y, x) = 0.9999996616829 = 1 − Pr(M1|y, x). The DICs for models M1,
M2 and M3 are, respectively, −336.6, −328.2 and 551.0030, suggesting that model
M1 is the best of the three models.
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Model M1 - log p(y|x,M1) = 145.7119
Parameter Mean Standard Percentiles

deviation 2.5% Median 97.5%
β0 -112.9 43.9 -200.9 -112.9 -24.9
β1 639.4 57.0 525.1 639.4 753.7
σ2 3675.8 735.1 2508.8 3583.9 5371.2

Model M2 - log p(y|x,M1) = −282.5398
Parameter Mean Standard Percentiles

deviation 2.5% Median 97.5%
β0 -113.0 43.9 -199.1 -113.4 -31.5
β1 639.7 56.7 533.1 640.7 750.5
σ2 3787.4 787.9 2573.0 3665.6 5562.4

Model M3 - log p(y|x,M1) = 160.6112
Parameter Mean Standard Percentiles

deviation 2.5% Median 97.5%
β0 -78.1 37.2 -150.0 -77.7 -7.4
β1 585.0 49.7 489.7 583.6 684.8
σ2 2131.0 560.9 1250.9 2038.6 3457.8

Table 1: Posterior summaries for the three models. The Gibbs samplers for models
M2 and M3 are run for a total of 11,000 draws, with the first 1,000 discarded
(burn-in) and keeping every 10th after that (1000 draws from the posteriors). OLS
estimates are used as initial values for the MCMC schemes. See Figures 2 and 3.
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Figure 1: Posterior predictives p(ynew|xnew = 8000, x, y,Mi) for i = 1, 2, 3.

8



beta0

Iterations

0 200 400 600 800 1000

−
25

0
−

20
0

−
15

0
−

10
0

−
50

0

0 5 10 15 20 25 30
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

D
en

si
ty

−250 −200 −150 −100 −50 0 50

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

beta1

Iterations

0 200 400 600 800 1000

50
0

60
0

70
0

80
0

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

D
en

si
ty

400 500 600 700 800

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6

sig2

Iterations

0 200 400 600 800 1000

20
00

30
00

40
00

50
00

60
00

70
00

80
00

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

D
en

si
ty

2000 4000 6000 8000

0e
+

00
1e

−
04

2e
−

04
3e

−
04

4e
−

04
5e

−
04

Figure 2: Model M2: Gibbs sampler outputs.
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Figure 3: Model M3: Gibbs sampler outputs.
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