BAYESIAN ECONOMETRICS TAKE HOME MIDTERM EXAM

Let us continue in the context of homework 1 and homework 2, where we modeled the relationship between per capita spending (y) on public schools as a linear function of per capita income (x). The data is in the file spending.txt and

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i \qquad \epsilon_i \sim (0, \sigma^2),$$

where we entertain three models:

 $\mathcal{M}_1: \ \epsilon_i \sim N(0, \sigma^2) \text{ and } \beta | \sigma^2 \sim N(b_0, \sigma^2 B_0)$ $\mathcal{M}_2: \ \epsilon_i \sim N(0, \sigma^2) \text{ and } \beta \sim N(b_0, B_0)$ $\mathcal{M}_3: \ \epsilon_i \sim t_{\nu}(0, \sigma^2) \text{ and } \beta | \sigma^2 \sim N(b_0, \sigma^2 B_0)$

with $\sigma^2 \sim IG(\eta_0/2, \eta_0 s_0^2/2)$ for $\mathcal{M}_i, i = 1, 2, 3$, and $\nu = 4.46$ for \mathcal{M}_3 . The hyperparameters b_0, B_0, a and b are obtained such that, a priori, $E(\beta|\mathcal{M}_i) = (-70, 600)'$, $V(\beta|\mathcal{M}_i) = 10000I_2, E(\sigma^2|\mathcal{M}_i) = 3750$ and $V(\sigma^2|\mathcal{M}_i) = 1562500$, for i = 1, 2, 3.

- a) Compute Bayes factors B_{12} , B_{13} and B_{23} .
- b) Draw $p(y_{new}|x_{new} = 8000, x, y, \mathcal{M}_i)$ for i = 1, 2, 3.
- c) Draw $p(y_{new}|x_{new} = 8000, x, y)$.
- d) Compute the DIC(\mathcal{M}_i), for i = 1, 2, 3.

Note:

- 1) Recall that $B_{ij} = p(y|x, \mathcal{M}_i)/p(y|x, \mathcal{M}_j).$
- 2) In a) $p(y|x, \mathcal{M}_1)$ has to be derived analytically.
- 3) In b) $p(y_{new}|x_{new} = 8000, x, y, \mathcal{M}_1)$ has to be derived analytically.

Solution

Prior distributions

For all models (i = 1, 2, 3), the prior of σ^2 is the same

$$E(\sigma^{2}|\mathcal{M}_{i}) = 3750 = \frac{\eta_{0}s_{0}^{2}/2}{\eta_{0}/2 - 1} = \frac{\eta_{0}}{\eta_{0} - 2}s_{0}^{2}$$
$$V(\sigma^{2}|\mathcal{M}_{i}) = 1562500 = \frac{\{E(\sigma^{2}|\mathcal{M}_{i})\}^{2}}{(\eta_{0}/2 - 2)} = \frac{7500}{\eta_{0} - 4},$$

so $\eta_0 = 4.0048$ and $s_0^2 = 1877$ (rounded to the nearest integer). The hyperparameter $b_0 = (-70, 600)'$ is the same for all models. However, B_0 varies with the model structure. For model \mathcal{M}_2 , $V(\beta) = B_0 = 10000I_2$, while for models \mathcal{M}_1 and \mathcal{M}_3 , $V(\beta) = \eta_0/(\eta_0 - 2)s_0^2 B_0$, so $B_0 = 2.667I_2$.

