Chicago Booth Business Statistics 41000-81/82 SOLUTION

Spring 2013 Midterm exam

Question I (10): The following table shows public debt (as % of gross domestic product, GDP) for the top 100 countries with largest debts.

	%GDP	Countries	%GDP	Countries	%GDP
Zimbabwe	241.6	Bahrain	59.2	Sweden	40.8
Japan Soint Kitte and	225.8	United States	58.9	Malawi	40.4
Nevis	185.0	Seychelles	58.8	Czech Republic	40.0
Lebanon	150.7	Morocco	58.2	Panama	40.0
Greece	144.0	Bhutan	57.8	Bolivia	39.7
Iceland	123.8	Guyana	57.0	Ethiopia	39.3
Jamaica	123.2	Vietnam 56.7 Bangladesh		39.3	
Italy	118.1	Philippines	hilippines 56.5 Yemen		39.1
Singapore	102.4	Uruguay	56.0	Herzegovina	39.0
Belgium	98.6	India	55.9	Ukraine	38.4
Ireland	94.2	El Salvador	55.0	Switzerland	38.2
Sudan	94.2	Croatia	55.0	Lithuania	36.7
Sri Lanka	86.7	Poland 53.6 Slovenia		Slovenia	35.5
France	83.5	Malaysia	53.1	Romania	34.8
Portugal	83.2	Kenya	50.9	Cuba Dopublic of	34.4
Egypt	80.5	Argentina	50.3	Macedonia	34.2
Belize	80.0	Pakistan	49.9	Canada	34.0
Hungary	79.6	Tunisia	49.5	Taiwan	33.9
Germany	78.8	Turkey	48.1	South Africa	33.2
Nicaragua	78.0	Norway	47.7	Senegal	32.1
Dominica	78.0	Denmark	46.6	Syria	29.8
Israel	77.3	Aruba	46.3	Guatemala	29.6
United Kingdom	76.5	Latvia	46.2	Papua New Guinea	27.8
Malta	72.6	Finland	45.4	Indonesia Trinidad and	26.4
Austria	70.4	Colombia	44.8	Tobago	26.4
Netherlands	64.6	United Arab Emirates	44.6	Honduras	26.1
Spain	63.4	Costa Rica	42.4	Gabon	25.8
Côte d'Ivoire	63.3	Thailand	42.3	Algeria	25.7
Jordan	61.4	Dominican Republic	41.7	New Zealand	25.5
Cyprus	61.1	Mexico	41.5	Venezuela	25.5
Brazil	60.8	Serbia&Montenegro	41.5	Moldova	25.0
Mauritius	60.5	Slovakia	41.0	Zambia	24.1
Ghana	59.9	Mozambique	40.8	South Korea	23.7
Albania	59.3				

a) (2) Describe conceptually what would happen to the sample mean and sample median of the above dataset should South Korea's debt be replaced by 237.0. Conceptually, the mean is more sensitive to changes in the extremities of the sample while the sample median is more robust or less sensitive.

b) (2) Which countries correspond to the three quartiles of debts? Since there are 100 countries, the median is the average of the debts of the middle two countries (Pakistan and Argentina): (50.3+49.9)/2 = 50.1. The 1st quartile is the median of the 1st half of the data. Since there are 50 countries in the 1st half of the data, the median is the average of the debts of the middle two countries (Bosnia and Herzegovina and Yemen): (39.0+39.1)/2=39.05. If you consider only the first 49 observations, than the 1st quartile is 39.0 (Bosnia and Herzegovina). This is equally accepted as a correct answer. The 3rd quartile is the median of the 2nd half of the data, the median is the average of the debts of the middle two countries (Netherlands and Austria): (70.40+64.6)/2=67.5. If you consider only the last 49 observations, than the 3rd quartile is 70.4 (Austria). This is equally accepted as a correct answer.

Question II (10): In the following graphs, the heights are frequencies. For example, there are 2+4+8+4+2=20 observations on the left.

a) (2) Obtain the two sample medians.

Since both distributions are symmetric, both medians (and means) are equal to 3.

b) (4) Which distribution is more skewed? Explain.

Both are symmetric.

c) (4) Which of the two distributions exhibit more variability? Explain.

The one on the right is more variable since there are more observations away from the center. For instance, the graph on the right has 6 observations equal to 1 or 5, while the graph on the left has only 5 observations equal to 1 or 5.

Question III (10): Match the sample skewness and sample excess kurtosis. There are 4 histograms and 5 alternatives, therefore one of the alternatives must be wrong.

Question IV (10): The following table shows the descriptive statistics from 1000 days of returns on IBM and Exxon's stock prices.

Mean Standard deviation IBM 0.0009 0.0157 0.0224 Exxon 0.0018 Here is the covariance matrix IBM Exxon IBM 0.000247 Exxon 0.000068 0.00050 a) (2) What is the variance of Exxon? V(IBM) = 0.000247 (from the covariance matrix) or V(IBM) = (0.0157)*2 = 0.00024649 (square of standard V(IBM) = 0.00024649 (square of standard V(IBM)) = 0.00024649 (square of standard V(IBM)) = 0.00024649 deviation) b) (4) What is the correlation between IBM and Exxon? Corr(IBM,Exxon) = 0.000068/(0.0157*0.0224) = 0.1933576 or Corr(IBM,Exxon) = 0.000068/sqrt(0.000247*0.00050) = 0.1934975c) (4) Consider a portolio that invests 30% in IBM and 70% in Exxon. What are the mean and variance of the portfolio? P = 0.3IBM + 0.7ExxonMean P = 0.3*0.0009+0.7*0.0018 = 0.00153. Var P = 0.09*0.000247+0.49*0.00050+2*0.3*0.7*0.000068 = 0.00029579. Do you prefer this portfolio to just investing in IBM on its own? If the goal is minimizing the variance, then one would prefer IBM. However, if the goal is maximizing the mean, then one would prefer the portfolio.

