Example I: Petrobras returns

Histogram Tail behavior

Example II Automobil

Measuring variability

Measuring

extremity Historical fact

Computing kurtosis

Example III: Nasdaq

Example IV: Heavy vs thin

inal remarks

Beware the Long Tail¹

Hedibert Freitas Lopes
Booth School of Business
University of Chicago

¹Title borrowed from Rachel Ehrenberg's Science News article (November 5, 2011, www.sciencenews.org)

Outline

Motivation

Example Is Petrobras returns Histogram

Tail behavior

Example II:

claims Measuring

Measuring

Historical facts
Computing
kurtosis

Example III Nasdaq returns

Example IV: Heavy vs thin

inal remarks

- Motivation
- Example I: Petrobras returns
 Histogram
 Tail behavior
- 3 Example II: Automobile claims
- 4 Measuring variability
- Measuring extremity Historical facts Computing kurtosis
- 6 Example III: Nasdaq returns
- 7 Example IV: Heavy vs thin
 - 8 Final remarks

The Economist, Jan 22nd 2009

In Plato's cave

Mathematical models are a powerful way of predicting financial markets. But they are fallible.

... although the normal distribution closely matches the real world in the middle of the curve, where most of the gains or losses lie, it does not work well at the extreme edges, or "tails".

Benoît Mandelbrot ... calculated that if the DJIA followed a normal distribution, it should have moved by more than 3.4% on 58 days between 1916 and 2003; in fact it did so 1,001 times. It should have moved by more than 4.5% on six days; it did so on 366. It should have moved by more than 7% only once in every 300,000 years; in the 20th century it did so 48 times.

Motivation

Example I: Petrobras returns Histogram

Example II: Automobile claims

Measuring variability

Measuring

Historical facts Computing kurtosis

Example III Nasdaq returns

Example IV: Heavy vs thir

Final remark

DJIA returns: 1916-2003

Example Is Petrobras returns

Histogram Tail behavior

Example II Automobil claims

Measuring variability

Measuring extremity

Historical facts Computing kurtosis

Example III Nasdaq

Example IV: Heavy vs thin

inal remarks

Observed: more than 3.4% on **1,001** days Expected: more than 3.4% on **58** days

Observed: more than 4.5% on **366** days Expected: more than 4.5% on **6** days

Observed: more than 7% on 48 days

Expected: ?????

Example I: Petrobras returns

Histogram Tail behavior

Example II Automobil claims

Measuring variability

Measuring

Historical fact Computing kurtosis

Example II Nasdaq returns

Example IV: Heavy vs thir

Final remark

Miocene epoch

Observed: more than 7% on 48 days over 100 years Expected: more than 7% on 48 days over 14 million years!

The apes arose and diversified during the Miocene epoch, becoming widespread in the Old World.

Example I: Petrobras

Histogram Tail behavior

Family II

Automobil

Measuring variability

Measuring

Historical fact Computing kurtosis

Example III: Nasdaq

Example IV: Heavy vs thin

Final remarks

Petrobras²

Let us take a closer look at Petrobras. Why? Because I bought it at \$34 in October 2010, that is why!

Date	Price
8/10/00	4.23
8/11/00	4.22
8/14/00	4.21
:	:
9/30/10	33.88
10/1/10	34.06
10/4/10	34.18
:	:
2/19/13	16.29
2/20/13	15.75

Example I: Petrobras returns

Tail behavior

Example I Automobil claims

Measuring variability

Measuring

Historical facts
Computing
kurtosis

Example III: Nasdaq

Example IV: Heavy vs thin

inal remark

Motivation

²Data source: Yahoo! Finance (finance.yahoo.com) > (3) > (3) > (4)

Mativation

Example I: Petrobras returns

Histogram Tail behavior

Example II
Automobile

Measuring variability

Measuring

Historical facts Computing kurtosis

Example III Nasdaq

Example IV: Heavy vs thin

inal remark

Prices

Returns

Motivation

Example I: Petrobras returns

Histogram Tail behavior

Example II Automobil claims

Measuring variability

Measuring

Historical facts Computing kurtosis

Example III Nasdaq returns

Example IV: Heavy vs thin

inal remarks

We define return as

$$R_t = 100(P_t/P_{t-1}-1),$$

where P_t is the price at time t.

Date	Price	Return
8/10/00	4.23	_
8/11/00	4.22	-0.2364066
8/14/00	4.21	-0.2369668
:	:	:
9/30/10	33.88	1.5283188
10/1/10	34.06	0.5312869
10/4/10	34.18	0.3523194
:	:	:
2/19/13	16.29	2.0676692
2/20/13	15.75	-3.3149171

Example I: Petrobras returns

Tail behavior

Example II Automobile

Measuring

variability

extremity
Historical fact
Computing
kurtosis

Example III Nasdaq

Example IV: Heavy vs thin

inal remark

Returns

Example I: Petrobras

Histogram
Tail behavior

Example I Automobil

Measuring variability

Measuring

Historical facts
Computing

Example III Nasdaq

Example IV: Heavy vs thin

Final remarks

Empirical distribution of returns

Red curve: Fitted normal with data-driven mean and variance.