Posterior distributions

Model \mathcal{M}_1 . This is the textbook normal linear regression model with conjugate priors, which leads to

$$\begin{array}{rcl} \beta | \sigma^2, y, x, \mathcal{M}_1 & \sim & N(b_1, \sigma^2 B_1) \\ \sigma^2 | y, x, \mathcal{M}_1 & \sim & IG(\eta_1/2, \eta_1 s_1^2/2), \end{array}$$

where $\eta_1 = \eta_0 + n$,

$$B_1^{-1} = B_0^{-1} + X'X$$

$$B_1^{-1}b_1 = B_0^{-1}b_0 + X'y$$

$$\eta_1s_1^2 = \eta_0s_0^2 + (y - Xb_1)'y + (b_0 - b_1)'B_0^{-1}b_0,$$

and X is a $(n \times 2)$ matrix with ones in the first column and $x = (x_1, \ldots, x_n)'$ in the second column, and $y = (y_1, \ldots, y_n)'$. It also follows that $\beta | y, x, \mathcal{M}_1 \sim t_{\eta_1}(b_1, s_1^2 B_1)$.

Model \mathcal{M}_2 . Model \mathcal{M}_2 is the normal linear regression model with conditionally conjugate priors, with full conditionals given by

$$\begin{array}{rcl} \beta | \sigma^2, y, x, \mathcal{M}_2 & \sim & N(b_1, B_1) \\ \sigma^2 | \beta, y, x, \mathcal{M}_2 & \sim & IG(\eta_1/2, \eta_1 s_1^2/2), \end{array}$$

where $\eta_1 = \eta_0 + n$ and

$$B_1^{-1} = B_0^{-1} + X'X/\sigma^2$$

$$B_1^{-1}b_1 = B_0^{-1}b_0 + X'y/\sigma^2$$

$$\eta_1 s_1^2 = \eta_0 s_0^2 + (y - X\beta)'(y - X\beta)/\sigma^2.$$

The Gibbs sampler iterates between these two full conditionals and, after convergence of the MCMC chain, produces draws from $p(\beta, \sigma^2 | y, x, \mathcal{M}_2)$. Notice that $B_1 \equiv B_1(\sigma^2)$, $b_1 \equiv b_1(\sigma^2)$ and $s_1^2 \equiv s_1^2(\beta)$.

Model \mathcal{M}_3 . We can use the same data augmentation argument applied to derived the Gibbs sampler for posterior inference in homework assignment 2. More precisely, the error term $\epsilon_i \sim t_{\nu}(0, \sigma^2)$ is replaced (by data augmentation) by the pair $\epsilon_i \sim N(0, \lambda_i \sigma^2)$ and $\lambda_i \sim IG(\nu/2, \nu/2)$. Then, it can be shown that

$$\begin{array}{rcl} \beta | \sigma^2, y, x, \lambda, \mathcal{M}_3 & \sim & N(b_1, \sigma^2 B_1) \\ \sigma^2 | y, x, \lambda, \mathcal{M}_3 & \sim & IG(\eta_1/2, \eta_1 s_1^2/2), \end{array}$$

where $\eta_1 = \eta_0 + n$,

$$B_1^{-1} = B_0^{-1} + X' \Lambda^{-1} X$$

$$B_1^{-1} b_1 = B_0^{-1} b_0 + X' \Lambda^{-1} y$$

$$\eta_1 s_1^2 = \eta_0 s_0^2 + (y - X b_1)' \Lambda^{-1} y + (b_0 - b_1)' B_0^{-1} b_0$$

 $\lambda = (\lambda_1, \ldots, \lambda_n)'$ and $\Lambda = \text{diag}(\lambda)$. Therefore, the Gibbs sampler is such that β and σ^2 are sampled jointly and conditionally on λ . The full conditional distribution of λ_i , for $i = 1, \ldots, n$ is given by

$$\lambda_i | y_i, x_i, \beta, \sigma^2, \mathcal{M}_3 \sim IG\left(\frac{\nu+1}{2}, \frac{\nu+(y_i-\beta_0-\beta_1 x_i)^2/\sigma^2}{2}\right)$$

Notice that $b_1 \equiv b_1(\lambda)$, $B_1 \equiv B_1(\lambda)$ and $s_1^2 \equiv s_1^2(\lambda)$.