Question V (10): The following table contains data taken from American Cancer Society's Cancer Prevention Study II (CPS II). CPS II used survey results from about 1.2 million volunteers to find out more about what factors can cause cancer or help prevent it. Statistics from CPS II are used in the United States Surgeon General's Report on the Health Consequences of Smoking and in other government reports. The data are taken from the years 2000 to 2004. The table describes *only* the effects of tobacco use on deaths from cancer. They do not include deaths from other tobacco-related causes such as heart and lung diseases, though there are many deaths caused by those illnesses.

X	Cancer type	Men (Y=1)	Women (Y=2)
1	Lip, oral, cavity, pharynx	0.0282	0.0138
22	Esophagus	0.0536	0.0160
З	Larynx	0.0166	0.0044
4	Trachea, lung, bronchus	0.4976	0.3698

a) (2) Write down the marginal distribution of X and the marginal distribution of Y.

X	1	ຊ	3	4	Y	1	2	
Pr(X)	0.0420 (0.0696 0.	.0210 0.8	674	$\Pr(Y)$	0.596	0.404	
b) (4)	Obtain the	condition	nal distrib	ution of	Y given t	hat X=1.	In plain H	Inglish, what does this distribution
repres	ent?							
Y		1		2				
$\Pr(Y Y)$	ζ=1) 0.6	714286	0.328571	4				
Men ar	re twice as	likely as	women to	presen	t lip, oral,	cavity a	nd ph <mark>ary</mark> r	ix cancer.
c)(4)	You were g	given the	informati	on that	a given pa	atient has	s esophag	us cancer. What is the probability the
patient	t is a man?	P Formula	ate this qu	lestion j	probabilis	tically ar	nd then de	rive its answer.
Pr(Y=1	X=2) = P	r(Y=1,X=	2)/Pr(X=2	3)= 0.05	36/0.069	6= 0.770	1149 or r	oughly 78% chance.

Question VI (10): Suppose we have returns data for assets X and Y. Let P1, P2 and P3 be portfolios with the following allocation structures: P1 = 0.3X + 0.7Y; P2 = 0.6X + 0.4Y; and P3 = 0.9X + 0.1Y. The sample means of X and Y are 0.36 and 0.53, respectively. The sample standard deviations of X and Y are 0.67 and 0.98, respectively. Also, the sample correlation between X and Y is -0.76.

```
a) (4) Which one of the above 3 portfolios maximizes the sample mean? Provide your statistical derivations to support your answer.

Mean P1 = 0.3*0.36+0.7*0.53=0.479 <=

Mean P2 = 0.6*0.36+0.4*0.53=0.428

Mean P3 = 0.9*0.36+0.1*0.53=0.377

Therefore, P1 is the portfolio that maximizes the sample mean.

b) (6) Which one of the above 3 portfolios minimizes the sample variance? Provide your statistical derivations to support your answer. The sample variances of X and Y are 0.4489 and 0.9604, respectively.

The sample covariance between X and Y is -0.499016.

Variance P1 = 0.09*0.4489+0.49*0.9604+2*0.3*0.7*0.499106=0.3014

Variance P2 = 0.36*0.4489+0.16*0.9604+2*0.6*0.4*0.499106=0.0757 <=

Variance P3 = 0.81*0.4489+0.01*0.9604+2*0.9*0.1*0.499106=0.2834

Therefore, P2 is the portfolio minimizes the sample variance.
```

Question VII (10): The quality of Nvidia's graphic chips is such that the probability that a randomly chosen chip being defective is only 0.1%. You have invented a new technology for testing whether a given chip is defective or not. This test will always identify a defective chip as defective and only "falsely" identify a good chip as defective with probability 1%.

a) (4) Given that the test identifies a defective chip, what is the probability that it is actually defective?					
Let us denote $D=1$ if the chip is defective and $D=0$ if the chip is not defective.					
Similarly, T=1 if the test identifies the chip as defective and T=0 otherwise.					
Therefore, we know that $Pr(D=1)=0.001$. We also know that $Pr(T=1 D=1)=1.00$ and $Pr(T=1 D=0)=0.01$.					
These information set is enough for the construction of the 2x2 table:					
D					
$0 1 \Pr(T)$					
T 0 0.98901 0.000 0.98901					
1 0.00999 0.001 0.01099					
Pr(D) 0.99900 0.001 1.00000					
We are interested in computing $Pr(D=1 T=1)$:					
Pr(D=1 T=1) = Pr(D=1,T=1)/Pr(T=1) = 0.001/0.01099 = 0.09099181.					
b) (4) What percentage of the chips will the new technology identify as being defective?					
Pr(T=1) = 0.01099 (or roughly 1% of the chips)					
c) (2) Should you advise Nvidia to go ahead and implement your testing device? Explain.					
Not really since about 90% of the time a defective is mistakenly signaled by test, despite the fact that 100% of the					
time non-defective is correctly signaled by the test.					