Dashed lines: 3,6,9 standard deviations from the mean.

Example I: Petrobras returns

Histogram Tail behavior

Example II Automobil claims

Measuring variability

Measuring

Historical facts Computing kurtosis

Example III Nasdaq returns

Example IV: Heavy vs thin

inal remark

Tail behavior

Number of observed and expected data points outside k standard deviations (out of 3145 daily returns).

Standard	Tail behavior		
deviations	Observed	Expected	
1	688	998	
2	140	143	
3	41	9	
4	22	0.2	
5	9	0.002	
6	4	6.2e-06	
7	3	8.1e-09	
8	2	4.2e-12	
9	1	0	
10	1	0	

Example I: Petrobras returns

Histogram Tail behavior

Example II: Automobile claims

Measuring variability

Measuring

Historical facts
Computing

Example III: Nasdaq

Example IV: Heavy vs thin

inal remarks

Another case: automobile claims

Automobile claims from 1988 to 2001 gathered from several European insurance companies, which are at least as large as 1.2 million Euros.

Measuring variability

Motivation

Example I: Petrobras returns

Histogram Tail behavior

Example II Automobil claims

Measuring variability

Measuring

Historical facts Computing kurtosis

Example III Nasdaq

Example IV: Heavy vs thin

inal remarks

Variance (or volatility) is not enough to understand, model, predict rare (tail, perhaps catastrophic) events.

How to identify heavy-tailness in the data?

How to model heavy-tail data?

Measure of extremity: kurtosis

Petrobras returns

Histogram Tail behavi

Example III Automobile claims

Measurir variabilit

Measuring extremity

Historical facts Computing kurtosis

Example III Nasdaq returns

Example IV: Heavy vs thin

inal remarks

Measures the degree to which exceptional values occur more frequently (high kurtosis) or less frequently (low kurtosis).

A reference distribution is the normal distribution, whose kurtosis is three.

High kurtosis results in exceptional values that are called fat tails".

Fat tails indicate a higher percentage of very low and very high returns than would be expected with a normal distribution.

Example I Petrobras returns

Histogram Tail behavi

Example II Automobile claims

Measurin variability

Measurin, extremity

Historical facts Computing kurtosis

Example II Nasdaq

Example IV: Heavy vs thin

Final remark

Historical facts

KURTOSIS was used by Karl Pearson in 1905 in "Das Fehlergesetz und seine Verallgemeinerungen durch Fechner und Pearson. A Rejoinder", *Biometrika*, 4, 169-212, in the phrase "the degree of kurtosis".

He introduced the terms leptokurtic, platykurtic and mesokurtic, writing in Biometrika (1905), 5. 173:

"Given two frequency distributions which have the same variability as measured by the standard deviation, they may be relatively more or less flat-topped than the normal curve. If more flat-topped I term them platykurtic, if less flat-topped leptokurtic, and if equally flat-topped mesokurtic".

Example I Petrobras returns

Tail behavio

Example II Automobile claims

Measuring variability

Measuring

Historical facts Computing kurtosis

Example III Nasdaq returns

Example IV: Heavy vs thin

Final remarks

In his "Errors of Routine Analysis" Biometrika, 19, (1927), p. 160 Student provided a mnemonic:

* In case any of my readers may be unfamiliar with the term "turtosis" we may define mesokurtic as "having β_2 equal to 3," while platykurtic curves have $\beta_3 < 3$ and leptokurtic > 3. The important property which follows from this is that platykurtic curves have shorter "tails" than the

normal curve of error and leptokurtic longer "tails." I myself bear in mind the meaning of the words by the above memoria technica, where the first figure represents platypus, and the second kangaroos, noted for "lepping," though, perhaps, with equal reason they should be hares!

Example I: Petrobras returns

Histogram Tail behavior

Example II Automobil claims

Measuring variability

Measuring extremity

Historical facts Computing kurtosis

Nasdaq returns

Example IV: Heavy vs thin

Final remark

Computing kurtosis in excel

In fact, excel computes excess kurtosis (in excess to the the normal kurtosis, which equals 3):

$$\kappa = \frac{n(n+1)}{(n-1)(n-2)(n-3)} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s_x}\right)^4 - \frac{3(n-1)^2}{(n-2)(n-3)}$$

where \bar{x} and s_x are, respectively, the sample mean and the sample standard deviation of the data.