Predictives

Model \mathcal{M}_1 . It can be shown (we've shown in class!) that the prior predictive density and that the posterior predictive for a new observation y_{n+1} are given by

$$p(y|x, \mathcal{M}_1) = p_t(y; Xb_0, s_0^2(I_n + XB_0X'), \eta_0)$$

$$p(y_{n+1}|x_{n+1}, y, x, \mathcal{M}_1) = p_t(y_{n+1}; \tilde{x}'b_1, s_1^2(1 + \tilde{x}'B_1\tilde{x}), \eta_1),$$

respectively, where $\tilde{x} = (1, x_{n+1})'$ and $p_t(y; \mu, \sigma^2)$ is the density of a (univariate or multivariate) Student's t distribution with location μ and scale σ^2 evaluated at y.

Model \mathcal{M}_2 . Prior and posterior draws of σ^2 can be used to approximate, by Monte Carlo integration, $p(y|x, \mathcal{M}_2)$ and $p(y_{n+1}|x_{n+1}, x, y, \mathcal{M}_2)$ (this is raoblackwellization in action!). More precisely, it is easy to see that

$$p(y|x, \sigma^2, \mathcal{M}_2) = p_n(y; Xb_0, \sigma^2 I_n + XB_0 X')$$

$$p(y_{n+1}|x_{n+1}, y, x, \mathcal{M}_2, \sigma^2) \equiv p_n(y_{n+1}; \tilde{x}b_1, \sigma^2 + \tilde{x}'B_1\tilde{x}),$$

where $\tilde{x} = (1, x_{n+1})'$. Here $p_n(y; \mu, \sigma^2)$ is the density of a (univariate or multivariate) normal distribution with mean μ and variance σ^2 evaluated at y. The MC approximations to the prior and posterior predictive densities are

$$p_{MC}(y|x, \mathcal{M}_2) = \frac{1}{M} \sum_{i=1}^{M} p_n(y; Xb_0, \tilde{\sigma}^{2(i)}I_n + XB_0X')$$
$$p_{MC}(y_{n+1}|x_{n+1}, y, x, \mathcal{M}_2) = \frac{1}{M} \sum_{i=1}^{M} p_n(y_{n+1}; \tilde{x}b_1^{(i)}, \sigma^{2(i)} + \tilde{x}'B_1^{(i)}\tilde{x}),$$

respectively, where $\{\tilde{\sigma}^{2(i)}\}_{i=1}^{M}$ are draws from the prior $p(\sigma^2|\mathcal{M}_2)$, and $\{\sigma^{2(i)}\}_{i=1}^{M}$ are draws from the posterior $p(\sigma^2|y, x, \mathcal{M}_2)$ and the pairs $\{(b_1, B_1)^{(i)}\}_{i=1}^{M}$ are moments of the full conditional of $\beta|\sigma^2, \lambda$, all obtained via a Gibbs sampler (as in homework assignment 2). Finally, from standard matrix algebra, it can be shown that

$$\left(\sigma^{2}I_{n} + XB_{0}X'\right)^{-1} = \sigma^{-2}\left(I_{n} + X(\sigma^{2}B_{0}^{-1} + X'X)^{-1}X'\right)$$

with the left-hand side involving the inversion of a $n \times n$ matrix and the right-hand side involving the inversion of a much smaller 2×2 matrix. This will make the computation of $\hat{p}(y|x, \mathcal{M}_2)$ obviously faster.

Model \mathcal{M}_3

Conditional on λ and λ_{n+1} , it follows from the derivations under model \mathcal{M}_1 that:

$$p(y|x,\lambda,\mathcal{M}_3) = p_t(y;Xb_0,s_0^2(\Lambda+XB_0X'),\eta_0)$$

$$p(y_{n+1}|x_{n+1},y,x,\lambda,\lambda_{n+1},\mathcal{M}_3) = p_t(y_{n+1};\tilde{x}'b_1,s_1^2(\lambda_{n+1}+\tilde{x}'B_1\tilde{x}),\eta_1),$$

where, again, $\tilde{x} = (1, x_{n+1})'$. Therefore, the MC approximations to the prior and posterior predictive densities are

$$p_{MC}(y|x, \mathcal{M}_3) = \frac{1}{M} \sum_{i=1}^{M} p_t(y; Xb_0, s_0^2(\tilde{\Lambda}^{(i)} + XB_0X'), \eta_0)$$
$$p_{MC}(y_{n+1}|x_{n+1}, y, x, \mathcal{M}_3) = \frac{1}{M} \sum_{i=1}^{M} p_t(y_{n+1}; \tilde{x}'b_1^{(i)}, s_1^{2(i)}(\lambda_{n+1}^{(i)} + \tilde{x}'B_1^{(i)}\tilde{x}), \eta_1^{(i)}),$$

respectively, where $\{\tilde{\lambda}^{(i)}\}_{i=1}^{M}$ and $\{\lambda_{n+1}^{(i)}\}_{i=1}^{M}$ are i.i.d. draws from $IG(\nu/2,\nu/2)$. The quantities $\{(\eta_1, s_1^2, b_1, B_1)^{(i)}\}_{i=1}^{M}$ are full conditional sufficient statistics obtained via Gibbs sampler and all functions of posterior draws $\{\lambda^{(i)}\}_{i=1}^{M}$.

DIC

Recall that the deviance information criterion is defined as

$$DIC(\mathcal{M}) = -4E_{\theta|y,x,\mathcal{M}} \left\{ \log p(y|x,\theta,\mathcal{M}) \right\} + 2\log p(y|x,\hat{\theta},\mathcal{M})$$

where $\hat{\theta} = E(\theta|x, y, \mathcal{M})$. For \mathcal{M}_1 , it follows that $\hat{\theta} = b_1$. For \mathcal{M}_3 , $\hat{\theta}$ can be approximated via MC integration by

$$\frac{1}{M}\sum_{i=1}^{M} E(\theta|x, y, \lambda^{(i)}, \mathcal{M}_3) = \frac{1}{M}\sum_{i=1}^{M} b_1(\lambda^{(i)}),$$

where $\lambda^{(i)}$, for $i = 1, \ldots, M$, are draws from $p(\lambda|y, x, \mathcal{M}_3)$, obtained via a Gibbs sampler (as in homework assignment 2). For \mathcal{M}_2 , $\hat{\theta}$ can be approximated, also via MC integration, by

$$\frac{1}{M} \sum_{i=1}^{M} E(\theta | x, y, \sigma^{(i)}, \mathcal{M}_2) = \frac{1}{M} \sum_{i=1}^{M} b_1(\sigma^{2(i)})$$

where $\sigma^{2(i)}$, for i = 1, ..., M, are draws from $p(\sigma^2 | y, x, \mathcal{M}_2)$, obtained via a Gibbs sampler (as in homework assignment 2).

The log-likelihood densities are

$$L_1 = c_1 - 0.5n \log \sigma^2 - 0.5 \sum_{i=1}^n \frac{(y_i - \beta_0 - \beta_1 x_i)^2}{\sigma^2}$$

for models \mathcal{M}_1 and \mathcal{M}_2 and $c_1 = -0.5n \log 2\pi$, and

$$L_3 = c_3 - 0.5n \log \sigma^2 - 0.5(\nu + 1) \sum_{i=1}^n \log \left(1 + \frac{1}{\nu} \frac{(y_i - \beta_0 - \beta_1 x_i)^2}{\sigma^2} \right)$$

for model \mathcal{M}_3 and $c_3 = n (\log \Gamma((\nu + 1)/2) - \log \Gamma(\nu/2)) - 0.5n \log \pi \nu$. Therefore, the posterior expectation of L_1 (for i = 1, 2) is