When n is large, it converges to

$$\kappa_n = \frac{1}{n} \sum_{i=1}^n \left(\frac{x_i - \bar{x}}{s_x} \right)^4 - 3$$

Example I: Petrobras returns

Histogram Tail behavior

Example II Automobile claims

Measuring variability

Measuring

Historical facts
Computing
kurtosis

Example III: Nasdaq

Example IV: Heavy vs thin

Final remarks

Petrobras (
$$n = 3145$$
)

$$\kappa = 9.761795$$
 and $\kappa_n = 9.736272$

Automobile claims (n = 371)

$$\kappa = 8.303171$$
 and $\kappa_n = 8.115396$

Example I: Petrobras

Histogram Tail behavior

Example II
Automobil

Measuring variability

Measuring

Historical facts Computing kurtosis

Example III Nasdaq

Example IV: Heavy vs thin

Final remark

Petrobras kurtosis

Example I: Petrobras returns

Histogram Tail behavior

Example II Automobile

Measurin variability

Measuring

Historical facts Computing kurtosis

Example III: Nasdaq returns

Example IV: Heavy vs thin

Final remai

Nasdaq returns

From 1/1/2000 to 12/312008 (2262 obs.) Standard deviation = 1.945645Excess kurtosis = 4.687585

Tail behavior

Motivation

Example I: Petrobras

Histogram Tail behavior

Example I Automobi

Measuring variability

Measuring

Historical facts
Computing
kurtosis

Example III: Nasdaq returns

Example IV: Heavy vs thin

inal remarks

	Empirical		Empirical Normal model		model
Extreme	Prob.	Years	Prob.	Years	
4.386	98.0%	0.2	98.83%	0.3	
5.526	99.0%	0.4	99.78%	2.0	
10.231	99.9%	4.0	100.00%	59000	

Prob. = Probability of the right tail

Years = expected number of years until rare event.

Synthetic data

Motivation

Example I: Petrobras returns

Histogram Tail behavior

Example II Automobil claims

Measuring variability

Measuring extremity

Historical facts Computing kurtosis

Example III: Nasdaq returns

Example IV: Heavy vs thin

nal remarks

Same mean (= 0)Same variance (= 3)Same skewness (= 0)Different kurtosis

 $\textbf{black curve:} \ \, \text{kurtosis} = 0.054 \, \, \text{(thin-tail distribution)}$

Tail behavior

Percentage of observations below threshold

threshold	fat-tail	thin-tail
-6	0.4636	0.0571
-5	0.7696	0.3571
-4	1.4004	1.6004
-3	2.8834	5.1393
-2	6.9663	11.8255
-1	19.5501	19.4970

Fat-tail: On average, once every 1/0.004636=216 days (about one year) one data point would fall below 6 standard deviations.

Thin-tail: On average, once every 1/0.000571=1750 days (about seven years) one data point would fall below 6 standard deviations.

Motivation

Example I Petrobras returns

Histogram Tail behavior

Automobile claims

Measuring variability

Measuring extremity

Historical facts Computing kurtosis

Example II Nasdaq returns

Example IV: Heavy vs thin

Final remarks

Example I: Petrobras returns

Histogram Tail behavior

Example II
Automobile

Measuring variability

Measuring

Historical facts
Computing
kurtosis

Example III Nasdaq

Example IV: Heavy vs thin

Final remarks

Revisiting Petrobras

Example I: Petrobras returns

Histogram Tail behavior

Example II
Automobile

Measuring variability

Measuring extremity

Historical facts
Computing
kurtosis

Example III Nasdaq

Example IV: Heavy vs thin

Final remarks

Log tail probabilities

Tail percentage

Example I: Petrobras returns Histogram Tail behavior

Example I Automobil claims

Measuring variability

Variability

extremity
Historical facts
Computing
kurtosis

Example III Nasdaq

Example IV: Heavy vs thin

inal remarks

Standard	Data	Model	
Deviations		Student-t	Normal
4	0.667727	1.032342	0.006334
5	0.286169	0.410472	0.000057
6	0.127186	0.184614	0.000000
7	0.095390	0.091675	0.000000
8	0.063593	0.049291	0.000000
9	0.031797	0.028268	0.000000

Final remarks

Motivation

Example I Petrobras returns

Histogram Tail behavi

Example III Automobile claims

Measurin variability

Measuring

Historical facts Computing kurtosis

Example III Nasdaq returns

Example IV: Heavy vs thin

Final remarks

Lesson:

Studying volatilities is important, but studying kurtosis is too.

Modeling the tails:

- Extreme value theory
 - Extreme floods, large insurance losses, equity risks
 - Embrechts et al. (1997) Modelling extremal events for insurance and finance
 - Novak (2011) Extreme value methods with applications to finance
- Time-varying volatility modeling
- Multivariate modeling