$$c_{1} - 0.5n \left\{ E(\log \sigma^{2} | x, y, \mathcal{M}_{i}) + E(\beta_{0} \sigma^{-2} | x, y, \mathcal{M}_{i}) \right\} - 0.5 \left(\sum_{i=1}^{n} y_{i} \right) E(\sigma^{-2} | x, y, \mathcal{M}_{i}) - 0.5 \left(\sum_{i=1}^{n} x_{i} \right) E(\beta_{1} \sigma^{-2} | x, y, \mathcal{M}_{i}),$$

an the posterior expectation of L_3 is

$$c_{3}-0.5nE(\log \sigma^{2}|x,y,\mathcal{M}_{3})-0.5(\nu+1)\sum_{i=1}^{n}E\left\{\log\left(1+\frac{1}{\nu}\frac{(y_{i}-\beta_{0}-\beta_{1}x_{i})^{2}}{\sigma^{2}}\right)\mid y,x,\mathcal{M}_{3}\right\}.$$

Results

Summary of the posterior distributions for each model appear in Table 1, while the posterior predictive densities for y_{new} given $x_{new} = 8000$, i.e. $p(y_{new}|x_{new} = 8000, x, y, \mathcal{M}_i)$ for i = 1, 2, 3, appear in Figure 1. The Bayes factors are $B_{31} = 2955806$, $B_{32} = 2.870907e^{192}$ and $B_{12} = 9.712772e^{185}$. Following Jeffreys (1961) recommendations, there is decisive evidence against models \mathcal{M}_1 and \mathcal{M}_2 . In addition, when prior model probabilities are uniform, i.e. $Pr(\mathcal{M}_i) = 1/3$, for i = 1, 2, 3, then posterior model probabilities are

$$Pr(\mathcal{M}_i|y,x) = \frac{1}{\sum_{j=1}^3 B_{ji}}$$
 $i = 1, 2, 3,$

or $Pr(\mathcal{M}_3|y,x) = 0.9999996616829 = 1 - Pr(\mathcal{M}_1|y,x)$. The DICs for models \mathcal{M}_1 , \mathcal{M}_2 and \mathcal{M}_3 are, respectively, -336.6, -328.2 and 551.0030, suggesting that model \mathcal{M}_1 is the best of the three models.

Model \mathcal{M}_1 - log $p(y x, \mathcal{M}_1) = 145.7119$					
Parameter	Mean				
		deviation	2.5%	Median	97.5%
β_0	-112.9	43.9	-200.9	-112.9	-24.9
β_1	639.4	57.0	525.1	639.4	753.7
σ^2	3675.8	735.1	2508.8	3583.9	5371.2
\qquad					
Parameter	Mean	Standard	Percentiles		
		deviation	2.5%	Median	97.5%
β_0	-113.0	43.9	-199.1	-113.4	-31.5
eta_1	639.7	56.7	533.1	640.7	750.5
σ^2	3787.4	787.9	2573.0	3665.6	5562.4
\qquad					
Parameter	Mean	Standard	Percentiles		
		deviation	2.5%	Median	97.5%
β_0	-78.1	37.2	-150.0	-77.7	-7.4
β_1	585.0	49.7	489.7	583.6	684.8
σ^2	2131.0	560.9	1250.9	2038.6	3457.8

Table 1: Posterior summaries for the three models. The Gibbs samplers for models \mathcal{M}_2 and \mathcal{M}_3 are run for a total of 11,000 draws, with the first 1,000 discarded (burn-in) and keeping every 10th after that (1000 draws from the posteriors). OLS estimates are used as initial values for the MCMC schemes. See Figures 2 and 3.

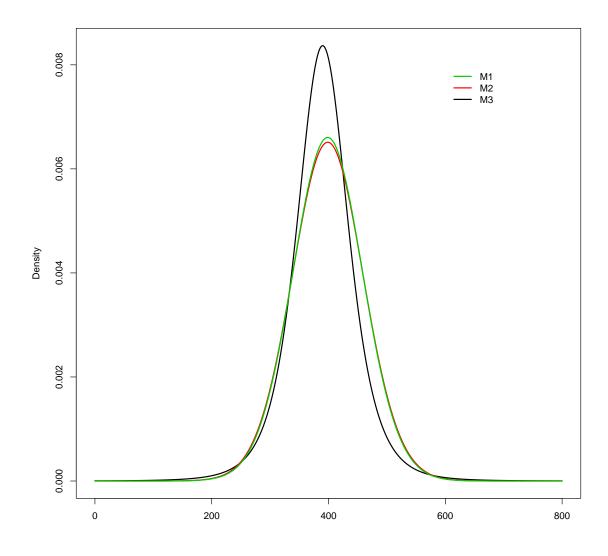


Figure 1: Posterior predictives $p(y_{new}|x_{new} = 8000, x, y, \mathcal{M}_i)$ for i = 1, 2, 3.

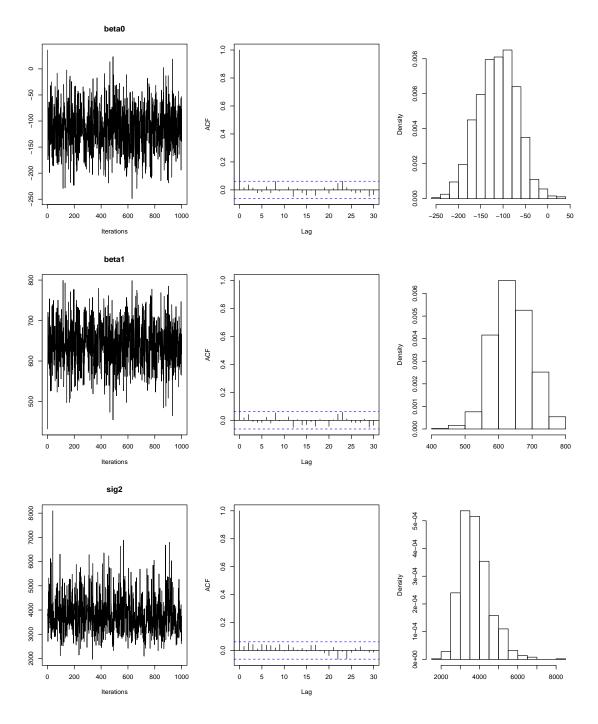


Figure 2: Model \mathcal{M}_2 : Gibbs sampler outputs.

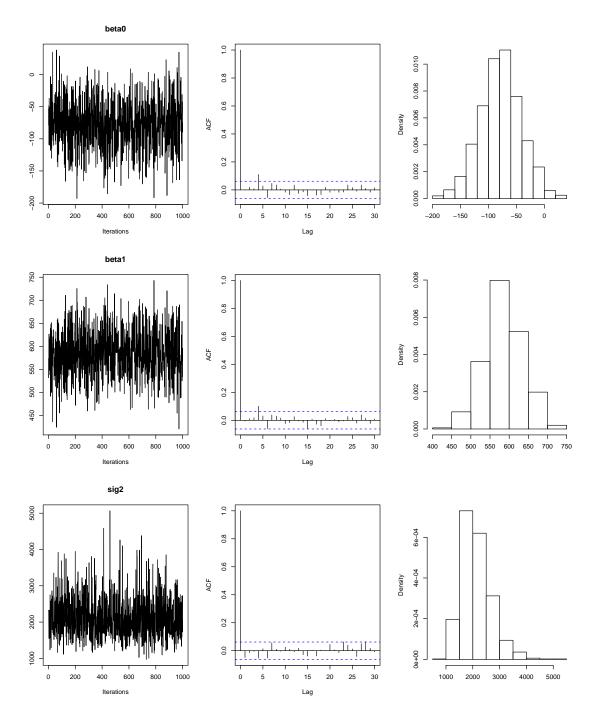


Figure 3: Model \mathcal{M}_3 : Gibbs sampler outputs.